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Abstract. We derive the Vlasov hydrodynamics from the microscopic
equations of a quantum mechanical model, which simulates that of an assembly
of gravitating particles. In addition we show that the local microscopic dyna-
mics of the model corresponds, on a suitable time-scale, to that of an ideal
Fermi gas.

1. Introduction

It is only in certain limited contexts (e.g. [1-3]) that the extraction of macroscopic
dynamical laws from the microscopic equations of motion of 'large' quantum
systems has been rigorously effected. To the best of our knowledge, there are,
as yet, no rigorous derivations of hydrodynamics from quantum statistical
mechanics.

The present article is devoted to the passage from the microscopic equations
of motion to a form of hydrodynamics, i.e. that due to Vlasov, for a quantum
mechanical model which, though relatively simple, does have some physical
significance, as we shall presently explain. The model, Σ{N\ is that of an assembly
of N particles of the same species, in [R3, with Hamiltonian

I N N

H{N) = -N~2/3 Y n2 4- /V"1 V V(x — xA (\ λ)
j=l j,k=l

where

[xp Pk] = ίδjk, [xj, xJ = [pj, p j = 0, (1.2)

and where V satisfies certain regularity conditions. As we are concerned with
the properties of the model in the limit N -> GO, we formulate the dynamics of a
sequence of systems {Σ(N)}. Furthermore we restrict our considerations, for
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reasons which will presently become clear, to evolutions from initial states for
which

(x2}iN)^A, andN-2/\p]yiN)^B, (1.3)

where A, B are finite constants, independent of N. Although the model appears
to have a more natural physical significance when the constituent particles are
fermions (cf. the next paragraph), our analysis is equally applicable to the case
where they are bosons. The principal result we obtain is that the model obeys
the laws of Vlasov hydrodynamics in the limit N -> GO. This result thus parallels
the classical one of Ref. [4].

In the case where its constituent particles are fermions, Σ{N) is closely related to
the gravitational system, Σ{£\ whose equilibrium states we obtained in an earlier
article [5], and which we shall now briefly describe. Σ^ consists of N fermions
of one species, that interact via Newtonian gravitational forces. It satisfies certain
simple scaling laws, and in one particular scaling, the region Ω that it occupies is
iV-independent, while the gravitational constant and particle mass are proportional
to N'1 and N2/3, respectively. In this scaling, the Hamiltonian for Σ^] is given by
(1.1), provided that V(x)= — | x | - 1 and Dirichlet conditions are imposed at the
boundary, dΩ, of Ω. Furthermore, the mean square momentum per particle of Σ^
scales as N2/3. Thus, we see that, if V(x) is chosen to be a suitably regularized appro-
ximant to — | x \ ~ \ then Σ(N) simulates Σ(£\ with the bounds given by (1.3) replacing
the boundary condition at dΩ. Likewise, Σ{N) may be made to simulate the atomic
model Σ{^\ whose equilibrium properties were obtained in Ref. [6], provided that
additional terms are introduced in H(N) to represent the presence of the nuclei.

We formulate the dynamics of Σ(N) in terms of a hierarchy of rc-particle char-
acteristic functions, corresponding to reduced density matrices. The formulation
is effected on two distinct time-scales, which we term 'microscopic' and 'macro-
scopic' (or 'hydrodynamic'). In view of the condition (1.3) and the assumed regular-
ity properties of V, it turns out (Lemma 5) that (x2 ) {

t

N ) and N~2/3(p2 }(

t

N) remain
uniformly bounded w.r.t. N over any finite time interval, whether measured on
the microscopic or macroscopic scale. From this it follows that the interparticle
spacing scales as JV~1/3, and thus, in the limit JV->oo, any neighbourhood of
a point X(e U3) will generally carry with it an infinity of particles. Thus it emerges
that, as in the cases of Σ^] [5] and Σ^ [6], each point X carries a system whose
algebra of observables is isomorphic, via a scale transformation, to that of an
infinitely extended assembly of particles.

The microscopic description is concerned with the evolution of the states
induced on the observables attached, in this way, to different spatial points X.
In this description, we re-scale displacement from X, momentum and time relative
to Af~1/3, N1/3 and 1, respectively. The units of distance and time thus correspond
essentially to the mean interparticle spacing and to the mean time required to
traverse that spacing. The results we obtain on the microdynamics are that, in
the limit N -> oo, the evolution of the local states corresponds to that of an ideal
quantum gas, and that, if the observables attached to different points X are initially
uncorrelated, then they subsequently remain so. These results arise because, in
the scaling concerned, the forces on the particles vanish in the limit JV->oo.
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In view of the fact that the interparticle spacing ~ N~1/3, the second result may
naturally be interpreted as signifying that the purity of a phase is preserved.

In the macroscopic description, we scale distance, momentum and time in
ratio to 1, AΓ1/3 and N1/3, respectively: thus, in this description the unit of distance
is essentially the mean radius of the system and that of time is the interval required
for a particle to traverse that distance. The result that we obtain is that, in the
limit N -> oo, the macroscopic evolution of the system is given by the classical
Vlasov hydrodynamics: the quantum properties of the system, that serve to
generate this dynamics are buried in the structure of the initial state.

The essential reasons why such a result could be anticipated may be seen from
the following heuristic argument. If we define Pj: = N~ll3pjίt: = Nιl3T and
hN: = N~1/3, the Hamiltonian H{N) takes the form

^ xj - xk), (1.4)
Z j = l j,k=l

j<k

with
ίxpPj = ίhNδjk; (1.5)

and the unitary operator governing the evolution oϊΣ(N) is

U(N)(T) = exp (iH(N)T/hN). (1.6)

Thus, by (1.5) and (1.6), the quantum properties of the dynamics become governed,
in the macroscopic description, by an effective 'Planck's constant' hN, which tends
to zero as N -» oo. Hence, one could expect that, in this limit, the system becomes
classical; and further, a classical system with Hamiltonian given by (1.4) is known
[4] to evolve according to a mean field theory corresponding to Vlasov hydro-
dynamics. Our result may therefore be regarded as a natural combination of a
classical limit and mean field theory.

The material of this article will be organised as follows. Section 2 will constitute
a self-contained formulation of the theory of the microscopic evolution. In Sect. 3,
we shall provide a description of the model at the hydrodynamical level and
state our main Theorems, the proof of which will be constituted by the results
of Sects. 4 and 5. In fact, Sect. 4 will be devoted to the derivation of the classical
Vlasov hierarchy for the limit N -» oo while Sect. 5 will provide a proof of the
existence and uniqueness of the global solution of this hierarchy, together with a
proof that, in cases where the initial state satisfies a factorisation condition,
representing molecular chaos, then so too do the subsequent states, and their
evolution is governed entirely by the one-particle Vlasov equation. Thus, in this
case we have a 'propagation of molecular chaos', as in the classical model of Ref. [4].

Through this article we shall denote U3 by Γ and the Hubert space L2(ΓN)
by ^

2. Microscopic Dynamics

We shall now formulate the states and dynamics of the above-described JV-particle
system Σ{N) in a scaling that corresponds to the microscopic description discussed
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in Sect. 1. Thus, if p(Λ° is a density matrix in W{N\ representing a state of Σ{N\
we define the evolute of p(N) at time ί, on the microscopic time-scale, to be

β(N) = e-iHWtp{N)eiHWt^ (2.1)

where the Hamiltonian HiN) is given by Eq. (1.1). For XeΓjeU and n(^N)eN,

we define the local characteristic function μ^f: Γn x Γn -> C, by the formula

™expi Σ (N- 1 / 3 £ Λ + ^

Vξj,ηjeΓ;j=l,...,n, (2.2)

where £ .p̂ . and /; .(x. — X) are inner products in Γ.
Thus, μ^f yields the n-particle correlation functions at time t, in the scaling

where distance ~ iV"1/3 and particle momenta ~ ΛΓ1/3. Suppose now that {p{N)}
is a sequence of density matrices corresponding to states of the systems {Σ{N)},
such that μ{£'t

n) converges to μ^t, as N -• oo, in the weak topology dual f to L1 (Γ2n).
In this case, the family of characteristic functions fixt- = {μ^WneM} yields the
local correlations at X, for time t. In fact, μx t corresponds to the state of an infinite
system, attached to X, whose observables are the self-adjoint elements of the C*-
algebra of the CAR or CCR over L2(U3).

We now extend our description of the microscopic properties of {Σ(N)} by
defining characteristic functions, that serve to specify not only the local states
but also the correlation functions for observables attached to different points of Γ.
Thus, for each finite point set (X 1 ? . . . 9Xt)eΓ and corresponding set of integers
(w19... ,«|), we define

fi(N;nι,...,nι) ,(rnι v v Γm\2 —• C

by the formula

"ltl + ... + Hk-1+j

f ί f f (2.3)
Suppose now that {p(iV)} is a sequence of density matrices such that, for all values
of {X19...9Xι\ K , . . . , ^ ) and ί, the function μf^ 'x^ converges to μ^1;;;;; ;̂ί,
say, a s i V ^ o o , in the weak topology dual to Li((Γnι + '"+nι)2). Then, in this case
μt9 defined as the family of functions {μψ^xlt \(Xι> . - ^ X ^ e Γ ; ^ , . . . ,n f ceN},
specifies not only the local states of the system, but also the correlations between
observables attached to different points of Γ. We note, in passing, that μt corres-

f It is rather easy to verify that sequences of states {piN)} satisfying this convergence condition can be

found: the same may be said for the corresponding condition specified in the following paragraph.

On the other hand, one can easily show that a pointwise convergence of the characteristic functions

μ^v'") is out of the question, because of their Z-dependence
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ponds to a state on the algebra of observables that we termed 'hydrolocaΓ in Ref. [5].
The following Theorem shows that the microdynamics of the system, as specified
by the time-dependence of μt, corresponds to local free evolutions.

Theorem 1. If the gradient of the potential V is bounded, then the temporal evolu-
tion ofμt is given by the formula

β(ni,...,nι) (P(l) P(l) ™(1) n^)

C o r o l l a r y 2 . // μ 0 has the property that, for arbitrary (X1,...,Xι)eΓ and

i

/ c = l

M Y ' ' Y z \ C ? J C ? ^ / > ? ^7 z " " 1 | | M Y / \ C ? ̂ / /• (^Z.uj

Comment. Condition (2.5) signifies that observables attached to different points
of Γ are uncorrelated at ί = 0. Since the mean interparticle spacing for Σ{N) ~
N~1/3, this may be interpreted as signifying that the initial limit state, represented
by μ0, corresponds to a pure phase. Corollary 2 tells us then that the purity of
a phase is preserved under microscopic time evolution.

Proof of Theorem 1. We shall prove the Theorem for the case 1=1: generalisation
to arbitrary I is trivial. For this purpose, we start by defining

X \i) — e x.e , p. i n — e p.e ,
J j j j

FiN)(ή = — N~1 V V V(γ(N)(t) — x(W(t)) (2 Ί)
J '—^ J K

kψj

and noting that, by (2.1) and (2.2),

= Tr[p(N)expi £ (N~i!3 ξjpf^t) + iV1/3^(xf(i) - X))] (2.8)
7 = 1

Further, it follows from Eqs. (1.1) and (2.7) that the Heisenberg Eqs. of motion
for xf\t) and pf\t) imply that

0 0
$»)(t) = x. + N-2/3

Pjt +N~2/3 Jdf Jfdf'F^ίί"). (2.9)

Hence, by (2.8) and (2.9),

V S ' 7 ' ί

, (2.10)
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where

β f (ί) = ξ j r f ί 'Ff (!') + »/jdf Jdfi** >(ί"). (2.11)
0 0 0

In view of our assumption that VF is bounded, it follows from (2.7) and (2.11)
that || Qf^t) || is uniformly bounded w.r.t. N. Further, as

for any self-adjoint operator A, it follows easily from Eqs. (2.10) that

Hence, in view of the uniform boundedness of || 6 ^ ( 0 1 | a n d the definition of
μ(£t as the limit oϊμ{%f, in a specified topology, it follows that

which is the required result.

3. Hydrodynamical Description

The state of Σ(N) at time t, in the scaling for the macroscopic description, specified
in Sect. 1, is given by the density matrix

pw = exp( - ίN1I3H{N)t)p{N) exp(ίN1/3H{N)t); (3.1)

and the ra-particle characteristic function (n^N) in this scaling is μ^> π ):Γn x
Γn -• C, where

(3.2)

where ξ.p. and η.x. are inner products inΓ.
We are now in a position to state our two main Theorems on the macroscopic

time evolution of Σ{N) in the limit N -> oo.

Theorem 3. Assume that the initial states {ρ{N)} of the systems {Σ{N)} satisfy the
condition (1.3) and that, further, the Fourier transform V9 ofV, is a C0-class function
on R3. Then, under these conditions μ[N'n) converges pointwise, for each neN and
teU, to a characteristic function μ^ for a classical probability measure m\n) on
Γn x Γ", as N -• oo over some subsequences of integers; and further,
(1) the sequence {mjπ)} defines a probability measure mtonΓu x ΓN; and
(2) the sequence μt: = {μ(/°} satisfies the Vlasov hierarchy, namely,

(3.3)
aτ

where

(Lμtr(ζ1,...,ξn;η1,...,ηn)= Σ ^ " ^ H ^ - Λn\Άx,-, %), (3.4)
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(Kμty\ξ1,...,ξ;η1,...,ηn)= £ \ d* qV{q)(qξ})

•μl"+1)(ξ1,...,ξn,O;η1,...,ηj + q,...,ηn,-q), (3.5)

and where we define the Fourier transform V of V according to the convention
thatV(x) = \d3qV(q)eiqx.

Theorem 4. Under the same conditions on V as in Theorem 3, the Vlasov hierarchy
(3.3) admits a unique global solution for the evolution μo->μt. Furthermore if
att = O, μt satisfies the factorization condition

μ^{ξι,...,ξn;ηί,-..,nn)= fl^iξj^j), (3.6)
J = l

then it fulfils this condition for all teU. In this case, μ^ is the unique solution of the
Vlasov equation, as expressed in terms of the one-particle characteristic function, i.e.

du{1) du{1)

-η~& η) = 1-jξ-(ξ> n) + $d3q V(q)(qξ)μ^(ξ, η + ^ ( O , - q). (3.7)

Comments. (1) Theorem 4 tells us that the dynamics governed by the Vlasov
hierarchy preserves 'molecular chaos', as represented by the factorization condi-
tion (3.6). As μjn) is the limit of μ{

t

N'n) (Theorem 3) and as the interparticle spacing
for Σ(N) ~ JV~1/3, it is natural, according to standard arguments [7; p. 295],
to interpret condition (3.6) as one that is satisfied by a system in a pure phase.
Furthermore, it is not too difficult to construct a sequence {p{N)} of initial states
(e.g. suitable quasi-free ones) for which the limit characteristic functions μjn)

satisfy (3.6) at t = 0 and hence, by Theorem 4, for all t.
(2) Although it is a fairly simple matter to weaken the condition on V for

Theorem 3, it seems to us to be difficult to do the same for Theorem 4—at least
within the present framework.

4. Derivation of the Vlasov Hierarchy

This Section will be devoted to a proof of Theorem 3.

Lemma 5. Assume that \ W\ is bounded and that condition (1.3) is satisfied. Then,
for each Te U+ , 3 finite constants Aτ, Bτ such that

Tr(p{

t

N)xj) S Λτ and N~2/3 Tr (p{

t

N)pj) ^ B Γ Vίε[ - T, T] . (4.1)

Proof. Defining

xf>(ί) = Qxp(iN1/3HiN)t)Xj exp( - iN1/3H{N)t),

p<jN\t) = exp (iN1/3H{N)t)pj exp ( - iN1/3H{N)t), (4.2)

and

- N-' Σ VF(xf (0 - x f (ί)), (4.3)
kψj
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it follows from (3.1), (4.2) and (4.3) that

TφWjή) = Tr(pW(xf\t))2) and Ίv(p\N)pj) = Tr(p(N)(pf>(ί))2), (4.4)

while it follows from (1.1), (4.2) and (4.3) that the Heisenberg equations of motion
for xf \t) and pf \t) yield the formulae

xf)(t) = Xj + N- wPjt + ]dti )dt2Ff\t2) (4.5a)
o o

and
i?) 1 / ] f \ . (4.5b)

In view of our assumption of the boundedness of VF, it follows from (4.3) that
I F(p(t) || is uniformly bounded w.r.t. N and ί. It is a simple matter to show that

this uniform boundedness of || F^N)(ί) ||, together with the assumed condition (1.3)
and Eqs. (4.4) and (4.5), imply the required result. D

Lemma 6. Assume again the condition of Lemma 5. Then, for all y : = (ξί,..., ξn,
η19...,ηn,t)in any compact region K ofΓn x Γ x R, the first and second derivatives
of μfl'n)(ξ1,..., ξn ηx,..., ηn) w.r.t. the <f s and rfs are all uniformly bounded w.r.t.
N and y.

Proof It follows from the commutation relations (1.2) that

exp i X (N~ 1/3ξjPj + ηjXj) = exp i X N~ 1/3ξjpj) exp i £ η^Λ
j=ί \ 7=1 / V j=l /

/ n \ / n

= exp i Σ .̂Xj expί X N~1/3ξjpj

\ 7=1 / \ 7 = 1j

( 4 6 )

Hence, by Eqs. (3.2) and (4.6), the first and second derivatives of μ^tn) w.r.t. the <f s
and η's are given by the following formulae, the right-hand sides of which are
well-defined, in view of Lemma 5,

~ 1/3ξ jPj + ηjXj)] (4.7)

(4.8)
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S2β(N,n)

= - N-2'3 TrΓ(p. + $η)p<M{p - if, ) exp i £ (ΛΓ1/3 ξjPj + ηjX])]
L j=i J

(4.9)

d2μ(N,n)

(4.10)

and

d2μ(N'n)

' {ξ1,...,ξn;ηί,...,ηn)dηjδηk

j - |JV- ll3ξj)p\m(Xj + $N- Wξj)exp i f (JV~ 1 / 3 ξ Λ + >JΛ)

(4.H)

The required result now follows, in view of Lemma 5, from a simple application
to Eqs. (4.7)—(4.11) of the general inequality

\Ύτ(ApBQ\ g [Tr(p/l*/l)]1 / 2[Tr(pββ*)]1 / 2 | |Cl. D

Proposition 7. Assume again the conditions of Lemma 5, together with the addi-
tional one that VeLι(U3). Then the functions μf n) are differentiable w.r.t. t and
satisfy the BBGKY hierarchy

^ > " > , f o r n = l , . . . , J V , (4.12)

where

and

j,k=l
j<k

μi

t

N'")(ξι,...,ξn;ηι,...,ηj +

(4.14)
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μ(N,N+i) _ Q? an(ι y ιs tfoe fourιer transform of V, defined by the same convention
as in Theorem 3.

Proof It follows from (1.1) and (1.2), together with the definition V(x): =

expfi

7 = 1 j,k=ί

n N

+ A Γ~1 Σ Σ \d3qV(q)eiq{Xj-χk)[eίN~1/3qiξj-ξk) - 1] . (4.15)
7=1 k=n+ί

Further, it follows from (3.1) and (3.2) that

^ — ( . C i , • • • > ζn', Ά x , • • ,ηn)

= iJV1 / 3Tr p[N)\ HiN\expίY (N~ll3ξ.p.+ η.x.) 1 1 . (4.16)

L L j=i J J
The commutator in this last formula is obtained by multiplying equation (4.15),

n

from the right, by exp ί £ (N~ί/3ξ.p. + η.χ.). On formulating the commutator

in this way, the required result may be obtained as a simple consequence of Eqs.
(4.6), (4.7), (4.15) and (4.16). D

Proposition 8. Under the assumptions of Proposition 7, μ{

t

N'n) converges pointwise

to a function μf] and, correspondingly, dμ{

t

N>n)/dξj, dμ^^/dη. converge pointwise

to dμln)/dξj,dμ[n)/dηj, respectively, as N -• oo over a subsequence of integers that

is independent of t. Here, μ\n) is the characteristic function for a measure mf

(n) on

Γn x Γn, such that mt: = {mJM)} canonically defines a probability measure on ΓN x ΓN.

Further, the convergence ofμi

t

N'n)(ξ19...9ξn;η19...,ηn)to μ(

t

n)(ξ1,..., ξn nx,..., ηn),

and likewise of the first derivatives of μ{

t

N'n) w.r.t. ζ., η. to the corresponding ones of

μ[n\ is uniform in(ξί,... ,ξn;η1,... ,ηn;t) over any compact region in Γn x Γn x IR.

Proof. Let Xbea compact subset of Γn x Γn x U. Then, it follows from Lemma 6
and Proposition 7 that we may employ the Arzela-Ascoli theorem to show that
μ(

t

N>n\ dμ{^n)jdξ.,dμ{^n)ldr\. converge pointwise, and uniformly w.r.t. their argu-
m e n t s (ξ1,...,ξn',η1,...,ηn) a n d t, f o r (ξ19... 9ξn;η19... 9ηn t)eK9 a s

N -> oo over some subsequence of integers. Further, the uniformity of this converg-
ence ensures that the limits of dμ{ ̂ n)ldξpdμ{^n)/dηj are dμ^/δξj and dμ^/dη.,
respectively, where μ[n) = lim μ[N'n\ Now let {Kn} be an increasing absorbing

JV->oo

sequence of compacts in Γn x Γn x IR. Then it follows from the above result,
applied to each Kn in turn, that we may use the diagonalization procedure to
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prove that μ[N*n\ dμf>n)/dξ. and dμ{^n)ldηj converge pointwise to μ^\ dμ^/δξ.
and dμ^/dηjjor all t e [R, as N -» oo over some sequence in l%l.

It now remains for us to prove our statements concerning μ^n) as the character-
istic function of a probability measure. For this purpose we first infer from the
definition (3.2) and the commutation relations (1.2) that

W (4.17)

and that

μ(^»)(0;0)=l. (4.18)

Hence, as μjn) is the pointwise limit of μ[N>n\ it follows from (4.17) and (4.18) that

Σ cjckμ
(ΐι)(ξa)-ξik\ηU)-

j,k = l

?»,...,?*> ;η™,...9ηVer9 (4.19)

and

μj»>(O;O)=l. (4.20)

In view of the continuity of μ\n) (Lemma 6), it follows from (4.19) and (4.20) that
μ\n) is indeed the characteristic function for a probability measure m{n) on Γn x Γn

9

i.e.

[ ^ (4.21)

Finally, it follows immediately from (3.2) that, for n< N,

and hence, as μj"} is the limit oΐμ[N*n\

One infers readily from (4.21) and (4.22) that {mJM)} correspond to a unique probabil-
ity measure mt on ΓM x ΓM, such that if Δn is a Borel subset of Γn x Γn and
i π is the cylinder set Δn x ΓN' x Γ^', with M': = M\{l,."..,n}, then m f ( i π )Ξ

Proof of Theorem 3. Proof of the statement concerning the convergence of
μ[N n\ together with that of the further property (1), is provided by Proposition 8,
for which the basic assumptions are weaker than those of Theorem 3.

In order to establish the Vlasov hierarchy (3.3), we rewrite Eq. (4.12) in the
form

μ(fr.-))β {423)
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By Proposition 8 and the definitions of Ln, K™ , L and K (Eqs. (3.4), (3.5),
(4.13) and (4.14)), together with the assumed condition for V, we may pass to the
limiting form of (4.23), as N -* co, in a straightforward way, and thereby obtain the
equation.

0

which is equivalent to the required result. D

5. The Vlasov Dynamics

In this Section we shall establish two propositions concerning the Vlasov dynamics
and it will be seen that Theorem 4 is an immediate consequence of these proposi-
tions. It will be assumed throughout this Section that V is a C0-class function.

Proposition 9. The Vlasov hierarchy (3.3)has a unique global solution.

Proof. We reformulate the Vlasov hierarchy in interaction representation.
Thus, we start by defining μt: = {fi^lneN} to be the sequence of characteristic
functions, related to μt by the formula

tfin)(ξ19...,ξn;η19...,ηn) = μ t ( ξ 1 - η 1 t 9 . . . 9 ξ n - η n t ; η 1 9 . . . 9 η n ) ; ( 5 . 1 )

and then note that the Vlasov hierarchy (3.3) is equivalent to the equation

^ o S^Jμ^, (5.2)
o

where

.,£„;»/,,...,>;„) = Σ $d3ηn+ιV(ηn+1)ηn+1(ξk-ηkt)

(5.3)

A straightforward iteration of (5.2) yields the formula

fit = Ho+ Σ\dt1...'TdtkK(t1)...K(tk)μ0 + Aιμt (5.4)
fc=10 0

where

Διfit = ]dt1J
l]1dtιK(t1)...K(tι)μtι. (5.5)

o o

An estimate of Διμt will be provided in the Appendix, and will there be shown to
imply that, under the specified assumptions on V9 there exists a positive number τ,
which does not depend on μ0, such that

(Δ^^-^O, pointwise, as /-> oo, VrceN, and | ί | g τ . (5.6)
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Hence, it follows from (5.4) and (5.6) that, for | ί | ^ τ , (5.2) possesses a unique
solution, namely

00 ί tk-ί

βt = Vo+ Σ ί ^ i ί dtkK(tl)...K(tk)μ0. (5.7)
fc=10 0

As the value of τ, that governs (5.6), is independent of μ0, we may similarly prove
the uniqueness of μt, and hence of μt, over the successive time intervals [πτ, (n + l)τ]
(and [ — (w+ l)τ, — nτ]) for all neN, and thereby establish that the hierarchy
(3.3) has a unique global solution. •

Definition 10. Let m ^ be a probability measure on Γ2, and let (x,p)->
(Xr(x, p), P f(x, p)) be the one-parameter group of canonical transformations
of Γ2, uniquely specified by the equations of motion (cf. [4, 8]) D

Ώ ^ ά ^ ,p)-Xt{x',P')) (5.8)^ = P((x,p), = \dm^{x

with

X0(x,p) = x,P0(x,p) = p.

We define mj1} to be the probability measure on Γ2, whose characteristic function
μ\l) is given by the formula

μ^K, η) = Sdm^ix, p) exp i(ξPt(x, p) + ι/Xt(x, p)). (5.9)

Thus, m\X) is the weak solution of the Vlasov equation for measures, as formulated

in [8].

Proposition 11. The characteristic function for mj1}, as specified in Defi 10, is
the unique solution of the Vlasov equation (3.7). Furthermore, ifm0 (respectively mt) is
the probability measure on ΓM x ΓN, given by the product of copies m^] [respectively
m\l)) on the components Γ x Γ, and μ0 (respectively μt) is the corresponding family of
characteristic functions on {Γn x Γ"|n6l\l}, then the evolution m0 -> mt is given by
the unique solution μ0 -> μt of the Vlasov hierarchy (3.3).

Proof In order to show that μ\γ\ as defined by (5.9), satisfies Eq. (3.7), we pass to
the interaction representation and define

μ\1)(Lη) = μ[1)(ξ-r]Uη). (5.10)

Thus, by (5.9) and (5.10),

μ^(ξ, η) = \dm^(x, p) exp i(ξ(p + Pt{x, p)) + η(x +Xt(x, p) - tPt(x, p)), (5.11)

where

Xt(x, p) = Xt(x, p)-x- pu and Pt(x, p) - Pt(χ9 p) - p, (5.12)

i.e., by (5.8) and (5.12),

Xt(x, p)=- \dtγ Jdt2 \dm^(x\ p')VV(Xt2(x, p) - XJx', p')) (5.13)
0 0
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and

Pt(x,p) = - ]dtί$dmγ(x\p')VV(Xtι(x,p)-Xtί(x\p')). (5.14)
o

In view of the boundedness of VF, it follows from (5.13) and (5.14) that, for t in
any finite time interval, dXjdt and dPJdt are both bounded. Therefore, we may
obtain dμ^/dt from (5.11) by differentiating under the integral sign on the r.h.s.
Thus, using (5.8) and (5.12), we find that

to = ft - nt)\dm^{x, p ) ^ ^ e χ p i((ξ - ηt)Pt(χ, p) + ηXt(χ, p)).

(5.15)

On using (5.10) and (5.14) to express dμ^/dt and dPJdt in terms of μ*1* and Xt,
respectively, we see that (5.15) may be rewritten in the following form.

^{x\p')VV{Xt{x, p) - Xt{x\ p'))cxp i(ξPt(x, p) + ηXt(x,p)).

(5.16)

Thus, as VV(Xt(x,p)-Xt(x',p'))=i$d3qqV(q)expiq(Xt(x,p)-Xt(x',p')), it
follows from (5.16) that

+ \d*q{qξ)V{q)\dm^(x, p) exp i(ξPt{χ, p) + (η + q)Xt(x, p))\dm^{x,p).

exp(-iqXt(x,p)).

This equation is equivalent to (3.7) since, by (5.9) the last two integrals in the
product on its r.h.s. are μ^iξ, η + q) and μ^^O? — q). Thus, μ*1* satisfies (3.7).

Let μ0 (respectively μt) be the family {μ(

o

π) (respectively μ^n)) [ ne N} of character-
istic functions corresponding to the probability measure m 0 (respectively mt)
on Γ^ x ΓM, given by the product of copies of m ^ (respectively m^) on the

components ΓxΓ. Thus μf(ξ19... ,ξn;η19...,ηn) = f[ μ^{ξpn3) for σ = 0

or ί, from which it follows that, as μ(

t

ί] satisfies (3.7), then μt is a solution of (3.3).
Therefore, by Prop. 9, μt is the unique solution of the hierarchy (3.3). This result
also implies that μ(

f

1} is the unique solution of (3.7). For, if μ ^ were another solution
of that equation then one could construct a second solution μt of the hierarchy
(3.3), with initial value μ0, by the prescription μγ){ξ1,...,ξn;η1,...,ηn) =

n

Π fi^iζj* Vj) I a n d Λis would contradict Prop. 9.

Appendix

We shall now establish (5.6) for some r > 0. Thus, we start by defining the operator
θk(ξ9η) on the functions on Γm x Γm, with (ξ,η)eΓ2 and m,k{^m)eN, by the
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formula

(θk(ξ,η)f)(ξ1,...,ξm;η1,...,ηj:=f(ξ1,...,ξk-ξ,...,ξm;η1,...,ηk-η,...,ηj.

(A.1)

With this definition, it follows from (5.3) and (5.5) that (A^t)
{n) may be expressed

in the following form

= (-1) ' t ...Σ\dt1..YdtιU
kί = l kι=l 0 0 m = l

•β^'^-^rir,...^)}. (A.2)

It follows from (A. 1) that the quantity in curly brackets in (A.2) is equal to

ϊ - 1

m = l

Since /ζ" + /) is a characteristic function, it follows from (A.I) that the modulus
of the term in the last square brackets in (A.3) cannot exceed unity. Furthermore,
the presence of the ^-functions in (A.2) permits us to replace ξn+m by ηn + mtm,
for m ^ Z, in (A.3). Hence, the modulus of the term in curly brackets in (A.2) can
be majorized by

| ^ ( - ^ ; + i K + i ( £ f c l - ^ Λ ) H ^ - ^

• n - %+ιK+ι(ξkι - nkιh - £ W Ί " '«» ( A 4 )
m = l

We note now that the constants A : = sup {\V(η)η\;ηeΓ} and B : = sup

(I^H^esupp V} are both finite, in view of our assumptions on V. Thus, defining

C: = max {| ξχ \,..., | ξn\} and D : = max {|r\χ \,..., |ηn\}, and taking account both

of the ordering of the ίm's and of the ranges of values of the fem's, as specified in

(A.2), we see that the expression (A.4) may be majorized by

m = l

where ( A 5 )

(A.6)

Since the volume of supp V is majorized by |πJ3 3 , and since (A.6) provides an
upper bound to the term in curly brackets in (A.2), it follows from the latter Eq.,
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after a little manipulation, that

: + D\t\)n)((C + D \ t \ ) n + ( n - l ) B \ t \ ) . . .

\t\ι

F r o m this estimate, it follows that Διμ
i")(ξ19...,ξn;η1,...,ηn)->0 as ί-»oo, for

aΆ(ξί,...,ξn;η1,...,ηn)eΓn x Γn and 11 | ^ τ, with τ chosen to be (f πAB*)~1/2.
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