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Abstract. Without assuming the existence of interpolating fields, it is shown
that any particle in a massive quantum field theory possesses a unique
antiparticle and carries parastatistics of finite order. This closes a gap in the
hitherto existing theoretical argument leading to particle statistics and to the
existence of antiparticles.

1. Introduction

The existence of antiparticles is a well established experimental fact in elementary
particle physics. In the conventional framework of quantum field theory, the
explanation of this fact is given via the TCP-theorem or, more generally, using the
Jost-Lehmann-Dyson representation of the two-point-function (see for example
[1, II]). In both cases the existence of local fields, interpolating between vacuum
and particle states, is crucial.

However, the assumption about the existence of those fields is not very natural
for particles which are separated from the vacuum by some superselection rule.
Then an interpolating field is not observable by principle, and the locality
assumption for these fields has no obvious physical interpretation.

In fact, it is well known that charged particle states in gauge theories cannot
have local interpolating fields. Wheras in abelian gauge theories charged particles
only exist in the presence of massless particles [2, 3], for nonabelian gauge theories
such a result is not known there might be charged particles also in cases, where
there are no physical massless particles.

Now for particles in theories with a gap in the mass spectrum, localization
properties have recently been found [4, I] which admit a nearly complete
discussion of the structure of multiparticle states [4, II]. This discussion follows
closely the investigations of Doplicher et al. [1]. These authors consider only those
states as "being of interest for elementary particle physics" which become
vacuumlike on the spacelike complement of a sufficiently large bounded region.
This selection criterion for states is in some sense a physical interpretation of the
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assumption of interpolating local fields in fact it excludes charged states in gauge
theories. In this framework, they proved the existence of antiparticles for those
particles which carry parastatistics of finite order. But the occurrence of infinite
statistics could not be excluded in this case antiparticles in the usual sense would
not exist.

The arguments in [1] can be generalized to the situation discussed in [4]
however, there remains a gap in the theoretical explanation of antiparticles and
particle statistics.

In this paper, we shall construct the antiparticle-sector of a given particle
directly, using only the spectral properties of particles in a massive theory and
local commutativity of observables. Then we shall prove finiteness of statistics and
the existence of particles in the antiparticle-sector with the same mass as the
original particle.

The argument starts from the proved localization properties of particle states
which can be expressed in the following way:

To any spacelike cone S in Minkowski space, there exists a morphism ρ from
the algebra of local observables 91, represented as an operator algebra in the
vacuum Hubert space j ^ 0 , into the algebra ^S(J^0) of all bounded operators in J>fo,
such that ρ is equivalent to the representation of 91 in the one-particle sector and

ρ(Λ) = Λ (1.1)

holds for any observable A which is localized in the spacelike complement S' of S.
To recover the vacuum state ω 0 from states in the one-particle representation

ρ, one may translate the local observables to spacelike infinity:

(Ψ, Uρ(x)ρ(A)Uρ(-x)Ψ)^\\Ψ\\2ω0(A) (1.2)

as x tends to spacelike infinity, for any Ae$X and ΨeJ^f0. Here x-*U (x) denotes
the representation of the translation group which belongs to the representation ρ
of 91.

Relation (1.2) can be interpreted as "shifting the charge to spacelike infinity". It
is therefore tempting, to apply the same procedure to states in the vacuum sector.

If

(Ψ,Uρ(xn)AUρ(-xn)Ψ)-+\\Ψ\\2φ(A) (1.3)

for some sequence {xn} which tends to spacelike infinity, we may take the limit
state φ as a state in the conjugate sector.

If (1.1) would be the only information, we have about ρ, we would have hardly
much knowledge about such limit points. But the localization properties of the
one-particle representation ρ, as derived in [4,1], contain more information than
used till now. There convergence of the type (1.3) has been shown, using only
commutation properties of the operator A with observables in the representation
ρ. By (1.1), any local observable A in the vacuum sector commutes with those
observables in the representation ρ which are localized in Sf spacelike to the
localization region of A. It will be shown that this property suffices, to prove
convergence in (1.3) for all local observables Ae*Ά for suitable sequences {xn}.

From the state φ we get via the GNS-construction some representation π of 91.
This representation is irreducible, translation covariant, the energy-momentum
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spectrum fulfils the positivity condition and the representation is localizable in the
same sense as ρ. The composite sector, constructed from π and ρ, contains a
subrepresentation equivalent to the vacuum representation. This may be taken as
the defining property of the conjugate sector.

We then analyze the analog of the two-point function. This gives finiteness of
statistics and equivalence of mass spectra in the representations π and ρ. So there
are particles in the conjugate sector with the same mass as the particle in the
representation ρ.

The used assumptions are quite general:
To any bounded region 0 in Minkowski space, we associate a von Neumann-

algebra 21(0), generated by those observables, which can be measured in 0. If 0X is
contained in 0 2 , 21(0 J is contained in 2I(02), a n d

91= ^21(0) (1.4)
(9

is the algebra of all local observables. For unbounded regions G we set

2l(G) = U 91(0). (1-5)
&CG

The net 0—>2ί(0) fulfills the requirements of local commutativity and translation
co variance:

(i) If 0X is contained in the spacelike complement 0'2 of 0 2 , then 21(0 J
commutes with 2I(02).

(ii) There is a representation x-+ax of the translation group by automorphisms
of 21, such that

αx(2I(0))c2I(0 + .x). (1.6)

As discussed in [4, I], a charged particle can be described by some irreducible,
translation co variant representation of 2ί, where the energy-momentum spectrum
below a certain mass shell consists of an isolated mass hyperboloid.

Then there exists a unique vacuum representation of 2ί with the mentioned
localization properties (1.1). The only additional assumption used in the argument
is the following duality property in the vacuum sector:

9I(S)' = Sl(S'Γ (1.7)

for any spacelike cone S. Here ' on the l.h.s. denotes the commutant and ~ the
weak closure. This assumption can be derived under more special conditions, as
discussed in [5].

2. The Conjugate Sector

As mentioned in the introduction, the construction of the conjugate sector is based
on localization properties of the one-particle representation ρ. To formulate these
properties in a convenient way, we introduce the following notations:

Let ΘR denote the double cone {|xo| + \x\ ^R) in Minkowski-space. We call an
operator Ae^{^fQ) almost local, if there exists an operator AR in each algebra



144 K. Fredenhagen

SΆ(ΘR) such that

\\A-AR\\

decreases faster than any power of R, if R goes to infinity. A spacelike cone S is
described by some vertex aeJR4 and some spacelike closed double cone Θ\

S = a+ (J λΘ.
λ>0

The automorphisms of ^ p f 0 ) , generated by the translation operators UQ(x\ are
denoted by βx:

βx(X)=Uρ(x) XUρ(-x), Xe<9W0). (2.1)

2.1. Lemma. Let E be the projection, belonging to some sufficiently small nonvoid
open set on the one-particle mass shell in the spectrum of U. Then there exists an
almost local operator A with ρ(^4)£φθ such that

fμ(R)= sup
d

dxμ
Eρ(A)*βx(X)ρ(A)E

decreases faster then any power of R, if R goes to infinity, i = ί, 2, 3.

The proof of this lemma can be found in [4, I].
Now let So be some spacelike cone. Since Lenίma 2.1 is valid in any Lorentz

frame, we choose a frame such that SQ has the form

so= U (®R + Rb), freIR4, bo=0.
R>0

2.2. Lemma. There exists a unique state φ on the algebra [J ρ(2ί(S0 + x))f with the
X

following properties:
i) φ°βx = φ for any translation x.

ii) φ is normal on ρ(2ί(S0 + x))' for any x.
iii) Let xeS0 such that x + ΘrCS0for some r > 0 . Then

\\Eρ(Ar{β_x(X)-φ(X)ί}ρ(A)E\\ £f(r)\\X\\ (2.3)

for any XeρCiί(S0))', where f is a function of fast decrease independent ofX.

Proof. LetXeρ(2I(S0 + x))' for some x. Then

β(x+Rb}(X)eρ(n&R))',

and from Lemma 2.1 we have for R2>R1:

\\Eρ(Ar{β_(x+R2b)(X)-β_{x + Rιb)(X)}ρ(A)E\\ ^(R^UW, (2.4)

where

ί = l
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is a function of fast decrease. Hence

converges, as R tends to infinity. But the weak limit points of {β_^x+Rb)(X)} are
contained in

R>0

so they are multiples of the identity due to the irreducibility of ρ. Therefore

WR-\imβ_Rb(X) = φ(X)ί, (2.5)

where φ is some translation invariant state on the algebra [j ρ(2ί(S0 -f x))\ and
X

\\Eρ(Ar{β^x+Rb)(X)-φ(X)i}ρ(A)E\\ £g(R)\\X\\ (2.6)

for Xeρ(2l(S0 + x))'. Thus φ is normal on ρCΆ(S0 + x))' as uniform limit of normal
states. This proves (i) and (ii). To verify (iii), we note

for Xeρ(2l(S0))', so using the translation in variance of φ and Lemma 2.1, we get

\\Eρ(Anβ_x(X)~φ(X)l}ρ(A)E\\ £g(r)\\X\\. q.e.d. (2.7)

We shall see that φ defines a state on 9X, if the spacelike cone So is in the spacelike
complement of the localization region S of ρ. In fact, in this case from (1.1)

if So + x is contained in S\ and

Uρ(2I(S0+*))'= U <WiS0 + x)y= U
X X X

So + xCS' So + xCS'

Thus φ is defined on 21. As from (1.2)

φ(ρ(A)) = ωo(A), AeK, (2.9)

φ is a state in some sector conjugate to ρ.
We shall use in the following the notation

o Ό o (2.10)
X

&So is an algebra, which contains 91 and ρ(2ί).
Let πφ be the cyclic representation of J*So, arising from the GNS construction

with the state φ, let Jf be the representation space and ξ the cyclic vector such that

foτXeOSSo.

(2.11)
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It is then easy to see that the representation πφ°ρ of 9X contains a subre-
presentation unitarily equivalent to the vacuum representation. In fact, let V be the
isometric mapping from Jfo into Jf, densely defined by

VAΩ = πφoρ(A)ξ (2.12)

for Ae% where ΩeJ^0 is the vector representing the vacuum. Then the equival-
ence is given by the relation

VA = πφoρ(A)V (2.13)

which holds for any Aetyί. (2.13) enables us to call the representation π , restricted
to 91, a representation conjugate to ρ (compare [1, I, Lemma 3.5]).

A left inverse φ of ρ which is needed for the discussion of the statistics of ρ, can
be defined by

φ(X)=V*πφ(X)V (2.14)

for XE^SQ. Here a left inverse of ρ is a positive mapping from some algebra
containing 21 and ρ(3I) into ^(J^ o) such that for A, B, Ce2T

ffl ««
(ii) φ(ρ(A)Bρ(C)) = Aφ(B)C

For later use, we note some properties of the representation πφ of &SQ.

2.3. Lemma, (i) There exists a unitary strongly continuous representation Uφ of the
translation group in 2tf such that

Uφ(x)πφ(X) Uφ( - x) = πφ(βx(X)) (2.16)

for Xe&So and any translation x.
(ii) The spectrum of the generators of Uφ is contained in the set

where A is the upper mass gap in the spectrum of Uρ.
(iii) ξ is the unique groundstate of Uφ.

Proof (i) is standard. As φoβχ = φ, we define Uφ(x) as the unitary mapping which

is fixed by

Uφ(x)πφ(X)ξ = πφ(βx(X))ξ (2.17)

forXe^ S o . Due to the boundedness of {Uφ(x)}, it suffices to prove the continuity
on vectors of the form πφ(X)ξ, where X e ρi^S0 + y))r for some y.

We have

|| (Uφ(x) - ί)πφ(X)ξ | | 2 = φ((βx(X) -X)* (βx(X) -X)). (2.18)

Since x->βx(X) is strongly continuous and uniformly bounded, the strong
continuity of U follows from the fact that φ is normal on

xeU

where U is some bounded neighbourhood of the origin.
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(ii) Let qφ{0}u{p2 ^Λ,p0 ^0}. We shall show that there is a neighbourhood U
of q such that for any infinitely often differentiable function / with support
contained in U the integral

μ*xf(x)Uφ(x) :=f(Pμ) (2.19)

vanishes. Here / denotes the Fourier transform of /
There is some point p on the one-particle mass shell such that p + q does not

belong to the spectrum of Uφ.
Choose neighbourhoods V of p and U of q such that the same is true for V+U.

Then

β_Rb(Xf)Ψ = 0 (2.20)

for any I e J S o , supp/Ct/ and spectral support of Ψ contained in V. (Xf

= Sd*xf(x)β&))
But

Thus (2.20) implies (2.19).
(iii) Let / be an infinitely often differentiable function with support contained

in some sufficiently small neighbourhood U of the origin. Let X, Ye^So. Then
from Lemma 2.1 for someΨeJf0

(πφ(Y)ξJ(Pμ)πφ(X)ξ)

= hm (ρ(A)EΨ9β_Rb(Y*Xf)ρ{A)Eψ). (2.21)

Using the identity

we decompose the right hand side of (2.21) into a sum of two terms, where the first
term vanishes, since / is a function of fast decrease and A is almost local. To
handle the second term, we choose U and the energy-momentum support V of E
such that Lemma 2.1 also holds for E replaced by the spectral projection F of
U + V with the same almost local operator A. Then

β_Rb(Xf)EΨeFje0

and from Lemma 2.2

n-lim Eρ(A)* β _ Rb( 7*) ρ(A) F = φ{ 7*) Eρ(A *A) F
R ~* oo

and

w-lim J d*xf(x)βx_Rb(X) = φ(X)f(0)i
J\ ~~* oo

So we get

f(Pμ)πφ(X)ξ = f(O)(ξ,πφ(X)ξ)ξ

which proves the uniqueness of the groundstate. q.e.d.
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From Lemma 2.3, we conclude, according to standard results of axiomatic field
theory [6], that ξ is a cyclic vector for πφ(ρ(2l(S0 + x))f) for any x and that the
representation πφ of 38 SQ is irreducible. On the other hand, it can be shown that the
representation πφ°ρ of 9X is irreducible if and only if the representation ρ fulfills the
duality condition (1.7) which means that ρ has pure Fermi- or Bose-statistics
(compare [1, I, Lemma 2.2]).

We now study the conjugate representation π: = πφ\m. We have the following
result:

2.4. Theorem, (i) π is irreducible
(ii) The equivalence class ofπ does not depend on So nor on the choice ofρ in its

equivalence class.
(iii) To any spacelike cone Sv there exists a unitary mapping U from J f onto J4?o

such that

Uπ(A) = AU (2.22)

holds for any AeWtSJ.
(iv) π is translation covariant, i.e. there exists a strongly continuous repre-

sentation Uπ of the translation group in Jf7 such that for

Uπ(x)π(A)Uπ(-x) = π(ax(A))- (2-23)

(v) The spectrum of the generators of Uπ is contained in the forward light cone.

Proof, (i) From the definition of π it is clear that

π(9ϊ)~3 U πφ(8ί(S'0+x))-,
So + χcS'

where S is some localization region of ρ. Since φ is normal on ρ(2I(S0 + *))' and
^(ρ(9I(S0 + x)y)ξ is dense in Jf, πφ is a ^-representation of π(9ϊ(S0 + x))'
[7, 1.16] and thus

if S0 + xCS\ further

by duality (1.7). Hence

thus the irreducibility of πφ implies the irreducibility of π.
(ii) Let us repeat the construction of the conjugate representation with some

spacelike cone So such that SOCSOCS', and let us denote the associated state of
^So by Φ a n d Λ e arising conjugate representation by π. Since φ is the restriction of
φ to the subalgebra &§o oϊ&So, π = πφ^ is equivalent to some subrepresentation of
π. But π is irreducible, so π is equivalent to π. Iteration of this argument gives the
equivalence for any spacelike cone So C 5".

Now replace ρ by some equivalent morphism ρ with localization region ScS'o.
There is a unitary intertwiner Ue3$(3tfQ) such that
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for any Ae% and the state φ, corresponding to ρ, is given by

) = φ{U~1XU)

for Xe&So. As Ue&So, the equivalence of the corresponding conjugate repre-
sentation to π follows.

(iii) According to (ii), we are free to choose So and S, such that S1 C S' and Sλ

contains So together with some cone spacelike to So. As S0CS', φ is normal on
9ί(S0)

; = ρ(9ί(S0)y. Now the commutant of 3I(S0)' possesses some cyclic vector in
J^o, so there is some vector φeJ^0 such that

) = (Φ,Aφ)

for all Ae$ί(SQy [7, 2.7.9]. Define Wo :J^->jeo by

Woπ{A)ξ = Aφ

for Ae3I(S0)'. Wo is an isometry, since ξ is cyclic for πφ($ί(Soy), and
E=W0 W£ E 2ί(50)". Using methods of [8], one can show [4,1] that to any nonzero
projection Ee 2I(50)" there is some isometry We 2t(50)" such that E = WW*. Hence
U = J-p* Wo is a unitary mapping from J"f onto J*f0 and we have the desired relation

Uπ(A) = AU

for all AeMiSW
(iv) We have

π(ux(A)) = πφ(U0(x) Uρ( - x)βx(A) Uρ(x) Uo( - x)).

Here Uo denotes the representation of the translation group in the vacuum sector.
Since U0(x)Uρ( — x) is an intertwiner from ρ to the translated morphism
ρx = otxρoc_x, it commutes with 21(5') n 21(5'+ x) due to (1.1) and is therefore
contained in J>

S o. So setting

Uπ(x) = πφ(U0(x) UQ(- x)) Uφ(x) (2.24)

we fulfil (2.23). The group relation is easily verified. The strong continuity of Uπ

comes from the fact, mentioned in the proof of (i), that πφ, restricted to ρ(2ί(50 + y))r

for some y, is a ^-representation.
(v) The spectrum of Uφ contains the sum of the spectra of Uπ and Uρ9 since

πφ°ρ can be taken as product of π and ρ [1, II, Theorem 5.2]. In fact, for Be2ί and
ΨeJΊf we have

Uφ(x)πφ(B)Ψ = πφ(Uρ(x)BU0(-x)) Uπ(x) Ψ. (2.25)

Hence the spectral support w.r.t. Uφ of the vector πφ(C)Ψ, where
C = §d4xf(x)Uρ{x)BU0( — x) with some integrable function /, is contained in the
sum of the spectral support of Ψ w.r.t. Uπ and the support of the Fourier transform
of / On the other hand

||π (C)U (y)Ψ\\2 = (Ψ,π (α_ (C*C))Ψ)-^>\\Ψ\\2 | |CΩ|| 2 (2.26)

if (— y) goes to infinity in 5. Thus to any neighbourhood of some point in the sum
of the spectra of Uπ and Uρ there are nonzero vectors in jf, the spectral support of
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which w.r.t. Uφ is contained in this neighbourhood. Then the positivity condition
on the spectrum of Uφ [Lemma 2.3 (ii)] implies the positivity of the spectrum of
Un. q.e.d.

3. Finiteness of Statistics and the Mass Spectrum
in the Conjugate Sector

If the particle, from which we started, would be finitely localizable in the sense of
[1], it would follow from the analysis in [1] that this particle has finite statistics
and that the mass spectrum in the conjugate sector is equivalent to the spectrum in
the particle sector. Similar to the analysis of multiparticle states in [4, II], in the
general case the results of [1] remain valid, but the arguments have to be modified.

The complications arising from the fact that the weaker localization properties
of ρ do not imply ρ(2l)c2I, can be circumvented as discussed in [4, II]. For the
purpose of this paper, we remark that morphisms with the localization property
(1.1) possess a unique extension to &So which is weakly continuous on 9I(S0 + xX
for any x and if the morphism is localized in the spacelike complement of So + x
for some x, then &So is invariant under the application of this morphism. In the
following we shall use this extension.

Now consider the expression

(πφQOξ9Un(x)πφ(Y)ξ)9 (3.1)

where X, Ye^So. We shall see that (3.1) is the analog of the two-point function for
an interpolating field between vacuum and conjugate sector. According to the
definition of Uπ (2.21) and of the left inverse φ (2.14), (3.1) equals

(πφ(X) ξ, πφ( U0(x) YUρ( - x)) ξ) = (β, φ(X* U0(x) YUρ( - x)) Ω). (3.2)

Now assume that there exist morphisms ρ1 ? ρ2 —ρ with unitary intertwiners Ui

from ρ to ρ , i= 1, 2 such that ρί and L^X* are localized in some spacelike cone S1

and ρ 2 and U2Y* are localized in some spacelike cone S2CS\. Denoting
U0(x)YUQ(-x) by Y(x) and U0(x)U2Uρ(-x) by U2(x) and keeping in mind that
U2(x) intertwines from ρ to {ρ2)χ = <χxQ2(χ-x> w e n a v e f° r

X*Y(x)=U1[(U1X*)ax(YU*)U2{x)

= U*ax(YU*)(U1X*)U2(x)

= U*ρ1(ax(YU*))(ρ2)x{U1X*)U2(x)

= ρ(ax(YU*))U*U2(x)ρ(U1X*)

= ρ(Y(x)){ρ(U2(x)*)U*U2(xMUί)}ρ(Xr. (3.3)

The operator in brackets is the statistics operator ερ [1, I, Lemma 2.6]. This
operator can be thought of as the unobservable operation of permuting two
relatively spacelike localized identical particles. ερ does not depend on the choice
of the morphisms ρί and (ρ2)x, so long as their localization regions are relatively
spacelike. ερ commutes with all observables in the two-particle representation ρ2.
Therefore φ(ερ) commutes with ρ(2ί), so φ(ερ) is a multiple of the identity:

φ(ερ) = λρt. (3.4)
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As shown in [1,1], the possible values of λ are 0, ± -, deN. λ = ± - means that
ΰ a ρ a

the particle carries para-Bose- resp. para-Fermi statistics of order d. The case
λρ = 0 is called infinite statistics and was thought to be pathological. We shall
show that the occurrence of infinite statistics is indeed incompatible with the
spectral properties of particle states.

Using the defining properties of a left inverse (2.15), we get from (3.1)—(3.4) for
xe(S1-S2)

f

{πφQC)ξ, UJx)πφ(Y)ξ) = λe(Y*Ω9 Uβ(-x)X*Ω). (3.5)

Now assume that λρ vanishes. Then from the positivity condition on the spectrum
of Uπ [Theorem 2.4 (v)] we conclude via the Edge of the Wedge-theorem that the
left hand side of (3.5) vanishes identically in x, if (Sί —S2)' contains some nonvoid
open set. So settingX = AU1 and Y=BU 2with A,BE% we get (3.7)

(πμ)πφ(l71)ξ,π(5)πφ(l/2)ξ) = 0 (3.6)

for all A^BeW which is a contradiction to the irreducibility of π.
Having established the finiteness of statistics, we can use (3.5) to analyze the

energy-momentum spectrum in the conjugate sector. We choose spacelike cones
S1 and S2 such that there is some spacelike cone S3 with S3DSί — S2. Then
precisely as in [1, II, Theorem 6.3] we can apply the techniques of the Jost-
Lehmann-Dyson representation, to conclude for xeS'3

(πφ(X)ξ, Uπ(x)Eπ(A)πφ(Y)ξ) = λQ(Y*Ω, UQ(-x)Eρ(A)X*Ω), (3.7)

where Eπ(Δ) and Eρ(A) denote the spectral projections onto some Borel set A for
the mass operators belonging to Uπ and Uρ, respectively. Thus the mass spectrum
in the conjugate sector equals the mass spectrum in the sector of ρ especially there
are particles in the conjugate sector with the same mass as the particle described
by ρ.
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