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Abstract. Giving an ultraviolet regularization and volume cut off we construct
a nuclear Riemannian structure on the Hubert manifold 50Ϊ of gauge orbits.
This permits us to define a regularized Laplace-Beltrami operator A on SDΐ and
an associated global diffusion in 501 governed by A. This enables us to define,
via a Feynman-Kac integral, a Euclidean, continuum regularized Yang-Mills
process corresponding to a suitable regularization (of the kinetic term) of the
classical Yang-Mills Lagrangian on TSOΐ.

Introduction

In order to make a serious study of non-perturbative quantum Yang-Mills theory
in four dimensional space-time, it appears to be indispensable to construct first a
regularized Euclidean Yang-Mills theory via a well defined functional integral.
This first step has so far only been achieved in the context of lattice gauge theories
[21, 11, 19], no rigorous construction in the continuum with cut-offs having yet
been given. The serious block to a direct continuum construction appears to have
been the nature of the configuration space of Yang-Mills theory which is the space
of gauge orbits [16]. This space is not a linear space and in it we have no globally
defined notion of a free field. Thus, as should be obvious, we cannot interpret the
cut-off Yang-Mills theory as a free field plus regularised perturbation. There exists
a formal quantization procedure going back to de Witt, Feynman, Faddeev-Popov
[7] which has enjoyed much success in perturbation theory. But this procedure, in
its present form even with cut-offs, is fraught with ambiguities at all levels, measure
theoretic and geometric, and cannot be considered as a viable alternative to lattice
gauge theories for non-perturbative considerations.

In this paper we shall see how some of these problems can be overcome in fact
we shall give a rigorous definition of a global Euclidean Feynman-Kac integral
with regularization working directly in the space of gauge orbits. Our construction
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is directly motivated by the formal Faddeev-Popov quantization procedure and
leads to a rigorous continuum alternative to Hamiltonian lattice gauge theory
[11]. In [17] it was shown, in an appropriate mathematical set up, that the space
of gauge orbits 9JI was a smooth Hubert manifold and in [16] it was shown that
the classical Yang-Mills dynamical system is properly defined on TΪR, the tangent
bundle of the gauge orbit manifold. As such the kinetic term displays a (weak)
Riemannian structure on the gauge orbit manifold [16]. In [1] the role of this
(weak) Riemannian structure in formal Faddeev-Popov path integral is clearly
explained. Once this relationship is understood, we can take our clue from the
finite dimensional context (see [5, 2] for heuristic considerations) where a rigorous
probabilistic set up exists [15]. In that context the aim is to set up Brownian
motion (diffusion) in the manifold corresponding to the Riemannian structure i.e.
the generator is the Laplace-Beltrami operator [15]. A further potential (suitable
globally defined function on the manifold) can then be added via a Feynman-Kac
integral. In this paper this approach is generalized to the Hubert manifold of gauge
orbits by introducing suitable volume cut-off and ultraviolet regularization. The
volume cut-off is put in by compactifying 3-space as a box with periodic boundary
conditions (identified with a 3-torus). The introduction of the ultraviolet re-
gularization is more subtle, so we digress further.

The role of the ultraviolet regularization is two-fold. First with its help we
introduce a true C00 Riemannian structure g on 50Ϊ, the Hubert manifold of gauge
orbits of [17,16]. This replaces the weak Riemannian structure mentioned earlier.
The second role of the ultraviolet cut-off is to permit the introduction of a globally
defined C°° field G of positive, self adjoint (with respect to g), nuclear operators on
9JΪ (the operators acting, for each \_A]e 30Ϊ, on T[A]W). With its help we obtain
globally, Gaussian measures on tangent spaces and Wiener measures on the space
of paths in each tangent space. When the ultraviolet cut-off is taken off, g collapses
to the weak Riemannian structure and G to the identity operator. [The ultraviolet
regularization has a Lagrangian interpretation (it is a variant of higher spatial
covariant derivative regularisation) and will not violate Osterwalder-Schrader
positivity.] The triple (9W, g, G) may be called a nuclear Riemannian manifold and
such triples appear to be suitable objects for analysis in Hubert manifolds. In
particular we are able to construct rigorously a second order invariant differential
operator A on 5CR which plays the role of a Laplace-Beltrami operator.

The next step is to construct a strong-Markov process 3£t in 9JΪ (Brownian
motion) whose generator is Δ. This is achieved, first locally and then globally by
patching up, using Ito stochastic integrals and integral equations in Hubert space
(model space) with smooth "diffusion coefficients" fabricated out of g and G in
local charts. The global construction parallels the finite dimensional case [15] with
minor modifications and a convenient simplification due to the parallelizability of
Hubert manifolds. As a by-product we obtain measures on SOI itself (Remark 4.6).
The final step is to define the Euclidean Yang-Mills process via a well defined
Feynman-Kac integral employing the potential (magnetic term) which turns out to
be a continuous function on SCTi. This construction resolves the problem posed in
[16]. The reconstruction of the quantum theory will be given in the sequel.

Several comments are in order. Our work may be viewed as a concrete model
of infinite-dimensional stochastic geometry. It is closely related to [4] which
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served as direct inspiration. Brownian motion in Banach manifolds with abstract
Wiener structure has been constructed in [14]. Working in a Hilbert manifold we
are able to avoid many of the complications of [14]. The construction of a
stochastic process in the space of connections has been discussed in [9] but the
point of view of that discussion is not directly related to the Yang-Mills dynamical
system. Also Singer has advocated the use of ζ-function regularization to define
differential operators on the orbit space (lecture at Cargese, 1979). Both Singer
and, independently, Narasimhan have emphasized the importance of a global
approach to continuum gauge field quantization.

1. Classical Yang-Mills Dynamical System with Space Cut-Off [17, 16]

A. Let M 4 =IR x Fbe Euclidean space-time with volume cut-off on 3-space V. For
simplicity we take Fas a finite box inR 3 with periodic boundary conditions. Thus
Fcan be identified with the 3-torus S1 x S1 x S1 = T3. Let P(V, <$) be a C00 principal
^-bundle on V, where ^ is a compact, connected simple Lie group. Let stfk be the
C00 Hilbert manifold of all generic (irreducible) connections in P in Sobolev class fc,
with k>3 and even for technical reasons. Let © k + 1 be the Hilbert Lie group of
gauge transformations, in Sobolev class (7c +1), [17,16]. Let 3£ be the subgroup of
®k+1 with values in the center of ^ and denote (δk+1 = (5k+ 1/JΓ. ( 5 k + 1 has C00 free
action on Jrfk. We have the following

Theorem 1.1. [17, 18, 16]

with π the canonical projection is a C00 locally trivial principal © Λ + 1 bundle and 9ft is
a C00 Hilbert manifold.

A C00 atlas is given in [17, 16]. A related theorem was first announced in [20]
in the context of C00 topologies.

It is easy to prove the following:

Proposition 1.2. The manifold Wd is a connected, metrizable, separable topological
space with a countable topological base.

In fact a true Riemannian structure for $R will be constructed in Sect. 2.
In the principal bundle j^fc(9Jl, © f c + 1) we have a canonical connection, the

"Coulomb connection" of [18] (see also [16]), whose horizontal space at a point A
is the orthogonal supplement in TAstfk of the tangent space VA to the fiber through
v4, [orthogonality with respect to the canonical (weak) invariant L1 Riemannian
structure on stfk~\. It is proved in [18] that this gives a splitting. The restriction of
this weak Riemannian structure on the horizontal subspace defines a weak
Riemannian structure # w on 9ft, [1,16].

B. The classical Yang-Mills dynamical system [16] is described by the
Lagrangian:

L=-iC](M,M)-^(M) (Li)

which gives a function ΓΪΊ->R where

(1.2)
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for any ^4G[A] and ||F(i4)||L2 is the canonical invariant L2 norm of the curvature
2-form F(Λ).

We use throughout the notation \_A~\ to denote an orbit through A.
Note that the Lagrangian (1.1) is nothing but the Lagrangian:

which is a function on Tstfk descended to T9Jί using the Coulomb connection. The
Gauss condition dAA = 0 then gets automatically implemented. See [16] for
details.

2. Nuclear Riemannian Structure on SOΪ

A. Let k>3 and even throughout

Let Γm be the Hubert space of sections of ad P x T*Fin Sobolev class meZ. We can
define for —k+2^m^k

AA = dAd* + d*dA

as a continuous linear operator: Γm->Γm_ 2, for any Ae s$k. By Sobolev embedding,
sίtk CCl(stf\ the space of C 1 irreducible connections.

Lemma 2.1. For each positive real A and —k-\-2^m^k

1 \^ n. . 1 7 1 n.
ΛZ ttl ϊiί — L

is a bounded invertίble linear operator.

The proof of this lemma is similar to that of proposition (3.3) of [18].

B. Riemannian Structure on SCR

We define a gauge invariant Riemannian metric g on s$k consistent with its Hubert
space structure as follows:

For any τ,ηeTAJtfk, we define

A Ψ2

Λ " ~ " η) , (2.1)

where ( , )L2 ^S t n e canonical, invariant (weak) L2 scalar product on TAJrfk.
Lemma (2.1) implies that the norm engendered by g^ is compatible with the
Sobolev /c-norm in TAJtfk. By construction (2.1) is gauge invariant and it is easy to
show that it is C00. Hence g defines a true gauge invariant Riemannian structure on

The restriction of the Riemannian structure g on the horizontal subspaces of
the tangent spaces to J ^ , given by the Coulomb connection in j/fc(ΪR, (Bfc+1),
(Sect. 1), defines a true C00 Riemannian structure g on $R.

C Global Covariance Operator Field on SCR
d i m F

Let ik__ 1 be the inclusion map: Γk ^Γk_2. Recall dim V— 3 and so 2 > . Hence

ik_ j is a Hilbert-Schmidt operator. Using the canonical identification of TAJtfk with
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Γk we define the operator:

°h-i'TA<-*TA< (2.2)

It is easy to show by using Lemma (2.1) that S^ is a self-adjoint Hilbert-Schmidt
operator in TAskk with respect to its Hubert space structure defined by gA.

Hence we have a covariance operator G^ defined by:

GA = SA:TAάk^TAάk, (2.3)

which is a self-adjoint, positive operator of trace class. By the Minlos theorem [10]
this covariance defines a Gaussian measure p^ of mean 0 on TAJtfk, equipped with
gA scalar product, countably additive on the least σ-algebra generated by cylinder
sets.

We also define
Gt,Λ = tGA (2.4)

with real ί > 0 a scaled covariance and \>tA the corresponding Gaussian measure.
By construction the operator fields S,G,G r on sϋlk defined by (2.2), (2.3) are

gauge invariant and C0 0 (Frechet). The restriction of S ^ G ^ G , A to the horizontal
subspace HA C TAJtfk (with respect to the Coulomb connection) composed with the
projection on HA with respect to the gA scalar product defines in 7[U]$R operators
S[A]>G[AVGtΛA] with the same properties (with respect to g[A]) as S ^ G ^ G ^ (with
respect to g^). The operator fields S,G,G ί on ΪR, so defined, are also C0 0.
Corresponding to each covariance GtΛA] we have a σ-additive Gaussian measure
of mean 0, p r [A] on T[A]$R. The triple (9Jt, g, G) defines a nuclear Riemannian
manifold.

D. Relationship with Ultraviolet Regularization

Define

7$>SW = S[i4]ΓW]SRCΓM]SW (2.5)

which is a dense subspace of T{AfiR.
Now we introduce a scalar product h ^ , on 7/ĵ SCR as follows. If τ, η e TĴ SDt

define:

Kifan) = SiAfiw*>Sufr). (2.6)
Then our ultraviolet regularized Lagrangian, corresponding to our classical
Lagrangian (1.1) is (for [ i ] e T ^ ^ ) :

Lγe&. = - i * W [ > ] , [ A ] ) - TT([A]). (2.7)

Note that the ultraviolet regularization is entirely in the kinetic term and the
regularising parameter A enters both through the Riemannian structure g and the
covariance operator field G. The potential "Ϋ" is a non-negative continuous
function on 9M. In fact F(A)eΓk_1(a.άP xA2(V)) which enjoys the Banach algebra
property since k>3 and d i m F = 3 . When Λ ^ o o we recover the classical Yang-
Mills Lagrangian (1.1). Note that the regularisation is entirely space-like and hence
reflection positivity will be preserved in the Euclidean field theory at the expense
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of full Euclidean covariance in the presence of A. The relation with higher spatial
covariant derivative regularisation becomes clear on exploiting, in (2.7), the
definition of h[A], g[A], and $[A], recalling K>3 and even, and restricting to
subspace of smooth connections. We get a "Hamiltonian Pauli-Villars re-
gularisation" with higher spatial covariant derivatives appearing in the A2 term
which gets absorbed in the definition of the path space measures for Wiener
process in tangent spaces.

3. Diffusion Coefficients in SR and a Laplace-Beltrami Operator

In this section we construct certain objects, called "local diffusion coefficients",
which will serve in Sect. 4 as inputs in stochastic integral equations via which we
will engender a strong Markov process Xt in StR. We also define in this section a
Laplace-Beltrami operator A on 351 which will be seen to coincide, in Sect. 4, with
the generator of Xt. The parallelizability of Hubert manifolds, exploited in this
section, eliminates a possible obstruction to the global construction of Xt in 501,
with unrestricted smooth atlas.

Let (C/f,φf) be a C00 atlas for 501. For concreteness we take the C°° atlas of
[17, 16] and by Proposition (1.2) it is taken to be countable. The image φ(U^) is
then defined via a "local background gauge" [17, 16]. The model space E for 501 is
identified, once and for all, with the (closed) horizontal subspace [17,16]
HχCTχstffr at any fixed point AeJtfk, since all HA are isomorphic (e.g. by
identifying fixed bases). In fact E can be identified with 7^501 ~ H ^ , with scalar
product g^ . The results of this paper are atlas independent.

A. First Diffusion Coefficient

Take the C°° Riemannian structure g on 501 defined in Sect. 2. Let (U, φ) a local
chart at [,4]e50ϊ, and denote by

φ,[A]:TlA](U)->TΛ(E)^E (3.1)

the isomorphism of tangent spaces, with A = φ{[AJ). Then for any u, veEwε define
the bounded invertible linear operator g(φA):E->E by:

g[Λ](<P*ώM> ΨliA\v) = 8φ(
A)(u>v) = ("> £φ(A)v). (3.2)

Next we note that by Kuiper's theorem [12], 501 is g-parallelizable since 9Ji is a
Hubert manifold. Let Xo be a parallelization of the Θ{W) bundle of orthogonal
frames:

O(E) is the group of orthogonal transformations on E. [By Kuiper's theorem O(E)
is contractible.] Let us denote by

x.mχE-^τm (3.3)

the trivialization of T$R induced by Xo. If {et} is an orthonormal basis of £, for
every [^4]e50i we have that the sequence {X ([^])} of vectors of 7JX]50l defined by

i) (3.4)
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is an orthonormal basis of TU]9JΪ with respect to g[A], i.e.

δy. (3-5)

We define for each [^JeϊR, the isomorphism

hv • TlA]m^E (3.6)

by

Define the bounded linear invertible operator:

Then

]u> R<P,IA]V)E = (

= {u,gφ{A)v)E.

Hence

In other words Kφ is the expression in local coordinates of parallelization Xo

(infinite dimensional generalization of a Vierbein field).
We define the first local diffusion coefficient ξφ in φ(U)

ξM) = SφΛΛ]R;}A], (3.9)

where

S

φ,[A] = <l>*[A]SiAl<P*iAy ( 3 1 0 )

S being the Hilbert-Schmidt operator field on $R of Sect. 2C. It is a routine exercise
to verify the following

Lemma 3.1. ξφ\φ(U)-^J4fS(E) is C0 0. JHTS{E) is the Hubert space of Hilbert-
Schmidt operators with the Hilbert-Schmidt norm || H^.^

Corollary 3.2. (Local Lipschitz Continuity). There exists an open set Vc U such that
for any A,A'eφ(V)

\\ξφ(A)-ξφ(A>)\\H.sSc\\A-A'\\E (3.11)

i.e. ξφ is locally lipschitz.

B. Second Diffusion Coefficient

The second local diffusion coefficient in 501 will be constructed out of the
Riemannian connection corresponding to g and the first local diffusion coefficient
ξφ already constructed.

Let (U,φ) be a chart at [^4]e9W. From (3.2) we have for fixed u.υeE the
function

]R (3.12)
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and for each Aeφ(U), we have the Frechet derivative:

wt->g'φ(4)(M,ι;)w

as a bounded linear functional.
Define for every W,U,VEE

%'φ(A)(w ;u,υ) = g'φ(A)(u, v)w. (3.14)

We now define the Christofel functional Γφ(Ά)(',-) in the local chart (U,φ) as a
bounded bilinear map:

^ (3.15)

for every u,υeE where the terms in the bracket are considered as elements of E by
the Riesz theorem.

More explicitly, for we£,

(w, lφ{A)Γφ{A){u, υ))E = \ {g'φ(A)(u ;v,w) + g'φ(Λ^v'w'u)" S ^ X W ' w ' * (3 1 6 )

We now define the second local diffusion coefficient σφ(-) by:

σφ(A)=-±trΓφ(A)(ξφxξφ) (3.17)

where tτΓφ(A)(ξ x ξφ) is the unique vector of E such that for any ueE, and any
orthonormal basis {en} of E

{u,trΓφ(A)(ξφxξφ))= Σ (u,Γφ(A)(ξφen,ξφen)). (3.18)
n= 1

Each term in the r.h.s. defines a bounded bilinear functional and can be written in
the form {ζφen,ΓφfU(A)ξφen) with Γ bounded linear operator. The series in (3.18)
converges and is independent of choice of orthonormal basis since ξφ is Hilbert-
Schmidt.

It is straightforward to check the following:

Lemma 3.3. σφ : φ{U)-+E is C00.

Corollary 3.4.(Local Lipschitz Continuity). There exists an open setVCU such that
for any A,A'eφ(V):

\\σφ{A)-σφ{Ά)\\ESc\\A-Ά\\E. (3.19)

Lemma 3.5. (Transformation Property of Diffusion Coefficients). Let (U, φ), (V,ψ)
be two local charts at [ i ] e ί / n F φ Φ . Define:

θ = \poφ-ι:φ(UnV)-+ιp{UnV) (3.20)

(transformation of local coordinates). Let {ξφ, σφ], {ζψ,σψ} be local diffusion
coefficients of Sects. A, B in charts φ, ψ.
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Then :
ξΨ = θ'ξφ (3.21)

σφ = θ'σφ + frθ''{ξφxξφ)9 (3.22)

where the first Frechet derivative θ': E-+E, bounded linear operator, is the Jacobian
of the coordinate change, θ" :E xE^E, bounded bilinear map, is the second Frechet
derivative and tr is defined as in (3.17) and (3.18).

(3.21) is trivial to prove. In fact,

The proof of (3.22) is by a lengthy computation which we omit.

C. Laplace-Beltrami Operator

Let / :9W->]R, be C 2 Frechet.

Let (U,φ) be a local chart at [y4]eSDl, and fφ the function in the local chart.

f ) W / ( ) ( )Then f;(A)e@(E,W), /;(Λ)e£(E x£,R).
We define the second order differential operator A by:

φ MM M φ (3.23)
Identifying f£(A) with a bounded linear operator E-*E and f^(A) with a vector in
E, and (fφ{A), Γφ{Sφ x Sφ)) as a bounded linear operator,

- i t r g ^ ) - H / W),Γφ(Sφ xSφ))E. (3.24)

zl is perfectly well defined, since ξφ is Hubert-Schmidt, and is independent of the
choice of parallelization X (3.3). It is easy to verify using Lemma 3.5. that A is
invariantly defined, i.e. it is invariant under coordinate changes. Moreover for
finite dimensions and with A-^co it collapses to the standard Laplace-Beltrami
operator for a Riemannian structure g. We shall call it a regularized Laplace-
Beltrami operator and show later that it is the generator of a strong Markov
process with values in 9JΪ, the diffusion process. This Laplace-Beltrami operator is
globally and canonically defined from the nuclear Riemannian structure (SOΐ, g, G)
in 9Jt.

The intrinsic definition of our Laplace-Beltrami operator is as follows. (This
resulted from discussions with Narasimhan.)

Let J:Cco(aRxIR)->C00(T*aR) be the exterior differential operator acting on
sections of the vector bundle 501 xIR (9Jl-functions), and
Ag: C00(T*aR)->C00(J>(ΓaR x Γ3K,R)) be the covariant derivative operator of the
Levi-Civita connection of g acting on sections of T*$ft, where J*(T9}1 x T9JΪ,IR) is
the bundle of bounded bilinear forms in TW. Let τ g be the canonical mapping of
@{JW x 7ϋR,IR) into $(ΎW), the vector bundle of bounded operators in tangent
spaces with the norm topology, and αG be the map of &(TW) into ^N(TW) (the
bundle of positive nuclear operators with the trace norm topology) defined by
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for any Ύe&(TM). Note that G is a section of @N(TW). We define the Laplace-
Beltrami operator A of (9Ή, g, G) by

2Λ=trBαGτ gF gd, (3.25)

where trg is the map of <2$N(TW) in 5tR xIR defined by taking the trace of the
operators in 0βN(TW), i.e. the definition of A is such that the following diagram of
continuous maps of sections:

ZΔ

is commutative. It is easy to show that A satisfies (3.23) and (3.24) in local
coordinates.

4. Diffusion Process in W

A. Stochastic Integral Equations in Hilbert Space [3]

In Sect. 2 we gave a family of co variances G,^-, on T^Wc^E each G ^ being a
positive, self-adjoint, nuclear operator with respect to the metric g^ . Hence on the
model space E of 9JΪ we have a family of σ-additive Gaussian measures
parametrized by ί, pt of mean 0 and above co variance, i.e. (E,lΆ(E),pt) is a
probability space where B(£) is the least σ-algebra generated by cylinder sets. Let
ΩE = C°([0, oo)-+E) be the path space and IB(Ω£) the least σ-algebra generated by
cylinder sets. Then (Ω£,1B(Ω£)5 P) is Wiener space with P Wiener measure, P being
uniquely determined as follows.

Let W ί :Ω £ ->£, measurable, be defined by the evaluation map Wt(ω) = ω(ί).
Then we demand (i) for t > 5, Wf — Ws is distributed according to pt _s, (ii) for 0 = t0

<tx < ... <tk the random variables {Wίf — Wίt_1} are independently distributed.
The Wiener process Wt defines P uniquely, via the Kolmogorov construction. Let
{ef} an orthonormal basis in E consisting of eigenvectors of S^ = G^. Let Pn be

n

orthogonal projector of rank n in £, defined by Pnu= Σ {e{,u)eb ueE. We define a
ί = l

sequence of random variables, β\n): Ω-+PnE by β{?\ω) = S~ ιPnω(t). We take βf] to
be distributed according to law P. In particular the components β[n)i are
distributed with mean 0 and co variance min(ί l 5 t2)Ip E. Note that Sβ^ converges
to Wt in L2(Ω, dP), as n-^ oo.

Let IBsCB(ί2£) be the σ-subalgebra generated by Wί? t^s. It is an increasing

family (with increasing s) and (JlBs=IB(Ω). We now define non-anticipating
s

operators :
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jointly measurable in both variables and for each ί,

ζt = ζ{t, ) : Ω

is Bt measurable.
We define the L2.α.o([0, ί] x Ω) space of non-anticipating operators by complet-

ing in the norm:

( ί ) (4 i)

where $ is the Wiener expectation.
The Ito stochastic integral of ζ9 [3],

/ t (O=ks( •)<*&(•) (4.2)
o

is a bounded linear map into the space of random variables with values in E

/,:L2.β.β([O,t]xΩ)-»L2(β,dP),

satisfying
(i) It(ζ) non-anticipating (in fact a continuous martingale)

(ii)

(iii) <f(/f) = 0
(iv) continuity in t, a.s.

(v) «( sup ||/,(£)(•) II έ-

This It(ζ)(-) defines a continuous stochastic process in E.
The construction of such a stochastic integral proceeds via finite dimensional

approximations. We define j Pnζ(s)Pndβ{"] as standard Ito stochastic integral. Then
o

the limit n-^co exists in L2(Ω, dP) and this limit defines the stochastic integral
above.

We next state Ito's formula in Hubert space.
Ito's formula [3].
Let / :£->!R, C2, and AeE fixed vector. Consider the stochastic process in E

Xt = A+ j ζsdβs -f j dsσs, (4.3)
o o

where ζ is a non-anticipating operator with ||£||L2.α.o < °o and σ a non-anticipating
vector in E. Then:

/(xf)=/μ)+ί(ζ*/'(xs),d/y£
0

+ J ds«f'(Xs), σs}+itr/"PQ(Cs x Q). (4.4)
0

Ito stochastic integral equations in Hilbert space [3].
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Let

and
σ :E-+E

be Lipschitz continuous maps. Then we define the stochastic integral equation:

Xt = A + } ξ(Xs)dβs + } dsσ(Xs), (4.5)
0 0

where Xt is restricted lie in the space of non-anticipating vectors in E.

Theorem 4.1. [3]. There exists a unique solution of (4.5) which defines a continuous
strong Markov process in E.

First one proves existence and uniqueness for finite dimensional approxi-
mations employing projectors Pn (defined earlier), by Picard's method, employing
4.2(ii) with convergence in L2(Ω, dP). Simple Markov property [6] for the finite
dimensional approximations follows from uniqueness and strong Markov pro-
perty [6] from uniqueness and the Dynkin-Hunt statement that β[n) starts afresh at
Markov times. The finite dimensional approximations converge in L2(Ω,dP) as
n->co to a unique solution which by construction satisfy the strong Markov
property [3].

Transformation of Stochastic Integral Equation

Let Θ:E^E, C2. Then

θ(Xt) = θ(A)+\θ'(Xs)ξ(Xs)dβs

o

+ } ds{θ'(Xs)σ(Xs) + ̂ rθ"{Xs){ξ{Xs) x W)) (4-6)
0

The transformation law (4.6) follows from Ito's formula (4.4) applied to (4.5) to
components of θ in a basis.

Lemma 4.2. Let BA = {A'eE, \\A'-A\\E<r}.
LetXt be the solution of (4.5) [Theorem 4.1].
Let τB= M{t\XtφBA} be the exit time of Xt from BA.

t

Then
O(β2). (4.7)

The proof follows on using (a) Ito's formula (4.4) applied to (4.5) for the
function || | | | :£->lR, (b) property 4.2(v), and (c) the Tchebycheff inequality. A
similar estimate in the abstract Wiener case is given in [14].

We now turn to the construction of the

B. Local Diffusion Process in $R

Let (U, φ) be a local chart in 9K. By virtue of corollary 3.2 and 3.4 there exists a
restricted chart (F,φ) with VcU such that the diffusion coefficients ξφ, σφ defined
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in Sect. 3 are Lipschitz continuous maps in φ(V) having global Lipschitz exten-
sions in E.

Let ξφ, σφ be any global Lipschitz extensions in E of ξφ and σφ.
We now take the stochastic integral equation in E:

*t = A + } ξφ(Xs)dβs + ί σφ(Xs)ds (4.8)
o o

with Aeφ(V). By theorem (4.1) the unique solution defines a continuous strong
Markov process starting at A.

Let τv be the Markov exit time from φ(V). We denote by Xt the process Xt

considered up to τv. (For restrictions of processes, see [6], ξ 1, Chap. X.)
This process Xt, the local diffusion process in φ(V\ is a continuous strong

Markov process [6] and is independent of the choice of extension as in the 1R" case
[15].

We now define [15]:

#P^φ-\Xt) (4.9)

the local diffusion in V.
Note that this stochastic process 3ζF) is defined on the probability space

{ΩE9ΊB{ΩE),P) with values in V.

C. Global Diffusion Process in 901

We have the following compatibility of local diffusion processes constructed in
Sect. 4B.

Lemma 4.3. Let (F1 ? ψx) and (F2, φ2) be two local charts at [,4]e$R, where the charts
(Vp φ.) are as in Sect 4B. Let [A]e We Vί n V2, W an open set. Let X?, i? χwt i b e t h e

corresponding local diffusions in W starting at [A] obtained via charts (W^φ^,
(W, φ2) respectively. Then

XYΛ=3LY-2. (4.10)

The proof follows from the transformation property (4.6) with θ being a C00

extension of φ2°φϊ1 to E and the transformation law of local diffusion coefficients
given by lemma (3.5).

Note that because of the parallelizability of 90Ϊ, we were able to choose the first
diffusion so as to satisfy (3.21) as a consequence of which the compatible stochastic
processes 3Ef'x and 3E^'2 are defined using always the same Wiener processes β\n) in
PnE. We thus avoid the complication of "admissable charts" in Banach manifolds
with abstract Wiener structure encountered in [14].

The construction of the global diffusion process in 9JΪ follows the Ito scheme
for the finite dimensional case given in six steps in Chap. 4.3 of [15]. Step 1 of [15]
has been taken care of in Sect. 4B. Step 2 is standard. Step 3 is taken care of by
Lemma 4.3. Note that we always have the same Wiener process βt as remarked
after Lemma 4.3. For Step 4, the estimate of our Lemma 4.2 replaces the McKean
estimate. Step 5 goes through because of our Lemma 4.2 and Lemma III.3 of [14].
Step 6 is standard. The global diffusion process is defined up to a (random)
explosion time ζ as in [15].
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As a consequence we have the following theorem describing global diffusion in
301 associated to the nuclear riemannian structure ($R, g, G)

Theorem 4.4. For any \_A~\ e $R there exists a unique global continuous strong
Markov process X[A] in 501, (i.e. with values in SίJlJ, starting at \_A~], defined on the
probability space (ΩE, ̂ {ΩE\ P) up to a random explosion time ζ, and such that for
every local chart (U,φ) o/$R and any stopping time τ<ζ with XτeU, the process
Xt = φ(X\Al) satisfies

Xt + τ=Xτ + ]ξQC8 + τ)dβ8+ ]σ(Xs+τ)ds (4.11)
o

with t + τ<τv (the exit time from U).

Infinitesimal Generator

Let B be the Banach space of bounded measurable functions on SOΐ. Then the semi-
group Tt corresponding to the Markov process Xt in 9M is defined in the standard
fashion on B:

U 3 )), (4.12)

where $ is the restriction of the standard Wiener expection with respect to
(ΩE,1B(Ω£),P) to the set {ω\t<ζ{ω)}.

Proposition 4.5. The action on bounded C2 functions of the infinitesimal generator of
the global diffusion X[

t

A] of Theorem 4.4 is given by the Laplace-Beltrami operator
(3.24) in any local chart (U, φ) at [A] with φ{U) a bounded set.

The proof follows from Lemma 4.2 for τυ which permits localization, Ito's
formula (4.4), and (4.2), (ii) and (iii). See Theorem III.2 of [14].

Remark 4.6. The process 3ίt of Theorem (4.4) is independent of the choice of
parallelization in Sect. 3 A, since by Proposition 4.5 its generator is (3.2.4) which is
independent of choice of parallelization.

Remark 4.7. As in [4] the global diffusion X\A] in 9M engenders, via its transition
functions, a family of probability measures μt [A] on 9JZ.

WB)) (4.13)

for any Borel set B in 501. In general different members of the family {μt [A]} are
inequivalent measures on 50Ϊ.

5. Regularized Yang-Mills Stochastic Process and Feynman-Kac Integral

We now define the regularized Yang-Mills process, taking account of the potential
Ψ' in (1.1 and 1.2) via a Feynman-Kac integral. We define its semi-group T ™ on
B, the Banach space of bounded measurable functions on 50i, by:

where $ is restricted to the subset {t<ζ} of Ω.
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Note that Ψ* is a continuous, non-negative function on 9W (Sect. 2-D) and
hence (5.1) is well defined.

Let {/£eB}, z = l, ..., fc, and 0 < ί x < ... <tk<T. We define the expectation of
{/,} at {t(} by:

<? is restricted to the subset {T<ζ}cΩ.
In the final formula (5.2) we have emphasized the dependance on cut-offs which

must -»oo in the end. In particular we cannot hope to have a finite Λ-^ao limit
without Λ-dependent counter terms to redefine the basic measures. The space-
volume V cut-off was put in right at the start in Chap. I and the ultraviolet
regularization in Chap. II. The ultraviolet cut-off in (5.2) appears both through the
Wiener measure P on ΩE as well as the covariance (2.3 and 2.2) which is built into
the structure of the diffusion process X.

Concluding Remark 5J. In this article we have constructed a diffusion process %t in
9JI which is adapted to the kinetic term of the regularized Lagrangian (2.8) and via
a Feynman-Kac integral we use the rest in order to define a continuum Yang-Mills
stochastic process. Since there are no "free gauge fields" in $R one avenue towards
the reconstruction of the quantum theory is the following: Take \?{dμt [A], WO)
were μu[A] is the probability measure on 9JI engendered by Xt (Remark 4.7).
Construct a continuous Markov process 3 f whose semigroup is symmetric in
Ju2(dμu[AVW) and furthermore leaves μt[A] invariant. 3t is then automatically
stationary. 3t can be used instead of 3Ef to write the Feynman-Kac integral with a
compensating change of potential. We shall then be in position to reconstruct the
quantum theory via the Osterwalder-Schrader construction. This will be taken up
in a sequel to this paper.
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