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Abstract. In this paper it is shown how the Penrose transform maps tangential
hyperfunction Dolbeault groups with coefficients in a power of the hyperplane
section bundle on the hyperquadric of null twistors in projective twistor
space isomorphically to all hyperfunction solutions of the massless field
equations of nonnegative helicity on compactified Minkowski space. This is an
extension of the Penrose transform which generated real-analytic solutions of
the same field equations on the same space (cf. Eastwood, M., Penrose, R.,
Wells, R.O., [10]). In additions, one obtains the result that each hyperfunction
solution of the massless field equations of nonnegative helicity is the sum
of massless fields of positive and negative frequency, a generalization of the
usual Fourier decomposition for solutions with appropriate growth conditions.
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0. Introduction

It was shown some time ago by Penrose that solutions of the zero-rest-mass field
equations could be generated by transforming holomorphic functions defined on
open subsets of 3-dimensional complex projective space P3((C) to spinor fields on
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Minkowski space by a contour integration process [24]. This original result, now
called the Penrose transform, depends on twistor geometry (originated by Penrose
in [25]), has been refined by various authors, and a more complete theory has
emerged (see [35, 19] for recent surveys of this subject). In twistor geometry it is
compactified Minkowski space, denoted by M, which appears naturally. This is, in
fact, the conformal compactification, with respect to the conformal group in
physics. Conformally invariant field equations (essentially describing particles
with zero mass, e.g. Maxwell's equations) are naturally defined on this compact
manifold M.

In [10] it was shown that the zero-rest-mass field equations, originally
introduced by Dirac [9] (including the massless Dirac equation, the homogeneous
Maxwell equations, and the linearized Einstein equations), could be derived from
twistor geometry. Moreover, all of the holomorphίc solutions of the differential
equations on a given open subset (of a specified type) of the natural com-
plexίficatίon M of M are the Penrose transform of (smooth) cohomology classes in
corresponding open sets in JP3(C). As an example, one had [35, 10] an isomorphism

^IP(-^-2)-^(M±), (0.1)

where

and

which is a tube domain (and M~ is defined similarly) with distinguished boundary

which can be identified with affine Minkowski space. Here

&2s(M+) = {φA, D,(z) holomorphic in M+ : VAA> φA, D, -0}

2s

are the positive helicity holomorphic zero-rest-mass fields (s = 1 corresponds to the
self-dual Maxwell's equations, for instance), while /f *(P+, Θw( — n — 2}} denotes the
sheaf cohomology groups of 1P+ with coefficients in the sheaf of sections of the
( — n — 2)-power of the hyperplane section bundle H-+W: =F3(C) (i.e. local holo-
morphic functions which are homogeneous of degree —n — 2 in homogeneous
coordinates). The power of the hyperplane section bundle Hm-*W determines the
helicity of the field equations whose solutions are generated by these cohomology
classes. In [10] both positive and negative helicity cases were considered, but in
this paper, where we study generalized functions as solutions, we shall restrict
ourself to the simpler case of nonnegative helicity (the other case still involves
unresolved problems at this time).

Consider now the same field equations on real (compactified) Minkowski space
M (well-defined since the field equations are conformally invariant). Since these



Zero-Rest-Mass Equations 569

equations are hyperbolic in nature, one has many solutions which are not smooth.
We recall that hyperfunctions are a generalization of distributions originally
studied by Martineau and Sato which are defined on any real-analytic manifold,
and which have been utilized in various contexts since [29, 22, 16]. Locally
hyperfunctions can be thought of as elements of a dual space to the space of real-
analytic functions endowed with an appropriate topology. Globally this is not
valid hyperfunctions are not elements of a dual space in general. Sato showed that
they could be characterized in a very useful manner as local sums of jumps in
boundary values of holomorphic functions defined on a complexification of the
given real-analytic manifold. In Schwartz' theory of distributions, one differen-
tiates by simply differentiating the test functions and invoking the usual formula
for integration by parts. In the theory of hyperfunctions, one represents the
hyperfunctions as the (("algebraic sum of jumps of) boundary values of holomor-
phic functions, then differentiates the holomorphic functions appearing in this
representation, and then takes boundary values of the differentiated holomorphic
functions to get the required derivatives of the generalized functions. There is a
well-defined calculus of such generalized functions, and its utilization depends on
detailed results in the theory of holomorphic functions of several complex
variables, just as Schwartz' theory depends on detailed results concerning locally
convex topological vector spaces. In addition, one uses homological algebra as it
appears in algebraic geometry and complex analysis as a tool for keeping track of
the "algebraic sums" which appears in the description of hyperfunctions given
above. These generalized functions have been applied extensively to various
problems involving classification of differential equations and their solutions, in
particular their solutions with specified types of singularities (see [16], which
traces recent developments concerning hyperfunctions and more generally micro-
functions in this area).

The purpose of this paper is to generalize the Penrose transform acting on
smooth data (as developed in [10]) to act on hyperfunction data in such a way
that: a) it agrees with [10] when restricted to smooth data and b) it generates all
hyperfunction solutions of the field equations. This can be carried out quite
completely. The mathematical tools necessary for this development are described
in more detail below. First we will formulate the principal results in the paper.

The Dolbeault groups H1(F+, (9^( — n — 2)) which appear in (0.1) have a natural
generalization to the boundary of 1P+, denoted by P. Namely, one can consider
tangential Dolbeault groups on P

where dp is the tangential δ-operator (denoted by db by many authors). These
groups were first studied by Kohn and Rossi [20] and have been studied
extensively since [33,12]. One can consider differential forms with various
smoothness classes, and for our purposes it is useful to consider hyperfunction
coefficients, denoted by J>0'g(P), and to consider differential forms with coefficients
in a vector bundle, just as in the case of smooth coefficients. Thus we let
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denote the tangential Dolbeault groups with hyperfunction coefficients, and with
coefficients in the holomorphic vector bundle V on IP restricted to P. This is
intrinsic to the CR-structure of P, and does not depend on the ambient space [27].

In a different direction we recall that a solution φ of field equations (not
necessarily the massless field equations) on Minkowski space (compact or affine) is
of positive frequency if φ is the boundary value of a solution of the same field
equations on M+. A solution has negative frequency if it is the boundary value of a
solution in M~. Here boundary value is taken in whatever manner makes sense in
the given context, i.e., continuous, C°°, distribution, L2, or hyperfunction, etc. This
concept is important in quantum field theory [8, 31], but we will not elaborate this
point here. Any solution admitting a Fourier decomposition in any reasonable
sense will split into two Fourier components corresponding to positive and
negative frequencies in the Fourier exponentials which is where this concept arises.

We can now formulate the principal results of this paper :
A) The Penrose transform ^ is well-defined on tangential Dolbeault coho-

mology of hyperfunction type and there is an isomorphism

where 2£m n(M) is the vector space of all hyperfunction solutions on M of the zero-
rest-mass field equations of nonnegative helicity n/2.

B) Every hyperfunction solution of the massless field equations of nonnegative
helicity on M is the sum of hyperfunction solutions of positive and negative
frequency, i.e., the natural boundary value mapping (in the sense of Martineau
[23])

is an isomorphism.
The proof of B) depends on A) and the fact that there is a natural mapping

whicj is an isomorphism. This last isomorphism is a natural generalization of the
decomposition of a function on the real axis into the jump of holomorphic
functions from the upper and lower half plane derived from Cauchy's formula.
Thus this generalized Cauchy decomposition yields the Fourier decomposition in
B) for the solutions of the field equations, and the Penrose transform is the
mechanism which transforms the one decomposition into the other.

There are several problems which remain open at this time. Can the Penrose
transform be defined as a mapping to affine Minkowski space M0 (i.e., it must be
defined on P — /, where / is a certain complex projective line P [10])? This is not
clear. Also does any hyperfunction solution of the field equations on M0 extend as
a hyperfunction solution on all of M? For distribution solutions one can see that
all solutions do extend and are the sum of positive and negative frequency
solutions (see [11]). In that paper it is shown by general Fourier analysis that all
such solutions are of positive and negative frequency, and then that because of this
they have a hyperfunction extension to M, but part of this analysis breaks down
for hyperfunction solutions on M0. It is likely that all hyperfunction solutions of
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the massless field equations on M0 extend to the compactification M, but this is
not yet proved.

It is our hope that this reinterpretation of positive and negative frequency and
weak solutions in terms of holomorphic data on projective twistor space will be
useful in the many unresolved problems concerning "weak solutions" of the much
more difficult nonlinear differential equations of field theory which arise when one
considers self-interactions as well as non-abelian gauge theories.

We now give a survey of the contents of the paper. The language developed in
[10] for describing invariantly twistor geometry and the associated field equations
is adopted in its entirety in this paper. In particular, there is a fundamental
diagram

IP M

representing holomorphic surjections of compact complex manifolds, where the v
fibres are projective lines and the μ fibres are projective planes. The manifolds P,
F, and M are flag manifolds of subspaces of T, the 4-dimensional complex vector
space of twistors. The null twistors, [satisfying Φ(Z) = 0, where Z = (Z°, ...,Z3),
and Φ is the twistor Hermitian form of type (+ H )] define real submanifolds
of IP, F, and M

F

P M

where μ and v are the restrictions of the mappings above. This is a subfibration in a
natural sense, where the fibres of v are projective lines as before, but the fibres of μ
are real circles (the light rays in M which can be identified with real compactified
Minkowski space, see [35]). The form Φ determines also in a natural manner
open subsets

P F+

(essentially the subspaces where Φ is positive definite).
In [10] we decomposed the mapping

(0.2)

into a composition of mappings :

H\]P\^(-n-2))^H1(W\μ~1^(-n-2)}, (0.3a)

2))9 (0.3b)

(0.3c)
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and we showed that:
1) μ* is an isomorphism,
2) Imσ = kerίiμ, where dμ is a differential operator acting on

Hl(V+,μ*Θv(-n-2))9

(a spectral sequence argument),
3) L is an isomorphism (Leray spectral sequence),
4) L(kerdμ) = kerF, where F is the massless field operator of the appropriate

type.
In these four steps, the last three present no great difficulty in generalizing to

this setting, and this is carried out in Sect. 6 (this presupposes that we use relative
cohomology as discussed below to represent hyperfunction data however). The
difficult point is to generalize μ* to: a) pullback hyperfunction data from IP to F,
and b) to characterize its image. This is done in Sects. 2-5, and is discussed in more
detail below.

In Sect. 1 we look at open sets defined near P to define ̂  (using the results in
[10]) on real-analytic data on the hyperquadratic P. This gives a mapping

» : H\P, 0P(- n- 2))->2^Π(M) (0.4)

into real-analytic solutions of the field equations, but it is not clear at this point
that it is surjective. We then show that

Hl(P,Θv(-n-2))^Ή%l(P9H-n-2) (0.5)

and moreover that

where this last group is relative sheaf cohomology (see Sect. 2). We have defined &
on H1(P,Θv>(-n-2)) and we want to extend it to Ή%>l(P,H~n~2) in (0.5). We see
that in (0.6) we have three different representations of this hyperfunction data. We
use the relative cohomology representation to effect our transform. In this case we
are able to use sheaf-theoretic techniques to characterize the image as the solutions
of the equations we are interested in. In particular, steps 2-4 above are simpler in
terms of relative cohomology also. We then show how the transform can be
computed in terms of the other representations, and that the different methods of
transforming data are equivalent.

More specifically, we formulate in Sect. 2 the appropriate generalization of the
pullback mapping μ* for relative sheaf cohomology:

for appropriate sheaves 3F. For this purpose we give in Sect. 3 a generalization of
the Leray spectral sequence for a fibration, generalized to relative cohomology and
involving relative direct image sheaves. We compute the relative direct images
sheaves which occur in our geometric context explicitly. Then using standard
vanishing theorems of complex geometry we are able to conclude that the spectral
sequence degenerates. Taking the limit of the spectral sequence gives the desired
pullback mapping (Theorem 2.2). The mapping given by the pullback which
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generalizes (0.3a) is an isomorphism in the case of a negative line bundle. More
generally there are obstructions which have been isolated, but not computed.

In Sect. 4 we show that μ* can be identified with the dual of a fibre-integral
mapping, essentially integrating real-analytic forms over the fibres of F-^P. Here
we have to take the CR-structure induced on F and P from IF and P into account
[33]. We show in particular that the fibre-integral mapping (Stoll [30])

I\s/r(F)-+sίr-\P)

has the property that

s/3 l(P) (0.7)

a shifting of the bidegree (a well-defined concept on CR-manifolds). This is proved
by generalizing StolΓs arguments for the case of a complex-analytic fibration, and
choosing adapted frames for the CR-structures on F and P (in the manner
initiated by E. Cartan). This gives an appropriate splitting of the cotangent bundle
exact sequence which is defined by the fibration, and yields (0.7).

In Sect. 5 we compare the abstract (spectral sequence) and the fibre-integral
pullbacks by choosing appropriate hyperfunction resolutions of the various
analytic sheaves involved (this uses results of Komatsu [21]). We also obtain
concrete maps of resolutions involving the fibre-integration map, which allows us
to make the comparisons. This is important because it allows us to show that the
restriction of the mapping defined on hyperfunction data in (0.4) restricts to the
Penrose transform defined earlier. This uses the fact that the dual to the fibre-
integral mapping has this restriction property by a version of Fubini's theorem.

In Sect. 6 we consider, just as in [10], the spectral sequence of the differential
sheaf

ΰ^μ-1(9w(~n-2)^Ω°μ(-n-2)^Ω1

μ(-n-2)^Ω2

μ(-n-2)

but in a relative cohomology context which causes no difficulty. The arguments
concerning this spectral sequence and the corresponding relative Leray spectral
sequence for the holomorphic fibration F— — >M go over just as in [10]. This then
yields the principal results which include the fact that (0.4) is surjective (in Sect. 6)
as well as the principal results A) and B) listed above, which are elaborated in
Sects. 6 and 7.

Some of these results were announced in a rough form in [34]. In [14] there is
a different description of the Penrose transform for smooth data on M+ for the
case of self-dual Maxwell's equations. The theorems in [14] are a special case of
the general results in [10]. They includes, however, an explicit inverse, and an
extension to the boundary for L2 boundary data, which then is a special case of the
weak solutions studied in this paper. Their methods involve explicit computations
involving fibre-integrals, and are special cases of more general results concerning
Radon transforms on g-concave spaces [13].

1. Real- Analytic and Hyperfunction Forms on the Null-Twistor Hyperquadric

We shall recall the definitions of the basic geometric spaces on which the Penrose
transform operates. We refer to [35] and [10] for more details concerning the
geometry of twistors. The vector space of twistors T is by definition a four-
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dimensional complex vector space endowed with an Hermitian form Φ of type
( + H --- ). We have the fundamental diagram of complex flag manifolds

IF

(1,1)

P M

where IP is the space of 1 -dimensional subspaces of TΓ, M is the space of
2-dimensional subspaces of T, F is the space of pairs of nested 1- and
2-dimensional subspaces of TΓ, and where μ and v are the natural holomorphic
mappings. If LcT is a subspace, then one defines

Φ(L)>0, Φ(L) = 0, Φ(L)<0
to mean that

Φ(v) > 0, Φ(v) = 0, Φ(υ) < 0 for all non-zero veL,

respectively. We then define

M={xeM:Φ(x) = Q}

while F+, P+, M+ are the open subsets of IF, IP, M where Φ>0, and F~, P~, M
are the open subsets of IF, IP, M where Φ<0, respectively [35]. We see that

and similarly, P is the common boundary of IP+ and IP", while M is the common
boundary of M+ and M". Note that P = dW+ =3IP~, which is not true in the other
two cases, where F and M are of lower dimension than the dimension of the full
topological boundary. We recall that M is 4-real-dimensional compactίfied
Minkowski space, while P is the 5-real-dimensional hyperquadric of null twistors
which parametrizes all of the light rays in M.

We recall from [10] the basic Penrose transform

where J^(M+) is the vector space of holomorphic right-handed massless fields of
helicity n/2, for neZ. One of the principal purposes of this paper is to extend this
transform to map intrinsic data on P to solutions of the same differential
equations on M.

We will use the notation and terminology of [27] concerning the complex of
(0, g)-forms on P C P, since P is a real-analytic hypersurface in a complex manifold.
In particular we have the complex of real-analytic forms intrinsically1 defined
on P

1 We use the notation W, Ή,..., etc. to denote intrinsic data on the real submanifolds P, F, and M.
These would be well-defined notions even without the ambient complex manifolds



Zero-Rest-Mass Equations 575

where 8P is the tangential δ-operator on the hypersurface P. Similarly, we have the
complex of hyperfunction forms on P

- >'@Q>q-\P)-^'<%Q>q(P)-^->'@Q>q + 1(P) - > . . . (1.3)

which can be thought of as differential forms on P with hyperfunction coefficients
(recalling that hyperfunctions are a generalization of distributions, well-defined on
any real-analytic manifold, and hence hyperfunction forms are natural general-
izations of the currents of de Rham [7,27]). Now let Ή°jq(P) and Ή^q(P] denote
the cohomology of the complexes (1.2) and (1.3), respectively [i.e., the space
ker dp/imdp at the (0, g)-term of the complex]. This is the basic data which we want
to transform by a generalization of & to give weak solutions of the zero-mass-field
equations on compactified real Minkowski space M. First we will see how to
transform the intrinsic real-analytic data. To do this we will represent real-analytic
cohomology classes on P as boundary values of holomorphic data on F+ and IP~.
We will need to consider the complexes (1.2) and (1.3) for differential forms with
coefficients in the restriction to P of a holomorphic vector bundle V defined on all
of P. This is done in a standard fashion, and we denote by

Ή%*(P,V) and Ή%*(P,V)

the (intrinsic) real-analytic and hyperfunction cohomology groups on P with
coefficients in V(= V\p). These are the tangential Dolbeault groups. If now V is a
holomorphic vector bundle on a complex manifold X, we will denote by H°'q(X, V]
the Dolbeault group (of smooth forms) on X, and we have the fundamental
theorem of Dolbeault

where the second cohomology group is the sheaf cohomology of the space X with
coefficients in the sheaf of holomorphic sections of the holomorphic vector bundle
V [36]. Let us note that the tangential Dolbeault groups do not have, in the same
manner, a sheaf cohomology representation on the hypersurface P as the Poincare
lemma is not true for the complex of sheaves involved (in fact, the obstruction to
the Poincare lemma being true for this complex is sometimes infinite dimensional,
in particular at the (0, l)-level for P [2]). We can however relate these intrinsic
tangential Dolbeault groups on P to sheaf cohomology groups on neighboring
open subsets of IP. First we recall that if S is a closed subset of a paracompact
topological space X, and 3F-+X is a sheaf of abelian groups on X, then
Hq(S^): = Hq(S,^\s\ and there is an isomorphoism

UlS
[15]. For Dolbeault groups on a complex manifold X we define

H°*%S, V)= limindH°'«(l7, V)
t/DS

for S a closed subset of X, and V a holomorphic vector bundle on X.

Lemma 1.1. Suppose H\
a) Ή^1(P,F)^H0'1(IP
b) Ήj'1(P,F)^H0'HF
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Proof. We consider the exact sequences

... - >H°>\1P, V) - ̂ HiP, F)®^0'1^, F)-^V#y(P, V)

V)

which follow directly from Theorem 6.6 and Theorem 5.6 in [27], extended to
vector bundle coefficients [2, 17]. The mappings b^ and b@ represent the "jumps"
in the boundary values of the cohomology classes on P1. Using the hypotheses,
the conclusion now follows immediately, where the second isomorphism in each
case is just an application of Dolbeault's theorem representing Dolbeault groups
in terms of sheaf cohomology. Π

Let H be the hyperplane section bundle on ]P(c1(H)=l), then we have the
following corollary to the lemma above.

Corollary 1.2. // V = Hn,jιεΊL, then _
a) Ή2;1(P,JH

rΛ)^Ή1(lP + ,^
b) Ή^P9H^^H^(V+

9βv

Proof. If K is the canonical bundle on IP, i.e., K= Λ 3T*P, then one has K^H~4

on P^P3. Since Hn®K* = Hn®H4 = Hn + 4 is a positive line bundle for n^O, we
see by Kodaira's vanishing theorem [36, p. 226] that Hq(W9 Φ(HnJ) = 0, q^ 1, n^O.
On the other hand, Hn is negative for n<0, so Hq(W, &(Hn)) = Q, for n<0, q<3,
by the dual version of the same theorem. Π

There is another extrinsic way of looking at real-analytic data on P, F, and M.
Namely, one can consider sheaf cohomology Hq(P^\ Έl\Έ,&'\ and Hq(M,^")
for sheaves 2F , J '̂, and 3F" defined on neighborhoods of P, F, and M in P, IF, and
M, respectively.

Lemma 1.3. Hl(P,(9^(n))^Ή^\P,Hn), neTL.

Proof. We will show that

and use the previous results. Let Uj be a sequence of neighborhoods of P+ and V
be a sequence of neighborhoods of P" and then U^Vj is a fundamental
neighborhood system for P. Then we have the Mayer-Vietoris sequence, for a
fixed j,

Using the vanishing theorems of Kodaira as in Corollary 1.2, we see that

^Vj, &v(n)) -^-H^

where the natural isomorphism is induced in the limit.
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Now the pullback mapping

μ* :H\P,(9w(n))-*H\F,μ-i(9P(n)) (1.4)

is well-defined by the direct limit process, since

μ* :H\υ\(9w(n)}^Hl(υ\μ-lG^(n}}

is well-defined and injective for suitable neighborhoods U of M such that the fibres
of μ : U'-* V" are connected2. Note that it is not possible to choose a fundamental

neighborhood system of M, {U}, so that the fibres of U'-^U" are 1-connected,

since M is diffeomorphic to S1 xS3.
We now recall one of the fundamental results from [10] mentioned earlier

concerning the Penrose transform acting on holomorphic data :

(1.5)

&:H\W=,Θv(-n-2))^&£M=:)9 nεZ. (1.6)

We then use Lemmas 1.1 and 1.3 to define

(1.7)

by letting / correspond to f+ +f~ under the direct sum decomposition, where
f+eH1(¥^,θw(-n-2)) and f-eH1(W=,&v(-n-2)\ and we let

Here «2Γ^>M(M) is the vector space of global real-analytic solutions of the positive
helicity zero-rest-mass equations on M [10]. The mapping is clearly injective, but
is not obviously surjective, although this will be a consequence of results derived
later in this paper. We now relate this real-analytic data on P to the hyperfunction
data on P.

Lemma 1.4. The natural homomorphism

is an injection.

Proof. The natural homomorphism of these cohomology groups is given by the
injection of the complex (1.2) into the complex (1.3). But this does not imply, in
general, injectivity of the corresponding cohomology groups. However, we can use
the Penrose transform as given by (1.5) and (1.6) and Lemma 1.1 to deduce the
desired result from the injectivity of the mapping J^(M+)^J^(M+), since this
mapping is simply the restriction of holomorphic fields from the closure of M+ to
its interior. Π

Now we have the Penrose transform defined on Ή^1(P,H~n~2\ and the
object is to extend it to Ή^°(P,H~n~2), which we will do in the next section by
reinterpreting the hyperfunction cohomology on P in terms of relative sheaf
cohomology on P. We note that we could simply use Corollary 1.2b) to map

2 As in [10], we let U'^v'^U), U"=
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hyperfunction data to direct sums of holomorphic solutions on M1, and then we
could take hyperfunction boundary values in the sense of Martineau [23] on M,
obtaining a mapping of the desired sort. This turns out to be quite appropriate,
but it is difficult to characterize the image as being all hyperfunction solutions if we
proceed this way. It will turn out that all hyperfunction solutions are in the image
of the mapping just described, but that is a consequence of the major results
developed in the next several sections.

2. Relative Cohomology, Hyperfunction Forms, and the Fullback Mapping

If X is a topological space, S is a closed subset of X, and 2F is a sheaf of abelian
groups on X, then we denote by H%(X, 3F\ q ̂ 0, the relative cohomology of X with
respect to S and the sheaf 3F . \i 3F -+<β*(3F} is the canonical flabby resolution of X,
then Hq

s(X9^) is defined to be Hq(Γs(X^*(^}\ where Hq(K*) is the q-th
cohomology group of the given complex K* and ΓS(X, ^) denotes sections of a
sheaf ̂  ovQΐX with support in S [4, 15]. In the case where S=X, then we have the
usual definition of sheaf cohomology. Relative cohomology can be computed in
terms of coverings or in terms of specific resolutions, just as in the case for
ordinary cohomology, and we will see examples of such computations in this
section.

It is a fundamental result of Sato that hyperfunctions can be represented in
terms of relative cohomology [29, 22]. In this direction, we have, in particular, the
following proposition.

Proposition 2.1. Let ne2£, then:

Hj(V9Φv(n))ς*H\V+,βv(n))®H\^^

Proof. We use the long exact sequence for relative cohomology [4]

. . .^Hl(V, 0P(n))-> HHIP - P, 0P(n))->Hj(]P, Gv(n))

Now noting that

and using the fact that H1(W9Φ1P(n)) = H2(P9βw(n)) = 09 as before, as well as
Lemma 1.1, the result follows. Π

On a complex manifold X9 let V->X be a holomorphic vector bundle, and let

0—^^(7)— ̂ ^'0(F)-Λ^'1(F)-Λ...—>^'g(F)—>... (2.1)

be the resolution of ΩP

X(V) by hyperfunction (p,#)-forms with coefficients in V
(Komatsu [21]). A basic generalization of Dolbeault's theorem due to Komatsu is

Keτδ .Γs(X,!%'

(2.2)
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i.e., the relative cohomology can be represented by hyperfunction-forms with
supports on S. This is a straightforward consequence of the fact that (2.1) is a
flabby resolution of ΏP

X(V\ which is not true for C°° or distribution-valued forms.
Now if YcX is a C°° real oriented submanifold of the complex manifold X of

real codimension r, then let [Y] denote the current of integration over Y [7]. The
current [Y] is a current (differential form with distribution coefficients) of degree r.
Any current is also a hyperfunction form, since the distributions on X inject into
the hyperfunctions on X. Any hyperfunction form φ on the complex manifold X of
degree r can be decomposed uniquely into the sum of hyperfunction forms of
specified bidegree or type

just as in the case for differential forms with smooth coefficients. Thus if Y is as
above, then

and [yy~s's is a hyperfunction form on X of type (r — s,s) with support on Y.
We now give an explicit realization in terms of differential forms of the

mapping given in Lemma 1.4

of real-analytic data into hyperfunction data on P with corresponding mappings
on F and M. We assume that P, F, and M are equipped with an orientation
compatible with the orientation of the ambient complex manifolds IP, F, and M.

Proposition 2.3. Let J ,̂ J '̂, and 3F" be locally free analytic sheaves on IP, F, and M,
respectively, then the following mappings determined by Dolbeault representatives of
the cohomology groups are well-defined:

a) H1

Proo/. First we note that P C IP, -F C F, and M C M have real codimensions 1, 4, and
4, respectively. Second, we see that φ, φ', φ" are smooth differential forms and
hence the wedge product with a differential form with singular coefficients (in this
case measure coefficients) is well-defined, and gives an element of the appropriate
cohomology class by the representation of relative cohomology given by (2.2). Π

Remark. It follows from Lemma 1.4 that a) is injective, and it follows from a
standard result of Sato that c) is injective [29, 22]. The homomorphism b) is also
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injective, but this is more subtle and is a consequence of some general results in
[28]. This point will be discussed in more detail at a later point in this paper.

We now come to one of our principal results, namely that the mapping μ* in
(1.4) extends to relative cohomology. We will first study the pullback in terms of
abstract sheaf cohomology. Then we will show how it can be computed in terms of
differential forms, and that it is compatible with the usual notion of pullback of
smooth data.

Theorem 2.2. Let ^ be a locally free analytic sheaf on IP, then there exists
canonically an exact sequence

o— »#£(P, #•)-£># KF, μ~ l^~ *HP(W> < )̂— +o
We will prove later (Lemma 3.4) that Hp(S>, (9W( — n)) = 0, rc >0, and thus we obtain
the corollary to the above theorem :

Corollary 2.3. There exists canonically an isomorphism, for n^

- 1 0P( - n)) .

The proof of this theorem and its corollary will be presented in detail in Sect. 3
using a spectral sequence argument.

3. A Generalized Leray Spectral Sequence for Relative Cohomology

The Leray spectral sequence for a proper mapping is well known [15], and has
had many applications in topology, algebraic geometry, and complex analysis. We
need for our purposes a slight generalization of this standard result which is very
useful in the proof of Theorem 2.2.

Let X-^Y be a proper continuous mapping of topological spaces, and let
έf-^X be a sheaf of abelian groups over X. Let ScX be a closed subset, and let
Tc Y be a closed subset satisfying π(S)cT. The relative direct image sheaves

(relative to the closed subset ScX) are defined as the sheaves (indexed by the
integer q^O) generated by the presheaves

where U is open in Y.

Theorem 3.1. There exists a spectral sequence

Ef = Hp

τ( Y9

Proof. The proof of this theorem is a straightforward generalization of the proof of
Theoreme 4.17.1 in [15], and won't be repeated here. One simply replaces the
direct images of the canonical flabby resolution of ̂  on X by the 0-th relative
direct images of the same resolution, noting that all of the arguments still make
sense. The usual Leray theorem is the case where S=X, and T=Y. Π
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We want to apply Theorem 3.1 to our geometric setting, where basically FcF,
and PC IP with μ : F-»IP will be the geometric objects to be considered. However,
we need to be careful in our choice of closed subset on F, for reasons which will

become apparent later. We know that F-^P is a fibre-bundle with Sl as fibres,
and the group SU(2, 2) acts naturally on this fibration [35]. We want to consider
an extension of this fibration to a neighborhood of P in IP. This extension fibration
can be realized group-theoretically in terms of a 1 -parameter subgroup {gt} of
SL(4, (C) which has the property that (gt(P)} is a foliation of a neighborhood of P in
IP by "translates" of P, for |ί| <ε, and g0 = {id}. This is constructed as follows. Let

be the Cayley transform mapping the unit disc D to the upper half plane C+, and
let gt = C~1TtC, where Tt :<C-»(C is given by z->z + iί, considered as an element of
SL(2, (C). Then considering {gt} as a subgroup of SL(4, (C) by the embedding of
SL(2,C) into SL(4,C) given by

0 b

Λ J0 d

gives the desired subgroup of SL(4,C). Here we have chosen homogeneous
coordinates on T so that the fundamental Hermitian form Φ has the matrix
representation

oφ=
1.0 -L

and where IP+, P, and F are considered as SU(2, 2)-orbits in this realization. Then
applying gt to F in F will yield

a 1-parameter family of fibrations equivalent to F— ̂ P, and we let

t-+N:= U Pt| t |<ε

be the desired extension of F to the neighborhood N of P. We now have the
following fundamental lemma.

Lemma 3.2. Let 2F-+N be a sheaf of abelίan groups, then

), PΦ3,4.

Proof. Let F^μ"1^), Fx = μ~1(x)r\F, and FX = FX, if xeP. Since μ is proper, we
see that, for xeΛΓ,

(3.1)
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where the last isomorphism is valid because μ~l(3P) is constant on the fibre Wx.
Now

ff^F^Z^Hg^Z),

where S1 ^->F2 is some embedding of S1 in IP2. We then have the relative
cohomology exact sequence

We know from standard results the cohomology groups

H>(V2Ή={*> P eVCn (3.3)
10, p odd

and we can compute HP(IP2 —S^Z) easily. Namely, let T be a small tubular
neighborhood of Sl ^>P2. Then we have the Mayer-Vietoris sequence, where we let

P'2nΓ5Z)-».... (3.4)

We note that

fZ, p = 0,1,2,3

(3.6)

Here we have used the fact that π1(Π>

2) = 0, so that the embedded circle can be
considered (by a homotopy equivalence) as embedded in a coordinate neigh-
borhood and the normal bundle tubular neighborhood T is diffeomorphic to
S1 xD3. Using (3.3), (3.5), and (3.6) in the exact sequence (3.4) we obtain readily

2ζ, p —0

77 iT} 77 n 0 C\ 7\

o,

(3.8)

It then follows from (3.3) and (3.7) and the sequence (3.2) that

ίZ, p = 3,4

In general we see that we have

X, Z) -.H^F, - F,, Z)^ HlJF,, Z)

II?

Z

The manifold F has a natural orientation, and so does N9 thus inducing an
orientation on the fibres {Fx}. One can choose a generator for H|χ(FχJZ) in a
smooth manner. We will consider HfβFχ9Z)®z(C = Hpχ(Wχ9(C)9 and get a con-

venient choice for this generator in terms of currents. Let [Fx] denote the current
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of integration over Fx as a submanifold of FX^IP2. Then [FJ is a closed current of
degree 3 on Fx which is supported on Fx and which represents a generator for
HpβFx, (C). This current represents in the de Rham-current representation the
Poincare dual of the cycle FXC1FX. We want to do this in a smooth manner,
although it's intuitively clear that the above construction varies smoothly.
Consider the current of integration defined by [F], where F is considered as a
codimension-3 submanifold of μ~1(N). Then [F] is a 3-form in μ~1(N) which will
correspond in some sense to the parametrized family of 1 -cycles. Let 3£^ be the
germs of cί-closed hyperfunction 3-forms on F. Then we see that [F] restricted to
small neighborhoods of Fx in μ~ί(N\ gives a well-defined element

since

Γ(FX, &*} = lim indΓ(FnjΓ '(I/), ̂ ) .
Uax

We now claim that [F]x defines a generator of Hj?χ(FχJ C) for each xe N. To see
this, we let

0-»C-̂ *

be the resolution of the constant sheaf (C by the flabby sheaves of hyperfunction
forms on F [21]. Then for any open set We F, and for any closed subset S C W9 we
have

Thus, by using this representation we see that, for U open in N9 [F]|μ_1(l/) defines
an element

Thus taking the inductive limit over Ifex, we find

U3X

where {[F]x} is the cohomology class in ̂ (ΓpβF^ J**)) represented by [F]x. Thus
we have

{[F],}6 HHΓfJF,, ̂ *)) s //i^ (C) ,

and hence {[F]x} is a well-defined generator for H^(FX,C).
Returning to the main assertion of the lemma we recall that [see (3.1)]

Now [F]x is a generator for H|JFX, Z) £ Z, since there is no torsion here, and we
thus have

Rlμ(μ-lP)x^TL\_F^x®&x^&x. (3.9)

This is a sheaf homomorphism since the mapping is effected by a globally defined
current [F]. Thus
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Similarly one sees that Rpμ(μ~1^)^^, although we haven't written down an
explicit generator. The remainder of the lemma follows from (3.8). Π

We can now use Lemma 3.2 to compute the terms in the spectral sequence
given by Theorem 3.1 for this geometric setting. Namely, consider

W, μ~ *&) , (3.10)

where 2F is a locally free analytic sheaf on P. Then we see that

This follows from the fact that, for y any sheaf on F,

U3X

^H"Fχ(Wx,^), if xeP

since μ is proper. But we also have

U3X

= Hq

F(Wx,&), for xeP,

and R\μ(^) clearly vanishes for xφP. Thus we find that

,

10, ^Φ3,4
by Lemma 3.2.

Now we want to calculate #£(P, ̂ ), for suitable ̂ . First we note that we have
the long exact sequence for relative cohomology for any sheaf 3F on P :

) -^H°(P - P,

P, ̂ H#p(P, ̂ )

Lemma 3.3. // "̂ is α locally free analytic sheaf on P,

(3.12)

Proof. It's clear that holomorphic sections of a vector bundle on P with supports
in the real hypersurface P must vanish identically. On the other hand, we see that
Hq(P — P, ̂  = 0, q^3, since P — P is an open 3-dimensional complex manifold,
and similarly Jtf β(P, ̂ ) = 0, <?Ξ>4, since P is a 3-dimensional complex manifold (cf.
[18]). Using this in (3.12) given the desired result. Π

We now have a more specialized vanishing of relative cohomology.
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Lemma 3.4.

Proof. Letting 3F = Θ^( — n\ then by the Kodaira vanishing theorem we have that,
since ^ is a negative line bundle, Hq(JP9^) = Q9 g = 0,1,2 [36]. Let τ~l(x)
= μoV-1(χ), xeM, then τ"1^)-!?!^), for xeM [35]. If /eH°(P-P,^), then

"^)^τ-i(x)(-w))^H°(lP1,ΦPl(-n)) = 0, for

Thus / vanishes on τ~1(x), but since IP — P is covered by such projective lines, it
follows that / = 0. Thus we conclude that H°(1P -P,^) = fί £ (IP, ̂ ) = 0. Π

Remark. We can calculate Hp(P, J^) for J^ a negative line bundle, and we see that

Hj(IP,ί?lp(-n)) = Os n=l,2,3,

JffOP, 0( - 4 + n)) £ Θ"(C4), n ̂  0 .

This uses the fact that IP-P = P+uP~ and that P+ and P~ are 2-complete in the
sense of Andreotti-Grauert [1] and hence Hβ(P±

5«^') = 05 q^2, yielding
//p(P,e^)^/ί3(P,^') in this case. The above result is then a standard calculation.

Thus using (3.11) and Lemma 3.3 we find that the spectral sequence (3.9)
becomes, for any locally free analytic sheaf

0 0 0 0 0 0 . . .

0 0 0 H|(P,̂ ) M(P,JF) 0 . . .
Γ Γ (3-13)

0 0 0 H2(W^) H0P,^) 0 . . . '

0 0 0 #i(P,^) H^(P,J^) 0

0 0 0 0 0 0

all other terms being zero. Since this is the E2 term of the sequence, we see that

1723^1723^

Because the spectral sequence (3.9) vanishes except in the two columns in (3.13)
above, we obtain canonically the exact sequence

(see [5, Chap. XV, Proposition 5.5]). This yields

0-+#£(P, J0->ίff (IF, μ~ 1^)-

and Theorem 2.2 is proved. Lemma 3.4 above completes the proof of
Corollary 2.3.
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4. Pulling Back Hyperfunction Forms by Fibre-Integration

In this section we want to give an explicit construction of a pullback mapping

in terms of hyperfunction differential forms which will be seen to be comparable
with the usual pullback of smooth forms. In the following section we will show
that this pullback and the one given in the preceding section agree. First we need
the notion of "integration over the fibre" for real-analytic forms, and then we will
dualize to get our desired mapping. We refer the reader to Stoll [30] for a
thorough discussion of fibre-integration and we will use and adapt some of his
main results for our purposes.

Let M and N be real-analytic manifolds and suppose that M — > N is a proper,
real-analytic, surjective, maximal rank mapping with fibre dimension = q. The
fibre integral is a mapping

for p^q. This mapping has various nice functorial properties, e.g. f^(d(x) = df^(a\
etc., and is defined by an explicit integration process which won't be elaborated on
here. We will use certain properties as we proceed, referring to Stoll for details. If
M and N are both complex manifolds and / is holomorphic, then one finds that /^
preserves bidegree. In fact, if the fibre has complex dimension q, then, for a form φ
of type (r, s), one finds that f#(φ) is a form of type (r — q, s — q) on N, and moreover
/^ commutes with d.

We need a generalization of this last result to CR-manifolds, that is, manifolds
whose real tangent bundle has a real subbundle which admits a complex structure
(see [33] for a survey of this topic). First we need the notion of (p, #)-forms on a
CR-manifold. Suppose that McX is a CR-submanifold where X is an
^-dimensional complex manifold. Suppose that the CR-dimension of M is d. Then
we can find real 1 -forms {015 ...,0J which annihilate the CR-tangent space
H(M] C T(M). Moreover, we can find, in addition, forms (ωl5 . . . , ωd, ώ1? . . . , ώd} so
that

span the cotangent space to T*(M) near a point peM, where / + 2d = dimM. There
is a natural group of changes of frame just as in the case of hypersurfaces (cf.
[32, 6]), and we see that the group consists of matrices of the form

GL(/,R) 0

acting on {Θ1? . . .,0 / 9 ω1? ...,ωd} considered as a column vector. We define the
sheaf of C°° (p, g)-forms on M as germs of (p + g)-forms on M of the form

>, Λ ώk Λ ... Λ Ok
Js "Ί "'fl
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One can check easily that the concept of (p, g)-form is independent of the choice of
frame. Moreover, one finds that if

is the embedding, then

q, O^p^n, Q^q^d, (4. la)

This can be verified by using specific frames for the ambient space adapted to the
CR-submanifold M near a given point, but the argument will be omitted here (cf.
[27], where this is discussed in detail for hyper surfaces).

Let X and Y be complex manifolds, and consider CR-submanifolds McX,
NcY and a real-analytic CR-mapping /

I σ

Γ (4 2)

with / surjective, and where / is the restriction of a holomorphic mapping of
maximal rank mapping a neighborhood of M onto a neighborhood of N. Now we
have the fact that if σ and τ denote the embeddings in (4.2), then [letting js/^q

denote the sheaf of real-analytic (p, g)-forms on M, etc.]

as above, and moreover, there are tangential 5-operators 5M, dN satisfying the
commutative diagram

and similarly for N ^Y (cf. [27]).

Proposition 4.1. Suppose that άimRM=lίdim(ΓX=5,and N= Y, with dmi^Γ^S, then
there is a commutative diagram

*"™~~*"™~~1'"™
ψ ψ ψ

where f is the fibre integral mapping.
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Remark. We see that in this proposition the fibre integration preserves the
bigrading of the differential forms on the CR-manifolds involved. This is true in
general for CR-mappings. Exactly which bidegrees map to which bidegrees
depends on the circumstance, and, as we see from the proposition, it is not
necessarily obvious, given our previous intuition concerning fibre integrals for real
or complex manifolds. We won't work out the general case in this paper, as we
need only the special result given above.

Proof. The basic idea in the fibre-integral is to find a splitting of the exact sequence

where Fx is the fibre over xeN. The fibre integral is defined in terms of a splitting,
and is then shown to be independent of the splitting (see [30]). Moreover, the
nature of the splitting determines the preservation of properties such as type,
commutation with d, etc., as is worked out by Stoll in the complex-analytic case.
For our case it will then suffice to show that we can always find suitable frames for
T*(M) and T*(JV) so that we have an appropriate splitting. Namely, if
{Θ19 Θ29 Θ3, ωl9 ώl9 ω2, ώ2} is a typical CR-frame for T*(M), and if { ζ ί 9 ζl9 ζ2, ζ2, £3,
ζ3} is a typical frame for T*(N) (complex manifold), then we claim that for the
given mapping /, and near any point xeJV, we can always choose frames so that

(4.3)

These will be frames adapted to the CR-mappίng f.
To see that we can find frames satisfying (4.2) we note that the CR-tangent

bundle to M denoted by H(M)γT(M)9 has a real dual H*(M)9 and one has a
natural surjective projection

T*(M)-ί-->H*(M).

We note that H*(M) has a complex structure, and the pullback mapping

/*:T*(ΛO-»T*(M)

composed with the projection z*, gives

i*of*:T*(N)-*H*(N)

which is complex-linear. This mapping is necessarily of maximal rank, and it
follows that, since {ω l9ω2}spanJF/*(M) considered as a complex vector space,

By choosing a new choice of frame {ζΊ,ζ'2,ζ'3} for T*(N), we can require that
a1=b2 = ί, and all other coefficients vanish. Thus for this new frame we have

/*(C'2) =
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Now, we have that {/*(Re ζ'3),/*(Im ζ'3)} span over R a 2-dimensional subspace of
T*(M), and hence

Letting

we can choose c1 and c2 so that .̂ = ̂ . = 0 in a similar expansion for
/^(Imζg). Thus these real vectors are real-linear combinations of {Θ19Θ29Θ3}. We
can choose appropriate linear combinations of {0f}, call them {ΘJ} so that

Thus we have frames satisfying (4.3).
Using such adapted frames we see that if

φ = aθi /\θ2Λθ3/\ωί/\ω2

is a form of type (5, 0) on M, then

φ^α/^ + QΛ/^^-^Λ^Λ/^C^Λ/*^).
We see also that if Fx is the fibre, then 03|FχΦθ. Thus we can express our form φ as

This shows that the fibre-integral of this form of type (5,0) is of type (3, 1) (since
£3 Λ fa Λ Ci Λ C2 is °f tyPe (3> 1), cf. [30]. The action of /# on higher order forms _is
determined in a similar manner and we omit further details. That SMf^.=f^dN

follows from simple type considerations and the fact that d commutes with /^
[30]. D

Remark. The same ideas would show that if McN is a generic 6-dimensional
CR-submanifold of a 5 -complex-dimensional manifold fibered over a 5-dimen-
sional CR-hypersurface in a 3-complex-dimensional manifold, then we would
have

(4.4)

This is the situation we have in our fibration F-£-*P. But we need to use the fibre
integration in the context of F-?-+N, where F is the extension of the fibration
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F-^P to a neighborhood N of P as discussed in Sect. 3. We will have occasion to
refer to (4.4) later however.

Let W=μ~ ί(N) and consider a complex of real-analytic forms defined in fixed
neighborhoods W of F and N of P:

where / is the mapping induced by the fibre integration over the fibres of F-+N,
which satisfies the hypotheses of Proposition 4.1. Now the hyperfunction forms
with compact supports are dual to the above spaces, and we obtain by duality

0 <

#0, 3(jV) , - 00. 2 (]V) < - 00. 1(JV) , - 00. 0(]y)

where J***( ) denotes hyperfunctions with compact support. Thus we obtain a
mapping

and if we restrict our attention to hyperfunction forms with support in P, we
obtain readily

This construction can be extended to vector bundle coefficients with no difficulty,
and we obtain the natural mapping

H? 2(IP, V) -%ff? 5(F, μ* V) (4.5)

where F-»P is a holomorphic vector bundle. We have used the fact that

and similarly on F. We also used the dual bundle K*->IP for coefficients of the
real-analytic forms used in defining / whose dual gives (4.5).

Theorem 4.2. The diagram

ff? 2(P,F)

ze vertical arrows are given by Proposition 23, is commutative.

Proof. Let < , > denote the pairing between the compactly supported hyper-
function forms supported on P or F and the real-analytic forms defined near P or
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F. We need to show that if
l(P,V)^ and

then

Thus we compute, for ψ e j t f 5 > 0 ( F , F*),

<μ*φ Λ [F]0'4, V> = - <[^]°'4, Ψ Λ μ

where / is the fibre integral over F, and the last step is a global version of Fubini's
theorem [30]. But one of the properties of the fibre integral is that

[30], and thus we obtain

Since 5 commutes with /* we obtain the desired result. Π

5. Comparison of the Abstract and Fibre-Integral Fullbacks

Let 3F be a locally-free analytic sheaf on IP. Then from Theorem 2.2 and (4.5) we
have the diagram

where i is the homomorphism indicated by the natural sheaf homomorphism

= μ~l&®Θ &w on F.

We want to show that this diagram is commutative. We have the following
mappings of resolutions of sheaves on P and F :

o — > & — > @>*®Q&
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Here we have let

R. O. Wells, Jr.

ί\
J

be the 3-closed hyperfunction forms of type (0, q) on a complex manifold X. We
have set

which is well-defined by (3.9). We let {F} denote the subsheaf of ̂  generated by
{F}x at each xe F as an (^-module. We let g be the natural extension of g0 to the
differential sheaves indicated. We define h by

The mapping h on the resolutions induces the mapping h0. Then we see that each
of the resolutions involved is a specific resolution of the sheaf in question. Such
mappings induce mappings on cohomology. In particular, then we have natural
mappings, by the "abstract de Rham theorem" [15] :

#2(1P, H2(ΓP(P,

= 00

(5.1)

In addition we have,

H|(F, μ~ ι&) +-

(5.2)

4— H2(ΓF(W,
° 3

where fe0 is the induced mapping, using the fact that α is an isomorphism.
Moreover, δ is the isomorphism given by the Dolbeault representation of
Hp(F,μ*^") in terms of hyperfunction forms. We note that

h°

is commutative, where

and

This implies the commutativity of (5.2).
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Thus we see that the combined diagrams (5.1) and (5.2) are compatible, and
that we have the following theorem.

Theorem 5.1. The diagram

is commutative.

6. The Penrose Transform Acting on Hyperfunction Data

We now consider the relative de Rham sequence on W used in [10],

0 - >μ- i0p(n) - > Ql(n) -^ Ω» - > Ω2

μ(n) - > 0

and consider the spectral sequence of relative cohomology groups

W,μ- ̂ ») (6.

which is the natural generalization of the spectral sequence used in [10] (cf. [4, 15]).
To see when this degenerates we will, as before, compute the direct images of the
sheaves Ωq

μ(n\ with respect to the mapping v, and then use a version of the relative
Leray spectral sequence (Sect. 2) to compute the terms in (6.1). The degeneration of
the spectral sequence (6.1) will then yield the differential equations, as before. The
direct image sheaves are the same as in [10] in this case we don't need a relative
version of them.

We will consider, for simplicity, only the case of 3F = @Ψ( — n — 2), n > 0 (which
will correspond to positive helicity solutions of the field equations). Thus we have
from [10, Eq. (2.11)] that

vlΩ°μ(-n-2)^(9(A,B,_D,}l-iy (n indices),

viΩ*( - n - 2) £ 0A(B, ... »,,[ -2]' (n - 1 indices) , n^ί (6.2)

viO*(-n-2)^0(c, ...^}[-l][-3J (n - 2 indices) ,

and all other direct images vanish. Thus the relative Leray spectral sequence, for
fixed 7 = 0, 1,2, is

H& CM, ι£fl£( - n - 2))=>fl^(F, fl£( - n - 2)) (6.3)

and because (6.2) are the only nonvanishing direct image sheaves this is totally
degenerate. Thus we have the Leray isomorphism

( - n - 2)) «-- Hr

M HM, viΩ> ( - n - 2)) . (6.4)

It follows from Sato's fundamental theorem that

(6.5)
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where ί£ is any locally free analytic sheaf on M, since M is a real-analytic
submanifojd of its complexification [29, 22]. Thus we see that

Therefore, we are left with the only nonzero terms in the spectral sequence (6.1) at
the E1 level is given by Ef*«, q = Q, 1,2,

0

H5

p(W,Ω°μ(-n-2)) >1

0

0

0

7|(F,Qi(-n-2))-

0

0

0

>H5

F(W,Ω2

μ(-n-2))

0

0

Also the mapping dμ induces the spectral sequence mapping dlt and we obtain

Ker[H|(F, Ω°μ(-n-2)) -*** Hf(F,i^(-«-2))]

!

(6.6)
where F is the induced differential operator.

We see that the spectral sequence (6.4) also degenerates locally. Namely, for U
open in M, and letting U'=μ~1(U),v/e have

H5

pnV.(U',£$(-n-2)) -^ H5

FnU.(U',Ωl

μ(-n-2))
(6 7)

This uses the fact that (6.5) holds locally also [29, 22]. If 170 is open in M, let U be
open in M so that 17 0 = C7nM. We then let 2£'Ά<n be the sheaf on M generated by
the presheaf

^l/^^ (6.8)

This turns out to be the sheaf of hyperfunction solutions to the massless field
equations of positive helicity on M. We'll come back to this point later, but for the
time being we let ^'m^ be defined simply as the local solutions of (6.8) as indicated.

Therefore, at the global level we have now the mappings [Theorem 2.2, (6.6),
(6.8)]

-^ Ker (ff !(F, Ω°μ( - n - 2))->H|(F, βj( - n - 2)) -̂ -> ̂  n(M)

and we denote the composition by ,̂ and call it the Penrose transform of
hyperfunction data. Thus we obtain the fundamental result

f (6.9)

and we have the following theorem.
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Theorem 6.1. The Penrose transform acting on hyperfunctίon data is compatible with
the Penrose transform acting on real-analytic data (1.7), and moreover one has the
following commutative diagram, where the vertical maps are given by Proposition 23,

In particular, & acting on real-analytic data is mapped onto the set of all real-
analytic solutions of the positive helicity massless field equations on M.

Remark. This theorem justifies using the same notation & to denote the Penrose
transform. We can also consider transforming data of an intermediate sort, such as
distribution, C°°, Sobolev classes, etc. all of which are encompassed between real-
analytic and hyperfunction smoothness, and we would have a well-defined
mapping. The nature of the image will depend on the smoothness class considered,
and this will bear further investigation.

Proof. It suffices to show that the diagram

Hl(F9Ω*μ(-n-2) > H5

F(W,QJμ(-n-2))

T
ff °(M, vlΩj

μ( - w - 2)) > H4

M(M, v^( - n - 2))

is commutative, where L^ is an inductive limit of Leray isomorphisms on open
neighborhoods of McM, and L@ is given in (6.6), and the horizontal maps are
given by Proposition 2.3. What we need is an explicit representation for L@. We
can find such a representation in the neighborhood of fibres of v, and this will
suffice.

Let &r = Ωj( — n — 2), which will be fixed in this argument. Then we have that

(noting that ^M4 = ̂ M4 by degree considerations). We also have the fibre-
integration mapping for the holomorphic fibration IF— UM, the fibres being
compact 1 -complex-dimensional submanifolds :

This fibre integral is well-defined on neighborhoods v~ 1(t/) of F fibred over £7 DM,
and thus well defined in the inductive limit. Therefore we have by duality

We note that /* commutes with δ, and thus

ΓM(F, && 4) = ΓM(F, Λ& *) -̂  ΓF(F, ar° 4).
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We then have the following representation for Lm localized near a fibre v"1^),
where xeM:

~ l(x)9 j

id®/*

Now we note that

/*([P]°'4H[F]°'4

since, for φ a (5, l)-form defined near F,

It follows that the above diagram is commutative, and hence that L^ is compatible
with Lβ.

Let ̂  denote ^acting on real-analytic data. We know that ̂  is injective
(see Sect. 1). To see that it is surjective, we let φe«2f^n(M)5 then we can consider φ
as a hyperfunction solution, and we will see in the next section that the boundary-
value mapping

^(M+)ΘC(M-)-^^ B(M)
(o.lU)

(/VΊ^(/+,r)
is an isomorphism, where the hyperfunction boundary values are taken in the
distinguished boundary of the tube domains M+ and M~ in the sense of
Martineau [23] (restricting to an affine coordinate system, and covering M by
such coordinate systems). For smooth boundary values, one has that b(φ + ,φ~) is
the difference (φ+ — φ~)\M of the boundary values of φ+ and φ~ on M. It follows
from the Martineau construction that φe^^n(M) is real-analytic on M if and only
if φ+ and φ~ given by the isomorphism (6.10) have real-analytic boundary values
on M (this is essentially the edge-of-the-wedge theorem). Assuming the isomor-
phism (6.11) and using the above remarks it follows that φ+ and φ~ are both
holomorphic in M+ u JV(M) and M~ u N(M) where N(M) is a neighborhood of M.
But we know that τ~ 1(M+ uN(M)) and τ~ ̂ M" uN(M)) are neighborhoods of IP+

and IP" respectively (τ"1 =μov - 1). Therefore we see that by (1.4) and (1.5) there
exist/±e//1(IP±,^p(-n-2)) such that 0>(f±) = φ±. Therefore/4"-/' defines a
well-defined element fεHl(P,(9P(-n-2)) such that ^(f) = φ. Thus ^ is
surjective. Π

Remark. One can formulate tangential cohomology groups on P with C°° and
distribution coefficients as in [2, 27]. In these two cases one obtains in the same
manner as in the above proof that & maps distributional data to all distribution
solutions of the field equations on M, and C°° data to all C°° solutions of the field
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equations on M. Again, the basic tool is the work of Martineau in understanding
the smoothness classes of the boundary values of holomorphic functions from the
tube domains M+ and M". We won't bother to formulate this explicitly in this
paper, as there are no new ideas involved.

7. Penrose Transform Representations of Hyperfunction Massless Fields

We will now combine conceptually the ideas described separately in the previous
sections. We have the following commutative diagram, where we have let
#r = Φv(-n-2), for n>0, and we let J^'^μ*^, and «^" = v*μ*^" be the natural
derived sheaves in this context. The mapping in the diagram will be discussed in
more detail below :

(7. 1

The mappings bM, bF, and bM denote boundary value maps they are the "jumps at
the boundary of the boundary values taken from each side". More precisely, bM is
the boundary value mapping of Martineau [23], where we take boundary values
in some open affine M0 CM, M0 ̂ IR4, and there is a finite covering of M by such
coordinate systems on M (take M0 = MnMJ, where M1 is described in [10, Sect.
1]). Then we have M± with distinguished boundary M0^IR4, and the vector
bundles become trivial spinor bundles, so we just use the Martineau construction
of boundary values of holomorphic functions in tube domains for scalar functions.
The mapping SM is Sato's characterization of intrinsic hyperfunctions on M,
generalized to having vector bundle coefficients. The mappings sp and SF are
generalizations of the mapping SM. The mapping sp is described in [27, 17]. The
mapping SF is a further generalization of this to higher codimension, and is a
special case of a general result [28, Chap. II, Corollary 3.5.8] due to Sato et al.
These mappings depend on the Cauchy-Kowaleski theorem among other things.
As we saw in Sect. 1, bp is an isomorphism. We define bF to be the induced
mapping. An intrinsic description of bF would involve a generalization of
Martineau's work which involves more generalized tube domains (a la IF1), and
where the holomorphic functions are replaced by cohomology classes. This hasn't
been carried out, as far as we know, but in our case it is not necessary, as the
mapping is induced from the others. For the horizontal maps we have that μ* and
L are the usual pullback and the Leray direct image mapping as developed in [10].
The maps μ* and L are the generalizations of μ* and L described in the earlier
sections of this paper. The mapping /* can be described as the dual of the fibre
integral mapping
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with suitable bundle coefficients, and this will be compatible with μ* (see the
Remark following Proposition 4.1). The mapping L" has not been described
intrinsically, and is induced from the others. An intrinsic description would
involve a more delicate Leray theorem for tangential Dolbeault groups on the
CR-fibration F-^M.

Now it's well known that not all hyperfunctions on M are boundary values
from M±. This is true, in general, only if the hyperfunctions satisfy a differential
equation whose characteristics are appropriately related to the boundary of "M±

[3]. But we do have solutions of differential equations, and we can obtain such a
characterization for the massless fields of positive helicity.

Let us restrict our attention in (7.1) to the kernels of the natural differential
operators we have been dealing with. Recall that 3F' = Ω°( — n — 2). Then we let

'Z°' \F, μ*^) = Ker [Ή° \F9 Ω
Q

μ(-n- 2)) -^ Ή% \F^μ(-n- 2)]

etc., replacing H by Z in the various 6 function spaces in the right-hand side of
diagram (7.1). Using (6.6) and the corresponding result in [10] we then obtain the
commutative diagram

(7.2)

Theorem 7.1. All mappings in (7.2) are isomorphisms.

Proof. This is now a trivial consequence of the fact that μ* and L' are
isomorphisms [Theorem 2.2 and (6.6)], the corresponding isomorphisms for μ*
and L (see [10]), and the vertical isomorphisms on the left. Π

This theorem gives a fairly complete description of global hyperfunction
solutions of the massless field equations of positive helicity on M.

We note that it was verified in [10] that the abstract differential operator
derived from the spectral sequences corresponded to the classical zero-rest-mass
equations (as described in [26, 35], for instance) as follows:

\\l
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where the spinor sheaves over M + correspond to the classical spinor fields on
M+. To differentiate a hyperfunction / means to differentiate the holomorphic
functions whose boundary values determine /, and thus the differential operators
which define 'Z£ °(M, ̂ "") and Z^flM,^"), which are compatible with the
operator Pin (7.3) above, must correspond to the classical differential operators,
when we restrict attention to affine Minkowski space M0cM, which has a
coordinate system compatible with the coordinates on M+ and M~ (the coor-
dinate chart MJ in [10]). This justifies our claims made at various times in the
paper that <^>M, ̂ '^^ etc., are solutions of the massless field equations of positive
helicity.

We have the following corollary to Theorem 7.1. We first recall the concept of
positive and negative frequency. A solution / of a field equation (such as the
massless field equations) on affine Minkowski space M is said to be of positive
frequency i f / i s the boundary value (in the hyperfunction sense, for instance) of a
holomorphic solution to the same equation in M+. A solution is said to have
negative frequency if /is the boundary value of a holomorphic solution defined on
M~ [8, 26]. We can equally well speak of solutions to conformally invariant
equations on M being of positive or negative frequency, provided the differential
equations on M have holomorphic extensions to M+ and M", which is certainly
the case for the massless field equations. We thus have the following corollary to
Theorem 7.1.

Corollary 7.2. Any hyperfunction solution of the positive helicity massless field
equations on M is the sum of solutions of positive and negative frequency.

Proof. This is a direct consequence of the isomorphism bM in 7.2. Π
The formalism described in this paper goes through also for helicity 0, just as in

[10], where the spectral sequence (6.1) degenerates at second order and the
induced differential operator becomes the wave operator acting on scalar densities.
With this modification, the results are otherwise the same, and we won't write it
out explicitly. It has been shown (see [11]) that all distribution solutions of the
zero-rest-mass field equations on affine Minkowski space have hyperfunction
extensions to compactified Minkowski space which satisfy the corresponding field
equations. Thus such solutions can always be represented as the Penrose
transform of holomorphic data (or boundary values of such).

We have not attempted at this time to carry over the developments in [10]
concerning left-hand fields, potentials, background coupled fields, etc. to this
hyperfunction context, although it's clear that much of the development will work.
There are some points however which would need clarification, as we used the
negativity of the coefficient bundle to get the precise isomorphism we obtained.
The obstruction, in general [e.g., cokernel μ* ̂  Hp(lP, ^J] would have to be
incorporated into the potential theory or gauge freedom.
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Note added in proof. Toby Baily has recently communicated a proof of the conjecture made in the
Introduction that hyperfunction massless fields on affine Minkowski space extend as hyperfunction
solutions of the same field equations to compactified Minkowski space.




