
Communications in
Commun. Math. Phys. 79, 167-180 (1981) Mathematical

Physics
© Springer-Verlag 1981

The Thomas-Fermi-von Weizsacker Theory of Atoms
and Molecules*

Rafael Benguria1, Haim Brezis2, and Elliott H. Lieb3

1. The Rockefeller University, New York, NY 10021, USA, on leave from Universidad de Chile,
Santiago, Chile

2. Departement de Mathematiques, Universite Paris VI, F-75230, Paris Cedex 05, France
3. Departments of Mathematics and Physics, Princeton University, Princeton, NJ 08544, USA

Abstract. We place the Thomas-Fermi-von Weizsacker model of atoms on a
firm mathematical footing. We prove existence and uniqueness of solutions of
the Thomas-Fermi-von Weizsacker equation as well as the fact that they
minimize the Thomas-Fermi-von Weizsacker energy functional. Moreover,
we prove the existence of binding for two very dissimilar atoms in the frame of
this model.

Introduction

The Thomas-Fermi theory of atoms [1] (TF), attractive because of its simplicity, is
not satisfactory because it yields an electron density with incorrect behavior
very close and very far from the nucleus. Moreover, it does not allow for the
existence of molecules. In order to correct this, von Weizsacker [2] suggested the
addition of an inhomogeneity correction

p (1)

to the kinetic energy density. Here cw = /z2/(32π2m), where m is the mass of the
electron. This correction has also been obtained as the first order correction to
the TF kinetic energy in a semi-classical approximation to the Hartree-Fock
theory [3].

The Thomas-Fermi-von Weizsacker (henceforth TFW) energy functional
for nuclei of charges z > 0 (which need not be integral) located at Rt, i = 1, ... ,/c
is defined by

- j V(x)p(x)dx + ±Sίp(x)p(y)\x -y\-ldxdy, (2)

in units in which /z2(8m)"1(3/π)2/3 = 1 and \e = 1. Here ρ(x) ^ 0 is the electron
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density, and

κ(x)= ΣΦ-^Γ1- (3)
i = l

While the 'pure TF problem has been placed on a rigorous mathematical
footing [1], no parallel study has been made for the TFW problem. Such a study
was undertaken in the Ph.D. thesis of one of us [4] in this paper some of the
results of [4] will be presented together with some newer results.

In this article we will study a rather more general functional, which contains
the TFW energy functional (2) as a particular case. In fact, for p(x) ^ 0 and V(x)
given by (3), let us introduce the functional

£>) = ί I V2(x)|2ώc + -lp*(x)dx - J V(x)p(x)dx + D(p, p\ (4)

where

D(f, 9) = i J J/(x)00>) \x-y\~ ldxdy, (5)

for 1 < p < oo.
We shall be concerned with the following problem

Mm{ξp(p)\peL1^Lp, p(x) ̂  0, Vp1 / 2eL2 and $p(x)dx = λ}, (I)

where λ is a given positive constant, which, physically, is the total electron number.
Our main result is the following:

Theorem 1. There is a critical value 0 < λc < GO depending only on p and V such
that

(a) I f λ ^ λ c , Problem (I) has a unique solution.
(b) If λ > λc, Problem (I) has no solution. In addition,

k

(c) When p ̂ f, then λc^Z= £ z..
i = l

(d) When p ̂  f and k = 1 (atomic case), then λc > Z.

Remark 1. Partial results were previously obtained by one of us. Namely in [4]
it is proved that for the atomic case (k = 1) and p = f, Problem (I) has a solution
i f λ g Z .

Remark 2. Some of the open problems which are raised by our developments
are the following:

(i) Suppose k ̂  2 (molecular case) and p = f. Is λc > Z?
(ii) Find estimates for λc.
(iii) Is there binding for atoms ?

With respect to the third problem, there is a non-rigorous argument of Balazs
[5] that indicates the possibility of binding for homopolar diatomic molecule
in the TFW theory. Also, Gombas [6] applied TFW (including exchange correc-
tions) to study the JV2-molecule (i.e., z1 = z2 = 7) and found numerically that
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there is binding. He actually computed the distance between the two centers
to be 1.39 A for the configuration of minimum energy. We do not give a proof of
binding in the homopolar case, but we will prove that binding occurs for two
very dissimilar atoms.

Remark 3. Theorem 1 obviously holds if we replace ξp by

£>) = cι ί I Vp1 / 2(x)|2dx + cjpp(x)dx - f V(x)p(x)dx + D(p, p\

where c t and c2 are positive constants.
The proof of Theorem 1 is divided into several steps. In Sect. 1 we describe

some basic properties of ξ (p). In Sect. 2 we consider the problem

Mm{ξp(p)\peDp}

where Dp = (p\p(x) ^ 0, peL3nLp, Vp1 / 2eL2, D(p, p) < oo}, and we prove that
the minimum is achieved at a unique p0 . Note that Dp contains {p \ p ^ 0,
peL3nLpnL 1, Vp1/2eL2}. We derive the Euler equation for p0. More precisely
we set ψ = Po12 and we show that

-1 = φ\l/9 (6)

where

φ(x)=V(x)-^2(y)\x-y\-1dy. (7)

In Sect. 3 we prove that ι/^eL2 and we obtain some further properties of ψ (ψ is
continuous, ι/φc)-»0 as |x| -> oo, etc.). In Sect. 4 we show that if p^f then
$ψ2(x)dx ^ Z. In Sect. 5 we show that if p ̂  f and k = 1 then \ψ2(x)dx > Z. In
addition ψ(x) ^ Me~δ^ί/2 for some appropriate constants M and δ > 0. In Sect. 6
we prove that for every λ

E(λ) = Inf {^(p)| Jp(x)rfx = A} = M{ξp(p)\$p(x)dx ^ λ}

and we conclude the proof of Theorem 1. We also show that E(λ) is convex, mono-
tone non-increasing and that E(λ) has a finite slope at λ = 0. This slope is the
ground state energy of the corresponding one electron Schrόdinger Equation.
Using this last fact, binding for dissimilar atoms is proved.

I. Some Basic Properties of ξp

In Lemma 2, 3, 4 some properties which are useful in the study of Problem (I)
are summarized.

Lemma 2. For every ε > 0, there is a constant Cε , depending on V but independent
of p, such that

J V(x)p(x)dx ^ ε || p || 3 + CεD(p, p)1/2, (8)

for every p ̂  0.

Proof. Let δ > 0 be a small constant and let ζ(x) be a smooth function such that
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on(JBδ(R.)

CM —
0 outside \J 1

i = l

where Bδ(R.) is the ball of radius δ and centered at jR.. δ is chosen such that all
these ball B2δ are disjoint. Let V = Vζ + F(l - Q = Vx + F2. Clearly F^L3/2

and by choosing δ small enough we may assume that || Vί \\ 3/2 < ε. Thus

On the other hand define the operator B to be

(Bp)(x) = jp(j ) I x — y \ ~ ίdy, (10)

so that (in the sense of distributions) we have

Thus,

J|V(Bp)|2dx = 8πD(p,p). (11)

We deduce from (11) and Sobolev's inequality that

\\Bp\\6^CD(p,p)^. (12)

Consequently,

f V2(x)p(x)dx = -^l(-Δ V2)(x)(Bp)(x)dx

£C\\ΔV2\\6l5D(p,p)1i2 (13)

(note that A V2 e C£ ). Combining (9) and ( 1 3) we obtain the conclusion. D

Lemma 3. There exist positive constants α and C such that

Proof. Use Lemma 2 and Sobolev's inequality. Π

Lemma 4. ζp(p) is strictly convex.

Proof. The only non-standard fact is that the function p -> J|Vp 1 / 2 | 2dx
is convex (or equivalently subadditive). Indeed let pί,p2eD and set ̂  =p1 / 2>
ι/^2 = p^/2, ̂ 3 - (αpj -f (1 - α)p2)

1/2 with 0 < α < 1. Thus,

^3V^3=α^1V^1+(l-α)^2V^2

= (α1/2ιA1)(α1/2VιA1) + [(1 - α)1/2ι/g [(1 - α)1/2 Vi/^J

and by Cauchy-Schwarz inequality
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and therefore,

| V ^ 3 | 2 ^ α | V ι A j 2 + ( l-α) |VιA 2 | 2 . D

II. Minimization of ξp(p) with peDp —The Euler Equation

We start with

Lemma 5. Min{ξp(p)\peDp} is achieved at some pQeDp.

Proof. Let ρn e Dp be a minimizing sequence. By Lemma 3 we have

I pJ3 £ C, || pn \\p ϊ C, || VpV* ||2 g C, D(pn, pn) £ C.

Therefore, we may extract a subsequence, still denoted by pn, such that

pn -» p0 weakly in L3 and in Lp, (14)

Pn^P0z e , (15)
Vpi/2 _^ V pι/2 weakly in L2 (16)

((15) relies on the fact that if Ω is a bounded smooth domain then H1 (Ω) is relatively
compact in L2(Ω). (14) and (16) implies that {pn

1/2} is bounded in H1(Ω). Hence
{p^/2} has a subsequence converging in L2(Ω) and a.e.). Hence,

lim inf D(pn, pB) ̂  D(p0,ρ0) (by Fatou's Lemma).
We now prove that

As in the proof of Lemma 2, we write V = Vί + V2 . Clearly,

ίV^pjMdx-^ίV^p^xίdx,

since FjβL3'2. On the other hand

ί F2(x)pn(x)rfx = - ~\(Δ V2)(Bpn)dx.

It follows from (12) that Bpn -+ Bp0 weakly in L6. Thus,

IV2(x)pu(x)dx-+$V2(x)p0(x)dx.

Hence,

ξp(Po) ̂  lim inf^(pn) = lnΐ{ξp(p)\peDp}. D

We now derive the Euler Equation satisfied by p0 . Set ψ = p^2.

Lemma 6. The minimizing p0 satisfies
1 = φ\l/9 (17)
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where

φ=V-Bψ2 (18)

and (17) holds in the sense of distributions.

Proof. So far, we know that ψeL6nL2p, VψeL2 and B\l/2eL6. Since FeL2

loc,
it follows that φεL2

oc and thus φψeL\oc. On the other hand ψ2p~^eL\oc (since
ψεL2p). Therefore, (17) has a meaning in the sense of distributions. Consider
the set D = ζζeL6nL2p\ VζεL2 and D(ζ, C) < °°} (Note that we do not assume
ζ^O.)IfζeD,thenp = C2eD and

•;'
Indeed it suffices to recall that Vp1 / 2 = V | ζ | = Vζ(sgnζ) (see [7]). Therefore, we
find for every ζeD

Let ηeC* using the fact that d/dtφ(ψ + tη)\t=0 = 0 we conclude easily that

III. Proof that the Minimizing ψeL2 and Further Properties of ψ

We first prove that the minimizing \jj is continuous:

Lemma 7. ψ is continuous on IR3 more precisely ψeC0'" for every α < 1 (i.e., for
every bounded set Ω a [R3, there is a constant M such that \ ψ(x) — \j/(y) \ ̂  M x — y |α

c. We already know that Bψ2<=L6 and (clearly) VeLfo~
δ(\/δ > 0). Consequent-

ly, φeL^o~
δ(Vδ > 0). Since i^eL6, it follows that φ\l/eL2

o~
δ(\/δ>0). Therefore,

we have

where /= φψeL2~c

δ(yδ > 0) and in particular/eL^oc for some q > 3/2. We may,
therefore, apply a result of Stampacchia (see [7],Theoreme 5.2) to conclude that
ψeL™oc. Going back to (17) and using the fact that ^eL^c, we now see that
Aι//eLfo~

δ(Vδ > 0). The standard elliptic regularity theory [8] implies that ι^eC°'α

for every α < 1. D
We now prove an important property of ψ, namely, ψeL2. Note that such a

fact cannot be deduced from the knowledge that pQeDp. It is easy to construct
a function p ^ 0 such that peL3 nLp, Vp1/2eL2, D(p, p) < oo and lp(x)dx = oo.

Lemma 8. ψeL2.

Proof. Suppose, by contradiction, that §ψ2(x)dx = oo. Choose rί > Max R.\

such that

j ψ2(x)dx ^ Z + 2<5,
μi<π
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for some δ > 0. We, thus, have

\y\<rι
^(Z + 2<5)/(|x| + r1).

Therefore,

φ(x) = V(x)

for I x I > rί . Consequently, there is some r2 > rl such that

φ(χ)Z-δ\x\-1,

for I x I > r2 . It follows from (17) that

-Aψ + δlxl-iil/^O, (19)

for x I > r2 . We now use a comparison argument. Set

$(x} = Me-Mυ\

where M > 0 is a constant. An easy computation shows that

-z!ιA + <5|x |~V^O, (20)

for x ± 0. Hence, by (19) and (20) we have

-zIOA-^ + ΦΓ'W'-^O, (21)

for I x I > r2 . We fix M in such a way that

Ψ(x)£Ψ(x), (22)

for I x I = r2 (this is possible since ̂ eL*c). It follows from (21), (22) and the maximum
principle that

ΆW^ A(χ), (23)
for | χ > r2 . Since we only know that ψ(x) -> 0 as | x \ -> oo in a weak sense (namely
ψeL6\ we must justify (23). We use a variant of Stampacchia's method. Fix ζ(x)e C*
with 0 ̂  C ̂  1 and

for I^H 1

for |^| > 2.

Set CπW = C(x/4 Multiplying (21) by ζn(ψ-ψ)+ (here we set t+ =Max(ί,0))
and integrating on [ | x \ > r2 ], we find

In particular it follows that

* 1
-,\(ψ — ψ)+ \2ζndx ^ - J \(ψ — ψ)+ \2Aζndx. (24)
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But we have

j \(ψ-$)+\Aζndx^ f ψ2(x)dx
\x\>r2

 H n<\x\<2n

Γ Ί1/3

^C\ J ψ*(x)dx\ ,
L n < | x | < 2 n J

by Holder's inequality. Since ψeL6, we conclude that the right side in (24) tends
to zero as n -> oo. Consequently,

J δ\x\-ι\(ψ-ψ)+\2dx = Q
\x\>'2

and so ψ ̂  ψ for |x| > r2. In particular §ψ2(x)dx < oo, a contradiction with the
initial assumption. D

We now indicate some further properties ofi//.

Lemma 9. ψ is bounded on IR3, ψ(χ) -+Q as\x -> oo and ψεH2.

Proof. By (17) we have,

- J^ ̂  Fι/>, (25)

and so

-Aψ + \l/£(V + l)ψ.

Clearly, (V + l)ιAeL2 and so

ιA^(-^+/)~ 1 [(F + l)ιA]. (26)

As is well known, the right side in (26) is bound and tends to zero as x\ -> oo.
Finally, note that ψ2p~l ^ Cψ for some constant C and (Bψ2)ψeL2 (since ι/>eL3

and Bψ2eL6). Therefore, we conclude that Aij/eL2 and so ψeH2. D

Lemma 10. ψ > 0 everywhere and ψίsC™ except atx = Ri(l^ί^k).

Proof. From (17) we have,

- Jj/r + a\l/ = 0,

where αelίjoc and q > 3/2. It follows from Harnack's inequality (see e.g. [9]
Corollary 5.3) that either ψ > 0 everywhere or ψ = 0. We now prove that ψ φ 0
by checking that Mm{ξp(p)\ρeDp} <0. It clearly suffices to consider the case
where F(x) = z 1 | x |~ 1 . Take the trial function p1/2(x) = yexp[ — zJxl/4].
The terms in p which are homogeneous of degree one are — y2z^/4. The remaining
terms are proportional to ys, s > 2. Hence for y sufficiently small, ξ (p) < 0. Finally,
the fact that ψ is C°° (except at R.) follows easily from (17) by a standard bootstrap
argument. D

Remark. When p ̂  3/2, there is a simple estimate for ψ, namely

ψ2(p-U(x)£V(x)9 (27)
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for every x. Indeed set u = ψ2(p~ 1}(x) — V(x) so that for x φ Rt we have

Au = 2(p - l)ψ2p-3(Aψ) + (2p - 2)(2p -

^ 2(p - l)ιA2p~3(^ιA) - 2(p -

The function w achieves its maximum at some point x 0 (=^jR.). At x0 we have
(Au)(x0) g 0 and so \l/2(p~ 1}(x0) ̂  <P(*0) =

 F(χo) τhus w(*o) ̂  °» and so WW ^ °
everywhere.

IV. Proof that for the Minimizing ,̂ J ̂ r2 (jc) dx^Z (when /> ^ 4/3)

We start with the following remark :

Lemma 11. For any

Proof. Integrate by parts and use the Cauchy-Schwarz inequality. D
We now prove the main estimate.

Lemma 12. When p ̂  4/3, \ψ2(x)dx ^ Z.

Proof, Let ζ0eC^ be a spherically symmetric function such that ζ0 φ 0, (0M = 0
for I x I < 1 and for χ\> 2. Set ζn(χ) = ζ0 (x/n\ By (17) we have,

x. (28)

Using Lemma 11, we find

-!^-ζ2

nd^\\Vζn

2dX^Cn. (29)

Next we claim that, if p ̂  4/3, then

$ψ2p-2ζ2

ndx^εnn
2, (30)

where εn -> 0 as n -* oo. Indeed we have

lΨ2p-2tfdx£ ί ψ2p~2dx.
n<\x\<2n

If 2p - 2 ̂  2, we use the fact that ψ2p~2^ Cψ2 in order to obtain (30). If 2p - 2 ̂  2,
we use Holder's inequality and we find

Γ Ί*7"1

J ψ2p-2dx£C\ J ψ2dx\ (n3

n<\x\<2n Ln<\x\<2n J

Assuming p g; 4/3, we deduce (30). On the other hand, since ζn is spherically
symmetric, we have
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where [cp] denotes the spherical average of φ, i.e.,

ί
\Ω\ = \x\ |β| = l

By a result of [1] (Eq. (35)) we know that

|, (31)

where A0 = Jψ2(x)dx. Hence, for large n, we find

ί φζϊdx £ (Z - A0) Jpί^Mdx = α(Z - λ>2, (32)
\x\

for some positive constant α. Combining (28), (29), (30), and (32), we find

oc(Z-λ0)n2 ^Cn + snn
2.

As n -» oo , we conclude that Z ^λQ. D

Remark. Lemma 12 can also be proved by a direct variational calculation using
(4). This is given in Theorem 4.10 of reference [4].

V. JV2 (jc) dx > Z when p ^ 5/3 and k = 1 (Atomic Case)

We assume now that V(x) = Z\x\~ 1. The main result is the following:

Lemma 13. ([4], Theorem 4.13) Assume p ̂  5/3, ί/zen §ψ2(x)dx > Z. In addition

\l/(x) ^ Me~2(W/2 for some constants M and® < 2^ < j>2(x)dx - Z.

Proo/ Since the solution of the problem Min{ξp(ρ)\ρeDp} is unique, it follows
that p0 — and therefore ψ — is spherically symmetric. In particular φ = V - Bψ2

is also spherically symmetric. On the other hand by (31) we have,

φ(x) = [φ](x)£(Z-λ0)/|x|, (33)

for x^O. We already know that §ψ2(x)dx^Z; suppose by contradiction that
\\l/2(x)dx = Z. By (33) we have φ ̂  0 and consequently (from (17))

-zl^ + ί/^-^O, (34)

for x^O. We now use a comparison function. Set ψ(x) = C|x|~ 3 / 2. An easy
computation shows that

-AΪJ/ + ίj/2p- x ^ 0, for |x| > 1, (35)

provided 0 < C ̂  C0 where C2p~2 = 3/4. We fix the constant 0 < C ̂  C0 such that

| = l, (36)

(Recall that by Lemma 10, ψ > 0). It follows from (34), J35), (36) and the (usual)
maximum principle that $(χ) ̂  ψ(x) for |x| > 1. Since ψ$L2(\x\ > 1), we obtain
a contradiction. Therefore, J^2(x)d.x > Z; finally we argue as in the proof of
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Lemma 8 and we conclude that for some M, ψ(x) ^ M exp( — 2(δ \x )1/2) where
2δ<^2(x)dx-Z. D

Remark. If the assumptions of Lemma 13 are not satisfied, it may happen that
§ψ2dx = Z. Consider for example the functional

ξ(p) = c J| VpV2(x)\2dx + 2/3 lp^'2(x)dx -$V(x)p(x)dx + D(p9 p\

where V(x) is given by (3). We claim that if c ̂  l/16π, then we have §ψ2(x)dx = Z.
Indeed set u = ψ — 2φ. Recall that — cAψ + ι/^2 = φψ, and

Aφ = 4πψ2iΐx^Rr

Thus,

An = V - φψ) - 8τπA2 ^ V - <pψ) -^Ψ2 = ̂
c c 2c 2c

At a point x0 where u achieves its maximum we have (Δu)(x0) ^ 0 and so M(XO) ̂  0
(note that w(x)-»0 as |x -> oo). Consequently, w ^ O everywhere and so φ ^ O
everywhere. Therefore, we must have Z ̂  §ψ2(x)dx. Since we already know that
Z ̂  j>2(x)dx, it follows that $ψ2(x)dx = Z.

If c> 1/1 6 π, one can still prove the weaker inequality

(37)

by the same type of arguments. Using (37) we have

8π(c -

because φ + αF ̂  0(withα > 0) implies Jι^2(x)rfx ^ Z(l + α).
Note that in the one center (atomic) case ξ3/2 is scale invariant. In fact,

E3/2 - Min £3/2 - cZ3 and ψ(x) = Z2ψ(Zx\

VI. Proof of Theorem 1 Concluded

We need a final Lemma.

Lemma 14. ([4], Theorem 4.2) For every λ>0 we have Inf{£ (p)|peD and
lp(x)dx = λ} = lnϊ{ξp(p)\peDp and \p(x)dx ^ λ}.

Proof. Let ρεDp be such that Jp(x)Jx < λ the Lemma is an obvious consequence
of the following claim: There exists a sequence pnεDp such that §pn(x)dx = λ
and lim inf ξ p ( p n ) ^ ξp(p). As pM, we choose

where Cll(x) = ζ0(x/n)(ζ0εC« is any function C 0 ^0) and k = \_λ - \p(x)dx]/
l^l(x)dx, so that §pn(x)dx = λ. We now check that lim inf ξ (pn) ^ ζp(p)- Using
the subadditivity of the function J | Vp1 / 2(x) \2dx and the convexity of pp, we find
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where

We shall prove that An,Bn, Cn tend to zero. Indeed we have

Next, by Holder's inequality

But,

Jp£(x)dx^Cj[pp(x) +

and so Bn -> 0. Finally, we have

c--ί?
and

Therefore, Cn -» 0. D

Proof of Theorem 1 concluded: For every / l>0 we set £(/l) = lnΐ{ξp(p)\peDp

and jp(x)dx ̂  λ}. It is clear that E(λ) is non-increasing and that E(λ) is convex.
In addition, the same proof as in Lemma 5 shows that there is a unique pλ^Dp

such that Jpλ(x) ̂  /I and ξp(pλ) = E(λ\ Set λc = $ψ2(x)dx. It is clear that for λ^λc

the function E(λ) is constant: £(/l) = E(λc); while E(A) is strictly decreasing on the
interval [0,AJ. It follows that for λ^λc we have $pλ(x)dx = λ. Consequently,
if λ ̂  λc there is a unique solution for Problem (I). When λ > λc, we deduce from
Lemma 14 that Problem (I) has no solution. D

By the same methods as used in Lemma 6, the unique minimizing ψ for E(λ\
λ^λc satisfies

-Aιl/+Uj,ψ=-φ0ιl/9 (38)

where,

-V + Bψ2. (39)

It is also true (as shown in [1] for the TF problem) that E(λ) is differentiable
and

- φ0(λ) = SE/dλ. (40)
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Since ψ satisfies (38) and ψ(x) > 0 (by Harnack's inequality as in Lemma 10),
we can conclude that φ and φ0 are, in fact, the lowest eigenfunction and eigen-
value of - A + Uψ(x).

To summarize what has been proved so far, the function E(λ) has many features
in common with the E(λ) for TF theory [1]. It is convex, non-increasing and has
an absolute minimum at some λc < oo beyond which E(λ) is constant. One import-
ant difference is that λc > Z, at least for the atomic case and p ̂  5/3. There is
another important difference: in TF theory, E(λ)~ — cλ1/3 for small λ, i.e.,
dE/dλ\λ=Q= — oo. In TFW theory, this is not so as the folio wing shows.

Lemma 15. Let e0 be the lowest eigenvalue (ground state energy) of the Schrodinger
operator — A — V(x) with V given by (3). Then

uo

Proof. Let φ be the normalized eigenfunction of - A - V(x) belonging to e0

and let pλ(χ) = λφ(x)2. Then ξp(pλ) ^ λe0 + 0(λ) since the terms in ξp of degree
higher than the first, while they are positive, are finite and 0(A). Conversely,

but this is precisely the variational problem for the Schrodinger Equation. D
Yet another important distinction with TF theory should be noted. ψ(x) is

never zero and therefore p(x) = ψ(x)2 does not have compact support. In TF
theory, p has compact support [1] whenever λ<λc.

Binding of Atoms in TFW Theory
Binding does not occur in TF theory [1] that is Teller's Theorem. Binding can
occur in TFW theory as we shall now prove in a special case.

First it is necessary to have a clear definition of what binding means. Given
the nuclear coordinates Rί,...,Rk, define

E(A;{K.})^E(A;{^})+C/({ JRJ) (41)

where

U({Rt})= Σ Vjl^-Rj]-1. (42)
l^ί<j^k

Let us start with two neutral atoms infinitely far apart. The total energy is then
A12 = E1 (zj + E2(z2) where E. is the energy of an atom with nuclear charge z..
The next step is to distribute the total electron charge so as to minimize the total
energy, namely

Bί2= min (Eί(z1+z2-λ) + E2(λ)). (43)
O ^ A ^ Z i + Z2

It may be, and usually is the case in TFW theory, that Bί2 <Aί2, i.e., ions are
more stable than atoms. Finally, we bring the atoms together and define

C 1 2 = inf E(Zl+z2;R19R2). (44)
Λ ι , Λ 2

IfC1 2 <B12, then binding occurs.
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To show that binding is possible, suppose that z2 is sufficiently small compared
to Zj so that the following is satisfied

(b) λl-z^2z29

where λ* is the critical λ for atom 1 then we claim that
B^E^+zJ. (45)

This follows from the following observation: (dE2/dλ)^(dE2/dλ)(0)= — z^/4
by Lemma 15 and convexity. Then the equation (dEi/dλ)(zl +z2 — λ) =
(dE2/dλ)(λ) cannot have a solution for 0 ̂  λ ̂  zt + z2 .

For two such atoms the lowest total energy occurs when the smaller atom
is completely stripped of its electrons which become attached to the larger atom.
Now consider the first atom with Rί=0 and with λ = z1+z2^λ^. The electric
potential φ which is spherically symmetric, will be negative for large R. If the second
nucleus z2 is placed at a point r where φ(r) < 0, the total energy will be reduced
by an amount z2 φ(r\ Thus,

and binding occurs.
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