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Abstract. We show that a gauge field uniquely determines its potential if and
only if its holonomy group coincides with the gauge group on every open set in
spacetime, provided that the field is not degenerate as a 2-form over spacetime.
In other words, there is no potential ambiguity whenever such a field is
irreducible everywhere in spacetime. We then show that the ambiguous
potentials for those gauge fields are partitioned into gauge-equivalence classes
(modulo certain homotopy classes) as a consequence of the nontrivial con-
nectivity of spacetime. These homotopy classes depend on the gauge group, on
the holonomy group and on this last group's centralizer in the gauge group.

1. Introduction

The potential ambiguity for nonabelian gauge fields, that is, the existence of
"gauge field copies", has been widely discussed [1] since it was discovered by Wu
and Yang [2]. Some gauge fields admit two or more potentials. This potential
ambiguity falls into two large classes with a nonvoid intersection: ambiguous
potentials are sometimes (but not always) equivalent modulo a gauge transfor-
mation. There is also an in-between situation, for some gauge fields admit at each
gauge a whole system of potentials which is partly but not completely reducible
with the help of gauge mappings [3, 37].

The present paper gives necessary and sufficient conditions for the existence or
inexistence of potential ambiguities in a given gauge field provided that the gauge
field is not degenerate as a 2-form on spacetime. Potential ambiguity is shown here
to be a consequence of too many degrees of freedom in the field. In other words, if
we adopt the bundle description [4] for gauge fields, there will be a potential
ambiguity whenever the bundle is (at least locally) reducible. When the bundle is
maximally twisted, that is, when the holonomy group coincides with the whole
gauge group on every open set in the base manifold, we find no copies at all.
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2. The Geometry of Gauge Fields

We give here a self-contained description of classical gauge field theory as a theory
of connections on a principal fiber bundle. Some proofs are omitted and referred
to the literature.

a)) The Overall Setting

Let M be a 4-dimensional Hausdorff real connected and complete smooth
manifold (in what follows we will sometimes write "smooth" for "C0 0"). M is to be
seen as a spacetime without a fixed metric tensor in Sect. 3 of this paper we will
use an arbitrary non-degenerate smooth metric tensor to simplify the discussion of
some expressions. The particular metric used has no bearing on our results, as we
show below.

Let G be a finite-dimensional semi-simple Lie group which will be identified
with one of its faithful matrix representations G will be called the gauge group. Its
Lie algebra will be denoted L{G).

We will consider all principal fiber bundles [5] P(M, G)λ, where λ denotes the
isomorphism class to which the bundle belongs. We will also write P for the
bundle's total space. M, G, and P are in the most general situation finite-
dimensional and noncompact. Compact M appears in the standard formulation of
Euclidean gauge theories [6] and when we deal with zero-mass, conformally-
invariant fields [7]. Compact G is a common assumption in most gauge theories. If
M and G are compact, so is P. All our results are however independent of
compactness assumptions.

For the following summary of geometrical notions see [8].
Let T. P be the tangent bundle of P. We define:

2.1. Definition. A connection on P is a smooth decomposition T. P = J^®Ϋ~ which
satisfies: (I) Given the principal bundle projection π:P\->M, dπ:3#?\->dπ{3#')
= T. M, where T.M is the tangent bundle of M. (II) For peP, ae G, the map p\->pa

= R*{MT\p),

where the | denotes a restriction to the point and R* denotes the induced right
action. •

A connection form α on P is a linear map α : T.Pι->L(G) given by the conditions

(I)

Xα), (II)

where Ad denotes the induced group action G x L(G)\->L(G) on its Lie algebra as a
representation space.

2.2. Remark. The connection and connection form are always taken to be
continuous and differentiable all over P.

Let X19X2 '.P^T.P be smooth vectorfields on the bundle P. Let us also be
given the exterior bundle of P endowed with the usual exterior derivative. If η
denotes the projection

η:

one has:
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2.3. Definition. If α is the connection form, the curvature form φ w.r.t. α on P is
given by

) da(ηXvηX2). Q (2.1)

The Cartan structure equations are [9] :

2.4. Lemma.

φ(XvX2) = da(XvX2) + ±MX1loc(X2)-]_ (2.2)

Dφ(XuX2,X3)=dφ(ηXvηX2,ηX3) = 0. D (2.3)

b) Gauge Fields and Potentials: Local Description

We are now going to relate geometry and physics, that is, we are going to
interprete these structures as gauge fields and gauge potentials. Let P be a
principal bundle as described above. If P is nontrivial, it will admit only local
cross-sections. Let us be given %, a maximally trivializing open covering for P, that
is,

and for any two sets that meet, U1 and U2 in °ll, the bundle P\U1 (J U2 is not trivial,
while P\Uί=Ui x G, z = 1,2. Let us be given a family of ^-dependent local cross-
sections

for UeW and Py = P|l7. For the overlappings Ur\U' + 0, let us have the mappings

where the

τuu': UnU'\->G.

2.5. Definition. A gauge

σ\M\->P

is a triple

such that for all nonvoid overlappings UnU' we identify

σv\ Un V = σΌ.\Un U'{moάτuυ). •

2.6. Remark. The maps τvι], are called /oca/ gauge transformations. The global
gauge transformations are defined below, and related to these local
transformations.

LetX d \M\->T.M be a vectorfield on M (d stands for "downstairs"). Given a
gauge σ, consider the induced mapping

dσ:T.M^T.σ(M)
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given by

)

2.7. Remark. We notice in particular that, for peσ(x) such that π(p) = xeM, there is
an isomorphism

ι:T.σ(M)\p\->J^\p,

given by

That is, at each point, the tangent space to the gauge and the horizontal subspace
are isomorphic (but not necessarily identical).

Gauge fields and gauge potentials are:

2.8. Definition. (I) The gauge potential A(σ\Xd) at the gauge σ is given by the
restriction to σ of the connection form α as follows:

A^(Xd) = a(χM). (2.4)

(II) The gauge field F{σ\Xd, Yd) at the gauge σ is defined by the restriction to σ of the
curvature form (2.1) as follows:

F(σ)(Xd, Yd) = 2φ(Xd

σ\ Y^). • (2.5)

2.9. Remark. If one takes a coordinate system (xμ) atUcM, such that the bundle is
trivial over U, given the local holonomous reference system at U for the tangent
space, [dμl

dμ = d/dxμ

9

and if we consider a constant ("flat") local cross-section (x, 1), where 1 is the
group's identity element, for this particular local cross-section σ one has:

μ μ μ μAy-\_, (2.6)

with

Aμ = A^(dμ) (2.7)

Fμv = F<°\dμ,dv). (2.8)

The connection and curvature forms are continuous on P, even if the bundle is
nontrivial. However this is not in general true of the gauge potential and field,
which may need several coordinate patches and nontrivial local gauge transfor-
mations to be described on the whole of M. The chief example of this situation is
the Wu and Yang magnetic monopole [10]. This gauge-dependent picture has
actually been first proposed by those two authors. While providing a straightfor-
ward local geometrical picture for the physical concepts, it may lead to trouble in
the global situation: consider for instance the nontrivial Z3 principal bundle over
the circle S1. One can get two gauges in this bundle, with respect to the same
partition of the base space S1 into two overlapping half-circles which are not
topologically equivalent. The restriction of the same bundle-defined object to these
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two nonequivalent gauges cannot be made equivalent modulo a global gauge
transformation (see below for its definition). This example is due to John Harper
[11].

c) Gauge Fields as Tensorial Forms

An alternative description for gauge fields can be provided with the help of the
equivalence between "tensorial forms" on the bundle and exterior forms over the
base space with values in a given vector space [12]. Let us be given the principal
bundle P and its V-valued exterior bundle ΩV(P), where V is a representation space
for the gauge group G. A cross-section

is called a tensorial form [13] if it is zero on vertical vectors (w.r.t. a given
connection) over P. The curvature form (2.1) is a tensorial form; the connection
form obviously not. Tensorial forms over P are naturally mapped on F-valued
forms over the basis manifold. LetXh, Yh,... be horizontal vectorfields on P, that
is, fields for which

where α is the connection form. Given the bundle projection

π:P\->M,

we put

Xd = dπ(Xh).

We then have:

2.10. Proposition. Let peP. If we define the gauge field F on M in a pointwise
fashion by

F(Xd, Yd)\π(p) = P(MX\ Y^p-'ΪP (2.9)

and for a cross-section ξ of the bundle associated to P with fiber E, induced by a
fixed faithful representation of G on E, the first structure Eq. (2.2) becomes

F(Xd, Yd)ξ = \_DXd,DYd]_ξ-D[XdtYdi_ξ, (2.10)

and the second structure equation (the Bianchi differential identities) are

DxF(Yd,Zd) + DZdF(Xd, Yd) + DYdF(Xd, Yd) = 0, (2.11)

where the covariant derivative is defined by

DXdξ\π(p)=pXhξ\p. (2.12)

Proof. Same as in the Riemannian case (see for example Sternberg [14]). •
In local coordinates (2.12) can be written

(2.13)
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for X = dμ and ξ with values in the lowest dimensional representation space for G.
(2.10) is

F(dμ, 3V) = F μ ϊ = 3μAv - dvAμ + lAμ, AJ _ (2.14)

and (2.12),

βμ = 0. (2.15)

2.11. Remark. In general a local description for the gauge field such as (2.14) can be
only achieved with the help of several coordinate patches on the bundle. A gauge is
a particular choice of such coordinate patches. The restriction of (2.1) to a gauge σ
gives us an equivalence between the gauge dependent picture described in Part b)
of the present section and the tensorial form description in Proposition 2.10. The
expression of φ at each local constant ("flat") cross-section συ in a particular gauge
[like the one before (2.6)] can be understood as the value of (2.9) at a local
coordinate system in the bundle.

The relationship between the L(G)-valued 1-form Λ on M and the connection
form α on P is given by

φ) = p-1dp + p-1A*p, (2.16)

where A* is the lift of A to the identity local cross-section (U, 1) and peP, such that
its projection lies in U [15].

We conclude with:

2.12. Definition. (I) A gauge transformation is a smooth diffeomorphism u :P\->P
of the principal bundle which satisfies (A) for every peP there exists g(p)eG such
that u(p) = pg(p); (B) g(pa) = a~1g(p)a, where aeG. (II) A local gauge transfor-
mation over UQM is a gauge transformation of the bundle Pv. •

The group of gauge transformations ^ is the group of all maps such as the one
defined in (I). The group of all local gauge transformations over (7, <SV is similarly
defined. For details see Daniel and Viallet [16].

2.13. Remark. (I) A gauge transformation is eguivariant, that is, u(pa) = u(p)a. It also
induces the identity map on the basis manifold. (II) If F(σ) is a gauge field at the
gauge σ, the action of u on F{σ) is given by

u(Fiσ)) = Ad ( t r x)Fiσ) = u~ ̂ F^u. (2.17)

If A{σ) is a gauge potential at the gauge σ, the action of u on A(σ) is given by

u(Aiσ)) = A{σ) + U-1 (D(Aiσ)))u, (2.18)

where

D(Aϊσ))u = du + lA{σ\ u] _ . (2.19)

(III) The objects τ in Definition 2.5 can be seen as local gauge transformations over
UnU' acting on the local cross-section σv. The gluing together of local cross-
sections to form a gauge can be thus seen as the action of local gauge
transformations at overlapping coordinate patches. (IV) As a consequence of the
equivalence between the gauge picture and the tensorial-form picture, the
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connection form can be locally described by a Lie-algebra valued 1-form over a
trivializing domain UCM for the bundle. Both are smooth but require in general
several patches for a coordinate description.

Now let i / c G be a Lie subgroup, and let Q(M,H) be a principal fiber bundle
with H as its fiber.

2.14. Definition. Let Q,P have the same basis manifold. (I) A smooth map r : Qy>P
is a reduction of the structure group of the bundle P if:

(A) r : Qy>P is a manifold embedding.
(B) r induces the identity map on the basis manifold.
(C) For peQ, aeH, r(pa) = r(p)f(a), where / : H\->G is a monomorphism.
(II) For a nonvoid E/CM,

is a local reduction over U of the bundle P if it is a reduction of the bundle Pυ. •

d) The Gauge Field Copy Problem

For a summary of the best known examples and pathologies of the copy problem
see Bollini et al. [17] and Deser and Drechsler [18]. The copy problem concerns
the relationship between gauge potentials and gauge fields. It can be stated as
follows:

(A) find necessary and sufficient conditions for the map between gauge fields
and gauge potentials to be one-to-one;

(B) characterize in geometrical terms the ambiguous potentials
(C) partition into gauge equivalence classes the ambiguous potentials.
There remains one last point: is the copy problem local? That is, can we find a

field which is copied on U and non-copied on M— 17? The answer is yes:

2.15. Example. Given the trivial bundle P = IR 4xG, where G = SO(3,IR), let E\
i = 1,2,3 be the generators of the corresponding Lie algebra. Let x = (x1,x2, x3, x4)
be the standard Cartesian coordinates for R4. Now consider two smooth
functions:

(A) / : Rι->R, such that / " ^ 0 ) = fer]cR,a closed interval.
(B) h : R*->R, such that h(x) = 0 if xe R - (q, r).
Define the potential A(x) = Λμ(x) in the local coordinate system:

A1(x) = f(x1)(E1+(x2)E2), (2.20)

Λ2=A3=A4 = 0. (2.21)

And A'(x) by

^'1(x) = ̂ 1(x) + ft(x1)£1, (2.22)

A>2=Άf

3=Ά4 = 0. (2.23)

For both examples we have:

F12=~f(xx)E2 (2.24)
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while all other components are zero. We notice that for x1eWi—(q,r) both
potentials are coincident. They are also gauge-equivalent since one can easily
check that the transformation given by

1

u(x) = u(x1) = QxpE1$h(x1t)x1dt (2.25)
0

is a (local) gauge transformation that sends A' over A while keeping F12 invariant.

So the phenomenon is sometimes a local one. This example is due to Mostow

[19].

3. The Main Result

In this section we consider the gauge field F to be a Lie algebra valued 2-form over
M, as in Part c) of the preceding section. F is always taken to be of class C°° on M.
Its potential, A, is a Lie algebra valued 1-form of class C00 as before; throughout
this section we suppose that F(Xd,Yd) = 0iff Xd(or 7d) = 0, orXd = Yd [25]. This will
be used in the proof of Proposition 3.6 below.

The example at the end of Sect. 2 suggests the following definition as our
starting point:

3.1. Definition. F is said to have a local potential ambiguity on M if there is a
nonvoid UQM such that F\U is a field for at least two different potentials, A and
B, on U. If U = M, F is said to have a global potential ambiguity. •

3.2. Remarks. (I) It is easy to see that the action of the gauge transformation group
^ on F sends copied fields over copied fields. (II) This definition includes the
possibility of existence of a (local) gauge transformation that maps A on B while
keeping F invariant.

We now say that an object is defined almost everywhere on M if it is defined on
a subset MOCM which is (I) open and (II) dense in M. We then assert:

3.3. Lemma. F has a single potential on M if it is smooth on M and has a single
potential almost everywhere on M.

Proof. If F has a single potential almost everywhere on M and is smooth over the
entire manifold, both the field and its potential can be uniquely and smoothly
extended to M. The converse is immediate. Π

In what follows we remember that G is supposed to be semi-simple. We also
suppose that F is a field for the potential A, associated to the connection form α on
the bundle P. We will now consider the connection-endowed bundles (P, α).

3.4. Definition. (I) The field F or the potential A are said to be reducible if the
corresponding connection-endowed bundle (P,α) is reducible. (II) F (or A) are
locally reducible over U, U being a nonvoid open set in M, if (P, α)| U is reducible.
(Ill) F (or A) are said to be fully irreducible if they are not locally reducible. •

We notice that local reducibility is a requirement which is weaker than
reducibility.
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a) Necessary and Sufficient Conditions for the Existence of Copies

Our main result is:

3.5. Theorem. The following conditions are equivalent: (I) F has a single potential on
every open neighborhood in M (II) F is fully irreducible (III) the centralίzer in G of
HF, CG(HFX coincides with the center of HF on every open neighborhood in M (IV)
if A is the potential for F, its isotropy group Is(A) w.r.t. the gauge transformations is
isomorphίc to the center of HF on every open neighborhood of M.

HF is the holonomy group of the potential A. The proof of this theorem will be
divided into several steps. Let us first be given a Lie algebra valued 2-form on M,

/ C : T . M X T . M H > L ( G ) .

If E is the representation space for G and L(G\ k can be identified with the linear
operator (which we denote by the same letter)

(the tensor product is taken over the scalars of E T. M is the tangent bundle of M
and T M is its cotangent bundle). In a local coordinate system we have a (μA x vB)
matrix

k = (kμv

AB){x),

for xeM, where Greek indices run over spacetime coordinates and the Latin ones
denote components in E.

Every gauge field F can be seen as one such map. In particular, if we are given
the adjoint representation of L(G\

Ad : L ( G ) H > L ( G ) / Z L ( G ) ,

where ZL(G) is the center of the algebra, under the above identification

where #" is seen as the map

& :T.M®L(G)\->T.M®L(G).

For any linear nondegenerate transformation F\->ιF one can form similar maps ιF
and ιSF.

We finally say that the map 2F is algebraically degenerate (or A-degenerate, or a
class Π-map1) if the restricted map

is degenerate for all X, 7, vectorfields on M.
We state:

3.6. Proposition. Let UQM be a nonvoid open set in M. F is ambiguous over UiffF is
A-degenerate over U.

1 The class I maps are those whose degeneracy is a consequence of the fact that F is degenerate as a
2-form over M. See [37] for their discussion they entail the existence of copies which may nowhere be
gauge-related
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Proof. As a consequence of Lemma 3.3, U has to contain a nonvoid open set. And
nonambiguous F can be uniquely extended to M—U.

Now we have:
The condition is necessary [20]. Suppose that F is smooth and can be obtained

over U out of two different potentials Ax and A2. Then F will satisfy two
noncoincident differential Bianchi identities (2.11) or (2.15). If we endow M with a
metric tensor so that indices can be moved up and down and if (in local
coordinates) we write

*F^ = (l/2)]/\g]ε^Fρσ (3.1)

(where g = dεtgμv, the determinant of the metric tensor), the differential Bianchi
identities become:

^ μ * F < v ] _ = 0 . (3.2)

[the ( ) denotes covariant derivation w.r.t. the auxiliary metric tensor]. Now write

A2 = A1+ρ

and substitute into (3.2). If we take the difference of the two equations we get:

[ * ^ v , ρ v ] _ = 0 (3.3)

which can abbreviated as a matrix equation,

* # ρ = 0, (3.4a)

or

(cijk*Fμvj)(ρ\) = 0. (3.4b)

Since ρ=#0 on U, *3F is degenerate, that is, det*#' = 0 on U. And *3F is degenerate
if 3F is degenerate. We now notice that ρ takes values in L(G). Since F is supposed
not to be degenerate as a 2-form over M, for every xe U, 3* kills at least one
element in the Lie algebra. Actually as a consequence of (3.3) or (3.4), together with
the Jacobi identity, the set of all ρ that satisfy those relations form a Lie subalgebra
of L{G) at every xeU. Thus for all vectorfields X, Y, JφΓ, Y) is degenerate, and
then $F is ^-degenerate.

Thus the necessity: if F is ambiguous over U, $F is y4-degenerate over (7,
provided that it is not degenerate as a 2-form over M.

The condition is sufficient: We will show that if F is ^-degenerate over (7, the
field F has two different smooth potentials the ambiguity domain is precisely V.

We first notice that as a consequence of the isomorphism

described in Remark 2.7, one can see the fields F at the point xeM as being (up to
a linear isomorphism) the restriction of the curvature form to the horizontal space
at p e π " 1 ^ ) , that is, for Xh, YheJ^\p one has

Yh)p-1. (3.5)
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We then apply the Ambrose-Singer theorem [21]:

3.7. Proposition. The φ(Xh,Yh)\p, for all peP, generate the holonomy algebra
L(HF). •

The holonomy algebra is the Lie algebra of HF. Before going on with our
reasoning we make two assumptions that will be lifted at the end of our proof.

First, we suppose that <F has constant rank on U.
Second, we suppose that the bundle is trivial over U.
Under the preceding hypotheses, we will need:

3.8. Proposition. If 3F is A-degenerate on U then F is reducible on U.

Proof. G is identified with a n x n matrix group. Let us make the embedding
Gt->GL(n,C) and the corresponding embedding L(G)^-><£(n). At a point xoeU,
since 3F is ,4-degenerate, it takes values inside an ideal

/[AdL(G)]|x ocAdL(G)|x o.

Thus F takes values inside an ideal

IlL(G)-]\x0CL(G)\x0.

The action of <F on L(G){U) induces a decomposition

L(G)(x) = M(x)@N(x)

on U, where ^N = 0. Let us now endow L(G) with its Cartan metric. Choose a
smooth orthonormal basis [£(x)] for L(G) over U such that this decomposition is
preserved, that is, such that

This basis exists because the bundle is supposed to be trivial over [/; as a
consequence of the second hypothesis above, dimM is constant over U. Now
define a constant basis for L(G) on U as follows: [E0~](x) = (x, [£](xo)) Then there
is a unique (up to a constant) gauge transformation u: (7H»GL(M,(C) such that
[E o ] = Ad (u "*)[£] . Smoothness in [£] and [ £ 0 ] entails the smoothness of u.

We now show that u takes values in G. In order to do so, we first suppose that
G is simple. It is then enough to show that the orbit Θ(K) of a fixed element K in
the Lie algebra under the adjoint action of G spans the whole Lie algebra. As a
consequence every ideal #"[£] can be reached from an isomorphic fixed ideal in
[ £ 0 ] under the adjoint action of G, and thus F can be made to take values inside
this fixed constant ideal. Under the action of G, the Lie algebra splits as

where [ ] denotes linear closure, and S is a subspace in the Lie algebra which is
not reached by the action of G. Then there exist t;.eGL(n,C)5 vtφG, such that S is
spanned by the A d ^ " 1 ) ^ ) . By exponentiation one concludes that

which is a contradiction. Thus S = 0 and
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We have shown that there is a gauge transformation u:U\-*G that sends an
,4-degenerate F over an F' that takes values inside a fixed ideal in the Lie algebra.
We now "lift" our field to the bundle as follows: let σo = (U, 1) be the constant
identity cross-section over U (we remember that the bundle is supposed to be
trivial over U). If F takes values inside a fixed ideal in L(G), we attach it to σ0 as
follows: we define

F' = 2φ\σ0

[see Eq. (2.9)]. The adjoint action of G concludes the construction of the curvature.
It is immediate that φ takes values inside a nontrivial ideal of L(G), and as
consequence of the Ambrose-Singer theorem, the bundle is reducible.

We must now lift the two restrictions that were imposed during this proof: the
triviality of the bundle over U and the simplicity of G. If U does not trivialize P, we
cover U with a collection Vt which trivializes the bundle and proceed as above for
each Vv The bundle local gauge transformations induce the smooth construction
of φ over the whole P.

If G is not simple, we verify that F will take values inside a fixed ideal of L(G)
provided that it doesn't vanish on U. We can thus apply to each simple ideal in
L(G) the previous reasoning. If F vanishes somewhere in U, we can partition U
into domains where the curvature is not vanishing and patch up the local results,
as in the previous paragraph.

We have thus shown that if 3F is ^4-degenerate, F is reducible. •
In what follows we suppose that this reduction has been already made. We also

admit the assumptions made before Proposition 3.8.
We can now conclude the proof of the sufficiency part in Proposition 3.6. As a

result of Proposition 3.7, there is a gauge (represented above by the σOi) where the
elements of the nullspace of <F commute with the holonomy algebra at each point
in U. We again admit the hypotheses stated before Proposition 3.8.

That is, at each point U we have a decomposition

L(G)\x = L(HF)\x®N\x.

This decomposition can be continuously and differentiably extended over (7, that
is, one has

L(G)(U) = L(HF)(U)®N(U),

due to the differentiability of the gauge field F.
Let us have a cross-section μ: U\->N(U). Since F is a gauge field, it is derived

from a potential A. We suppose that this potential takes values inside the algebra
L(HF) this is the same as requiring that A be the (unique) smallest dimensional
solution of the algebraic equations

^ μ - ^ A μ '

Let now VcU be a compact nonvoid set. Define a "bump" function fe:Mt->lR
which is smooth everywhere, vanishes on M — U and is one on V. The potential

Ά = A + exp( — kμ)d exp kμ (3.6)
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is smooth on M, differs from A on I/, and has F as its field. A' is smooth by
construction, and has the same field as A, for the difference

F(A) - F{A') = dρ + [ρ, ρ] _ + 2[Λ ρ] _ , (3.7)

ρ = e-
kμdekμ. (3.8)

A commutes with ρ, and ρ is a pure-gauge potential, so that (3.7) is zero.

We can now lift the restrictive assumptions that were made during our proof.
In order to get a more convenient form for the Bianchi identities we introduced a
nondegenerate metric tensor on M. It is however immediately clear that the
structure of the null space N(U) of 3F does not depend on the metric that we are
using, provided that this metric be nondegenerate.

We also supposed that Pv is trivial. Suppose now it is not. Let [VJ be a
trivializing covering for U. We notice that the transformations that glue together
the FjxG have values in the holonomy group HF\U. Now let the function
μ: U\->N(U) be smooth. This μ is a cross-section, since it commutes with HF\U.
For a compact Vc U we define a bump smooth function as above (zero on M — U,
1 on V and smooth in between). Then again

ρ = e-
kμdekμ (3.9)

is smooth, and A' = A + ρ is a potential for the field F(A) which differs from A on U
and which is of class C00 on M.

We finally asked that HF\U be of constant dimension on U. If not, let us divide
U into a collection of sets [WJ which satisfy:

(I) [JW^U and each W is connected
(II) the dimension of HF is constant on each Wt

(III) let \_p] be the subset of the integers that contains all values of the
dimension of HF on U. Then (J Wt such that άimHF^p, pe[p], is open on U.

The last condition means that we extend HF to the boundary with a domain
where its dimension drops. In order to get a smooth potential we construct the
smooth bump functions fcf :Mκ>IR which are zero on M — interior(WQ, one on a
compact ViCWi and smooth otherwise, and use these functions to glue together in
a smooth way the local cross-sections

We then get a potential that satisfies the desired requirements.
We have thus showed that it is sufficient to have 2F degenerate on an open

U Q M in order to have a smooth potential ambiguity for F. We thus conclude the
proof of Proposition 3.6. •

Observe that A and A' are gauge-connected, u is smooth on the whole of M (it
is actually 1 on M—U and nontrivial only on U). And we notice that

Af-A = u-1du = u~1D(A)u (3.10)

since by construction u commutes with A.
The ambiguous potentials which are not (globally) gauge equivalent among

themselves are also to be found with a piece in the null space N(U) of F. What
really goes on is shown in the next example:
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3.9. Example. Let F be a field which is ambiguous over U we suppose its closure to
be compact. Let A be its L(//F)-valued potential and let N(U) be the null space of
βF. We suppose here that the de Rham group H1(U,R) + 0.

Consider a nontrivial N((7)-valued 1-cocycle w which has the closure of U as its
support and is of class C00. If we cover U with overlapping Poincare domains (that
is, domains where the cocycle w is exact), we can form the local potentials

1

μi{x)=iwμ(tx)xfldt
o

for w. Then while the

Ui(x) = e*iix) (3.11)

cannot be continuously extended to the whole manifold (and even to the whole U\
for all i one has

u^du^w. (3.12)

Then A' = A + w is a potential for F. It is noί in general globally gauge-equivalent
to A. A global gauge transformation must be continuous, and the discontinuities
in the several μt cannot in general be eliminated with the help of a gauge
transformation (see Ezawa and Tze [22]). If the gauge group G is simply
connected, one can always manage to find a global gauge transformation that
closes the gaps in the potentials for w.

3.10. Corollary. F has a single potential on every open U in M iffF is non-degenerate
almost everywhere on M. •

Corollary 3.10 and Definition 3.4 imply:

3.11. Corollary. F has a single potential on every open neighborhood in M iff F is
irreducible. Π

This deals with condition (II) in Theorem 3.5. Also,

3.12. Corollary. F has a single potential on every open neighborhood in M iff the
centralίzer of HF in G, CG(HF% coincides with the center of HF on every open
neighborhood in M.

Proof. Suppose that F has a potential ambiguity on a nonvoid open UcM. Then
on U the proof of Proposition 3.6 shows that one can construct non-central
elements in G which commute with HF. The converse is immediate. •

This deals with condition (III) in Theorem 3.5. We now use a lemma by Singer
[23]:

3.13. Lemma. For a potential A under the action of the group of gauge transfor-
mations &, its stability group Is(A) = CG(HF\ where F is the field associated to
A. •

With the help of the lemma above one can prove:

3.14. Corollary. F has a single potential on every open UCMiff Is(A) = ZHF, where
ZHF is the center of the holonomy group. •

We thus prove (IV) in Theorem 3.5 and conclude its proof. •
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3.15. Remarks. (I) For any principal bundle there are always irreducible con-
nections, provided that the fiber group be connected. This is a consequence of the
fact that one can always construct a connection on a principal bundle with any
finite-dimensional connected Lie group G as its fiber where the holonomy group
coincides with G, provided that the base space has dimension ^ 2 . For its proof see
[24].

(II) If all objects are analytic, there are only global copies and dimHF is
constant over M.

b) Equivalence Classes of Copies

We now consider the problem of finding gauge-equivalent and non-gauge-
equivalent potentials for the same field. That is, we want to characterize and
classify the quotient of all potentials \_A~\ for the field F by the group of gauge
transformations ^. We exclude potentials that can be restricted to lower-
dimensional submanifolds of M, or equivalently, we exclude fields that are
degenerate as 2-forms over M [25]. Our analysis is a consequence of the results
obtained in the preceding part of this section.

We will proceed in two steps. We first state:

3.16. Hypothesis. We suppose that HF is semi-simple and that L(HF) has dimension
greater than 1 w.r.t. its scalars. •

We will lift this restriction at the end of the present section.

3.17. Proposition. Let F be copied over a nonvoίd open UcM and let HF\U satisfy
Hypothesis 3.16 above. Given a covering [_WJ for U that satisfies conditions (I)—(III)
at the end of the proof of Proposition 3.7. Then if A is the L(HF)-valued potential
for F, its orbit under the action of @\U is given by

u, (3.13)

(3.14)
dσ=Yddσii

where

this last object being the space of N-valued functions of class C00 whose support is
the closure of Wt, and with ve^\U.

Proof We first suppose that dimHF is constant on U. Let A' be a potential for F
which is gauge-related to A. Then there exists an u e ^ which is the identity on
M-U such that

A'-A = u~1D(A)u = u~1du. (3.15)

The last equality comes from the fact that A' = A + ρ, and

lQ,A-]_=0. (3.16)

Since A is L(HF)-valued, A commutes with A' by construction. Equation (3.7) is
then reduced to

]-=0. (3,17)
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The general solution for this equation has the form

ρ = u~1du = v~1dσv + v~1dυ (3.18)

(see below Lemma 3.18), where ve^ and σ is a JV-valued smooth function that has
the closure of U as its support (we observe that u must be a global gauge
transformation). The extension to the situation where άimHF is not constant on U
can be done as in the proof of Proposition 3.6. •

We now state in full detail the step represented by Eq. (3.18) in the preceding
proof, since it has direct bearing on several aspects of the copy problem:

3.18. Lemma. // ρ is a smooth solution over U CM for the equation

D(Q)Q = dρ + lQ,Q]_=O, (3.19)

then on [/, ρe(&\U)(σ), where one can write

') denoting the orbit of an object under the action of the restricted group <&\U
the X1 are a basis for the algebra L(H) where ρ has values and each σι(x) is a
representative of a cohomology class in the de Rham group if1(l7,lR).

Proof Let U be covered by a collection Bk of open balls. As P\Bk is trivial, &\Bk is
given by

{u\u:Bk\->H}, (3.20)

(smooth maps!). Consider the restriction D(ρ)ρ = 0\Bk. ρ = 0 and (&\Bk)(0) = u~1du,
ue^\Bk are solutions for this restricted equation. There are no other solutions, for
suppose that

θ + u~ίdu,

for ue&\Bk. Then θ takes values in a nonzero subalgebra of L(H). But as

D(ρ)ρ = 0

the holonomy algebra is 0. Then θ cannot be a solution for (3.19) on Bk.
Also ρ is either exact or gauge-equivalent to an exact 1-form over Bk. For any

ue^\Bk can be written as a product

or

u = eμ^x)γ\eμj{<x\ 7 + 1. (3.21)

If one writes this as j

u = eμv,

one has

ρ(x) = u~ίdu = v~ίdμv + v~1dv. (3.22)

Naturally, the



Gauge Field Copies 451

are smooth. It is also straightforward to check that ρ will not in general be exact.
Thus

ρ{x)e{<#\Bk){dμ),

for all

of class C00 on Bm.
In order to extend these piecewise solutions to the whole of U so that ρ stays

smooth on U, one extends v to the whole of U and picks the several dμ over the Bm

to be local descriptions for a nontrivial de Rham 1-cocycle 0 over U,

θ = θiXί.

We thus conclude the lemma. •
With its notation together with the condition that the closedness of 0 means

the closedness of each component 0 , we have:

3.19. Corollary. // 0 is closed,

has as solution

u(x) = expX'} θi

μ{tx)xμdt. (3.23)
o

Proof. By the Poincare lemma,

^(x)=]eftx)x»dt. Π
0

3.20. Corollary. // exp : L(H)\->H is onto, every ρ which is a solution for (3.19) is of
the form

where each θι is a 1-cocycle on U.

Proof In that case every u\Bk = eμj. •

3.21. Remarks. (I) We notice that while u(x) in the preceding results is not in general
continuous over the whole subset U CM, ρ = u~1du is continuous provided that it
be gauge-equivalent to a linear combination of 1-cocycles. This is the main
obstruction to the construction of global gauge mappings that send the several
copied continuous potentials for F over each other. It would be easy to construct
noncontinuous potentials for a field which is copied over U; these potentials
would not be gauge equivalent to a continuous potential, since in this case
Eq. (3.15) would never give a global gauge transformation due to the discontinuity
in ρ.

(II) If 0 is a linear combination of cocycles,

λu~ίdu = θ\Bh,
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(λ a constant) has as its solution

u(x) = εxpil/λjX1} θι

μ(tx)xμdt. (3.24)

o
We now define H to be the smallest Lie subgroup of G that contains both HF

and CG(HF). It can be checked that H={hz\heHF, ze CG(HF)}. We also denote by
[A] the set of all potentials for a copied field F = F(Λ) their gauge-equivalence
classes are denoted by \_A~\/^ (or by a convenient restriction).

We can state:

3.22. Proposition. Let the conditions be as in (3.17). We also suppose that ά\mHF is
constant on U. The following conditions are exclusive: (I) Either the first de Rham
group H1(U,ΊR) = 0 and every smooth potential for F belongs to the orbit Θ0(Λ) of
the L(HF)-valued potential for F (that is, every potential is gauge-equivalent to A),
or (II) iϊ1(ί7, IR)φO and there is an isomorphism

i-.lAJ/m^n^H,!) (3.25)

between the set of gauge-equivalence classes of potentials over U for F and the first
relative homotopy group [26] πx(G, H, 1).

Proof. If #*(£/, IR) = 0, there are only trivial cocycles on U and (3.17) has as its
unique solutions those described in Proposition 3.17. That is, every continuous
potential for F is gauge-equivalent to A over U.

Suppose now that H1(U,ΊR) + 0. We then have nontrivial cocycles. We classify
the potentials associated to the different cohomology classes using a technique
described in detail by Ezawa and Tze [27]. Let S1 be a 1-cycle in U homeomorphic
to the 1-sphere such that for a nontrivial Lie algebra valued cocycle ρ on U,

j ρ + O. (3.26)

Choose a fixed point XQES1 and define the map

S 1 ^ ( x 0 , S 1 ) = e x p f 4 ' (3.27)
s1

from the space S1(x0, U) of cycles homeomorphic to the 1-sphere in U which
contain x0 to the loops in G which start from 1 (image of x0) and have its endpoint
in the group H, for (3.27) equals

exp S(A + ρ)= (exp J A) /exp f ρ), (3.28)

\ l\
= A'. The equivalence classes of such loops are the elements of

n±(G9H9l). D

3.23. Remark. Θ0(A) is sent over the neutral element in π^G^H, 1).
Let conditions be as in Proposition 3.22, but for the following: if Vc U is a

nonvoid open set, let us write U=VvW. We suppose that dimHF\V<dimHF\W,
and also that W is connected. Then
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3.24. Proposition. The equivalence classes of smooth potentials for F w.r.t. the action
of ^jj are given by:

^ ( G , H | K , l ) x ^ ( G , H | W ; i ) . (3.29)

Proof Fix one potential A for F over U. This potential becomes ambiguous over
V, and is classified according to Proposition 3.22. We now allow A to vary over all
potentials for F on W, and get (3.29).

If A1 and A2 are two potentials for F which differ only over V and which are
smooth, the gauge transformation (3.23) can be smoothly extended to the whole U
whenever (I) w = Aι — A2 is exact and (II) W is connected. Suppose that V can be
covered by a single coordinate patch C, VcC. If we place the origin OeC — F,
outside V the transformation (3.23) reduces to the identity. As Wis connected, and
as everything is smooth, we get the desired extension. If V is not contained in a
single coordinate patch, we cover it with a family of coordinate patches and
proceed as above. Outside V the potential for w becomes zero, and again by
continuity we get our result. •

If we allow the dimension of HF to vary over U we may meet an obstruction
when extending a gauge transformation between domains with different holonomy
groups. This obstruction occurs if U — V is not connected.

We see that the only necessarily nonvoid class in \_A~\I^\U is the orbit Θ0(A).
We also see that the breakdown of gauge equivalence between the elements of
\_A~\I^V is a consequence of the nontrivial connectivity of the region U (or of the
region U—{JV, if the dimension of the holonomy group varies over U). Since each
cocycle ρ is supposed to be smooth and of support clU, we notice that the
corresponding potentials A + ρ [where A is L(i/F)-valued] are continuous over M,
This is in strong contrast with the situation in the abelian case, where as a
consequence of the existence of a nontrivial second de Rham group H2(M, IR) we
have discontinuous potentials for a continuous field [28]. We also notice that for
an adequately small U one can put H1(U,W) = 0, and as a result obtain local gauge
transformations that make all connections equivalent. But we cannot always
extend these results to a larger V that includes this U due to the obstructions
discussed above. For an analysis of the case of varying holonomy dimension along
different lines see Mostow's paper [19].

A nontrivial iί1(l75R) is only a necessary condition for the existence of
nonequivalent classes of copies. One can assert:

3.25. Proposition. \_A~\ = Θ0(A) iff π1(G) = 0. We suppose valid the conditions of
Proposition 3.22.

Proof Consider the exact sequence

πx(H, l H π ^ G , l H π ^ G , H, l)-+πo{H91) (3.30)

[29]. Its exactness implies the proposition. We observe that HF is connected as a
consequence of Remark 3.15(1). •

For example, if G is special unitary, there are no nontrivial potentials for a
reducible field.
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3.26. Proposition. Conditions are as in Proposition 3.22. If H is contained in a
simply-connected domain of G, the fundamental group π1 classifies the equivalence
classes

Proof. Also a consequence of (3.30). See [30]. •
We can now lift the restriction imposed by Hypothesis 3.16. We admit that HF

may contain a nontrivial abelian subgroup [or that it is isomorphic to (7(1) or to
IR]. But this does not change the structure of the subgroup H in an essential way,
and so the preceding results remain valid. One can however consider a particular
situation which has bearing on an important class of examples of the copy
phenomenon2 [31]:

3.27. Proposition. Let X1 be a basis for L(HF). Given a nonzero F = F*X\ if for all i,
dFl = 0 on an open UQM, then F is copied over U.

Proof Consider the Bianchi identity (3.2). Since dJP = O, one has

0. (3.31)

As F is nonzero, so is A. As a consequence, * J* is degenerate and by 3.6 F is copied
over U. •

We can also state:

3.28. Proposition. Let F = [w, v] _, where u, v are L(G)-valued 1-forms on M. Let also
dF = 0 on U for all ί. Then, for u = uiXί and v = vlX\ du^dv^O, for all i.

Proof In a particular Lie algebra basis one has

F W V Λ I Λ (3.32)

Since the cocycles form an algebra which is closed under the exterior product,
dF = 0 implies that du = dv = 0. •

3.29. Proposition (Bollini et al. [32]). Let G = SU(2) or SO(3,IR). If dF = 0 then F
generates a 17(1) subgroup of SU(2) or an SO(2,IR) subgroup of SO(3,IR).

Proof A direct consequence of Proposition 3.27. •

3.30. Remark. The original example given by Wu and Yang belongs to this
category, with G = SO(3,IR) and M = S1 xS2. The nontrivial geometry of the base
manifold is hidden in the characterization given by Wu and Yang. As we are given
a single potential for a monopole field, there is a Dirac string the monopole can
be visualized as the source for lines of force that go to infinity and come back
through the string. If we compactify IR3, cut out a small 2-sphere round the
monopole, another one around the oo-point and identify both, we get a manifold
which is homeomorphic to S1 xS2. For details and calculations see the Bollini,
Giambiagi, and Tiomno paper. We notice that in the Wu-Yang example there is a
whole family of potentials that are nowhere equivalent to the monopole potential
these potentials exist even if we are given a trivial bundle over IR3. For their
discussion see [37].

2 For a discussion of the other aspects of this particular class of examples, see [37], and Solomon's
paper in [1]
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Before we conclude it is interesting to notice that the classifying group in
Proposition 3.22 is the same used by Ezawa and Tze [33] to classify Nielsen-
Olesen vortices on a spacetime manifold. Their discussion is easily translated into
our language.

4. Conclusions

Gauge field copies exist here whenever the holonomy group of a connection is
smaller than the whole gauge group, which is the fiber group of the principal
bundle where we construct our gauge fields. The preceding analysis and in
particular Eq. (3.28) suggest that these copied fields may play a role similar to that
of the electromagnetic potential in the Aharonov-Bohm experiment [34]. Also
since nontrivial cocycles on manifolds without boundary can be associated [35] to
point sources which are outside the manifold, some kind of monopole-like picture
could perhaps be given to the non (globally) gauge equivalent connections for a
copied field. And finally there is a direct relationship between the copy phenome-
non and symmetry breaking in nonabelian gauge fields one example of such a
relationship is given by the Ezawa and Tze classification for the Nielsen-Olesen
vortices. It can be also shown that the ^-degenerate fields which were considered
in the present paper possess (locally at least) the Gribov Coulomb gauge
degeneracy. For details see [36, 37].

An analysis of the situation of copied fields in the manifold of curvatures and
connections for a given principal bundle can show that non-copied fields are
precisely the "linearization stable" gauge fields in the sense of Arms [36]. This will
be considered in a forthcoming paper.
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