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Renormalization in the Complete Mellin Representation
of Feynman Amplitudes
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Abstract. The Feynman amplitudes are renormalized in the formalism of the CM
representation. This Mellin-Barnes type integral representation, previously
introduced for the study of asymptotic behaviours, is shown to have the following
interesting property: in contrast with the usual subtraction procedures, the
renormalization leaves the CM integrand unchanged, and only results into
translations of the integration path. The explicit CM representation of the
renormalized amplitudes is given. In addition, the dimensional regularization
and the extension to spinor amplitudes are sketched.

I. Introduction

The complete Mellin (CM) representation of Feynman amplitudes was introduced in
[1]. It generalized the multiple Mellin technique [2] in a systematic way which
presents great advantages: in [2] indeed, one had first to divide the integration
domain of the Schwinger representation into the so-called Hepp sectors [3], so that
the desingularization of the integrals was performed in a mixed way, partly with the
Hepp variables and partly with the Mellin representation. On the contrary, the CM
representation avoids the Hepp sectors splitting and gives the same results in a much
simpler way. Let us summarize the main features and the most interesting properties
of this representation.

For any Feynman graph, the related Feynman amplitude is written as an integral
of the Mellin-Barnes type: the CM integrand is a product of Γ-functions with linear
arguments, and of linear powers of the external invariants and internal masses of the
Feynman graph, while the integration path is the set of the imaginary axes. The linear
polar varieties of the integrand form a lattice in the real hyperplane, depending only
on the topology of the graph.

Thus the Cauchy theorem gives an easy determination of any asymptotic
expansion, by translations of the integration path. This explicit study of the
asymptotic behaviours, which motivated at first the CM representation, is explained
in [1], some references and physical examples being quoted in [2].
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Another interesting property is that the renormalization takes a very simple form
in the CM representation : it only results in translations of the integration path,
without any change in the integrand. This was conjectured in [1], on the basis of
simple examples. The main result of the present paper is to prove it, and to give
explicitly the CM representation of the renormalized Feynman amplitudes. The fact
that the integrand is unmodified allows to use the same method as in the convergent
case, for the determination of asymptotic expansions. More generally, this fact is a
nice property for all studies concerned with the dependence on the invariants
(algebraic properties, differential equations etc . . .).

On the other hand, we think that the CM representation could be useful to the
study of other topics : analytic renormalization [4], dimensional renormalization,
Landau singularities. With regard to the dimensional regularization, we give some
indications in our last section. The problem of the Landau singularities is not studied
here : we use the euclidean metric throughout the minkowskian case may then be
reached by a Wick rotation, raising the question of the convergence at infinity of the
CM integrals.

Finally we give the plan of our paper. In Sect. II, we recall the definition of the CM
representation in the convergent case, and the notations. In Sect. Ill, we perform the
renormalization and state the explicit CM representation of the renormalized
Feynman amplitudes. Section IV gives further topics, namely the analytic con-
tinuation in dimension, and the extension of our representation to the case of
particles with spin, and to the case of derivative couplings (for simplicity, we work in
Sect. II and III with scalar amplitudes).

II. CM Representation of the Convergent Feynman Amplitudes

In this section, we mainly recall the results of [1] and the notation used in the
following sections. Given any Feynman graph G with LG independent loops, we label
its 1G internal lines by i, the internal masses by m^ its distinct one-trees (connected
trees spanning all vertices of G) by j, its distinct two-trees (trees with two connected
components, spanning all vertices of G) by fe, the cut-invariant corresponding to any
two-tree k by sk (for different two-trees, the invariants sk may coincide). Introducing
ay (respectively uik) = 0 or 1 following the line i belongs or not to the one-tree j
(respectively two-tree fc), the Symanzik polynomials are :

k k ί

and the Feynman amplitude is given by the α representation :
00 _ v 2

F(s»mf)= ί Π^~?αίM 'U-D/2e-NIU, (1)
0 i

where D is the space-time dimension. The Feynman integrand may then be expressed
by a Mellin representation :

$ J ΠCT-^ΓK'"1, (2)
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where the complex variables x, y belong to the cell C0:

^ D
_ , _ . (3)
j k

C0=ix,y

The integration symbol means

and

The convergence of the Feynman integral is equivalent to the superficial
convergence of every subgraph S of G:

D

Theorem 1 in [1] says that this convergence is also equivalent to the following
assertion:

where

> O V / e G } . (7)

This is sufficient to exchange the x, y, and α integrations and to obtain the CM
representation of the amplitude:

(8)

Xj\ -*
j I

Conversely let us assume there exists a divergent subgraph S(ωs ̂  0). We define:

(9)
ieS j \ieS ] k \ieS

For getting any one-tree j or two-tree k of G, one must remove at least Ls lines from
every subgraph S having Ls independent loops. Thus :

ieS ίeS

where as , aSk are non-negative integers.

Using Σ x j + Σ3>fc= - -̂  we find:
j k z

Ψs = MS + Σ asjxj + Σ askyk (10)
j k

which shows that C0nAG is empty (ωs, Re xj9 Re j;fc being not positive).
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In [1] it was shown how the renormalization of the divergence corresponding to a
subgraph S may be performed by translations of the integration path. But the
generalization to the complete renormalization is not obvious and will be described
in the following section.

III. CM Representation of the Renormalized Divergent Feynman Amplitudes

We rewrite the Feynman integrand defined in (2) as :

where the zv variables stand for the x. and yk variables,

is analytic, and

£z v =-£;Rez v <OVv}. (12)
v=l ^ J

We use the renormalization defined by the 0ί operation of Bergere and Lam [5] :

:0 (13)

Let us recall how this SI operation applies to any function g(ct). For each subgraph S,
the αf variables, ie S, are scaled by ρs, and one writes the generalized expansion in ρs:

Then by definition the ys operator only retains the beginning of this expansion,
namely those terms with p^—ls, and one finally takes ρs = 1. If pmin > — ls (superficial
convergence of the subgraph S), one has: ^sg = 0.

In order to obtain the Taylor expansions of/Co, we will use the method described
in [1]. By translating the integration path of (11), the various terms of the Taylor
expansions are given by the residues of the simple poles of the functions Γ( — zv). And
these residues will be written as differences of integrals Ic in various regions, or "cells"
C, in the space of the z variables.

Definition 1. A cell C is defined by a set of non-negative integers nv(C) (one of them at
least being zero):

N ^Σ zv=-^'> Rez v<0 Vv with nv = (
V = 1 1 „ v Λ ^i ^ <14)n v - l<Rez v <n v Vv with n v ^l

Definition 2. Let A be the set of values taken by the index v (\A\ = Nis the number of
one-trees plus the number of two-trees of the graph). For any strict subset E of A
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(\E\<N)9 we define a partial ordering of the cells by:

CJ VveE

1 Vve£ 1o w,.^ then we Put

Definitions. Given two cells C 1 5C 2 with closures C1? C2, we define their relative
coefficient εCιC2 by:

where 0vF =

For the particular case E = 0, we have εcc = 1 VC.
ii) In every other case, we put εClC2 = 0.
These coefficients satisfy :

i

From this identity one can easily deduce the following lemmas :

Lemma 1. Given E and C^C^ C2^C0, where C0 is defined in (12), we /ίfli e:

Σ eCC2 = ,5CιC2 V£'C£. (17)
c

JE' E'

Lemma 2. More generally, given C^^CQ,C2^ C0, given a subset F ofE and a set $ of
cells, such that

then we have:

E' E' F F

The action of the Taylor operators in the renormalization procedure may now be
described in the following way; to each subgraph S corresponds the linear form
already given in (10):

9s = ωs + Σ asvzv 9 (19)

where

«sv = Σ" iv-^s^O Vv.
ieSιeύ

Moreover {v|αSv = 0} Φ 0 since there are one-trees of G, whose restrictions to S are
one-trees of S. Let us call Es the strict subset of A

£s={v|αsv>0} (20)

S Es

and ^ the corresponding partial ordering ^.
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From Definition 3, for each cell C ̂  C0, with Es £ E C A, Σ εcc> ICΊ *s tne partial
residue of Ic at clc

zv = nv(C) V V E £ S .

Thus if the α 's, ieS, are scaled by ρs, the Taylor expansion of /c(ρs) is

F I \/ι*s(nv(C))-lsfcc;c"1c" Uίs
cΊc\c"ίc'

This expansion may be obtained by writing from Lemma 1 the identity

Ic=Σ( Σ % ' c - c » (22)

and interchanging the order of summations.
By definition of the Taylor operations, we get :

^A= Σ Σ BCC-IC-
C'lc C"IC'

sup<ps^ 0
C'

This may be generalized to every nested set of subgraphs :

^ = {S1,...,SII}9 S,CS2C...CSn.

Indeed, the Feynman integrand is FINE [2], i.e. it has a simultaneous Taylor
expansion in the scaling parameters ρs of every nest Jf . To be explicit,
if VSe,/F, αί->ρsαί, Vie5, then C/(ρs)=t//Γ J~[ ρ^s + higher order terms, with

Se^Γ

^= ^Sι^s2/sι ••• ^G/sn?
 tne Sp/Sp-i being the usual reduced graphs.

/ ^ £ Λ
Let us call E^ the union (J £s I and ^ the corresponding ordering Ξέ j . E^ is a

SeJ^

strict subset of A since for the monomials j of U#

and the simultaneous Taylor expansion of Ic is

Σ Σ βcc'IΠ^^-1 8- (24)

From the definition of the Taylor operations, we retain only those terms for which

φs(nv(Q)=
c

By interchanging the order of summations, we may then state:

Lemma 3.

:0=Σiuc^jrc» (25)
c

*= Σ βc'o (26)
C)

jf jf }
:0^C'^C; supφ ς^0 V^Se^^. (27)

C'
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Remarks. In contrast with the formal infinite series (21) or (24), there is only a finite
number of cells C with non-vanishing multiplicity μcjr in (25), due to the conditions in

(27). From εc,c = 0 if C'n C = 0, and C'ic, we have indeed:

= ΰ if BSe^Γ with Infφ s>0. (28)

Moreover, apart from C0, the cells with a non-vanishing multiplicity do not lie
inside the domain {φs^0 VSe^Γ}, but only on its border, since from (27) and
Lemma 1 we have :

= δCoC if supφ s^0 VSeJΛ (29)
c

We can now give the renormalized integrand, since the & operation given in (13)
can also be written [5] :

^=ΣΠ(-^ S )> (30)
Jf SeΛ*

where the summation is performed over all the nests, including the empty nest j\f — 0,

for which f] (-^s) = 1. So we state:
Se0

Theorem 1.

w/iere

μc=Σ(-l)m/^ (32)
JV

and μcjr is defined in Lemma 3.

Before proceeding to the second step, that is the α integrations, we must
summarize some of the results of Bergere and Lam [5].

Let M be a fixed maximal nest of subgraphs jRm of G :

For a given ̂ , the set of all nests Jf can be split into equivalence classes. Each class Γ
is characterized by its maximal nest Jί(Γ) which is the union of two disjoint subnests

and jf(Γ) such that:

Therefore :

"S)= Π (~^κ) Π α-^π)- (33)
Se>"

ii) To each RmeJί and each class Γ correspond subsets {Hmj} of 2tf(Γ\ {KmJ}
of Jf (Γ) satisfying

KmjCHmj

(Hmj - Kmj) n (Hm/ - Km/) = 0 V; Φ/
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which means with our notations :

j j

Apart from these results, we need the following lemma :

(34)

Lemma 4. Given two disjoint nests j/, ̂ , the union of which is a nest Jf, we have:

f Π ^T Π (1 -^s)j'co = Σ*<<Wc- (35)

where

,= Σ %o (36)

(37)
sup φs > 0

C'

Proof. The proof is by recurrence on the number of subgraphs S in j/. For j/ = 0,
Lemma 4 is nothing but Lemma 3. Let us assume that Lemma 4 is true for
£#' = <$/ —{S^ and any second subnest, in particular & and ^' = ̂ ^{8^. Then:

= Π ^T Π (i-^)'co- Π r̂ Π (i-

with

But from Lemma 2

where

(38)

(39)

(40)

By replacing (40) into (39), one sees
Lemma 4.

We may now use (30), (31), (33), and Lemma 4 to write:

Lemma 5.

, which achieves the proof of

(41)
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with

Σ «c c,

)= C

J'ί(Γ) Jί(Γ)
C0 ^ C' ^ C; supφ^O

539

(42)

(43)

C'

Remarks. For each Γ, there is only a finite number of cells C such that μcr Φ 0, since
μcr is a finite combination of μCt/f/s. Moreover many of the μcr's vanish, since from
(43):

with

with SupφH^0,
c

and

. .
The related vanishing of many μc's also appears in the following lemma :

Lemma 6. For each cell C with μc Φ 0, we have :

if 3KeJΓ(Γ)

if

cc if

°

(44)

(45)

(47)

(48)

where

Proof. If μcφO, 3Γ with μcrφ0. Hence

3C' < C with

Let σ(C") be the edge of C: zv = nv(Cr) Vve£^(Γ). From the positivity of the
coefficients αSv in φs, ^Se^(Γ):

φH(σ(C'))=supφH>0
c

whence from (34) :

φRm(σ(C'))>0 (50)

' _

But C ^ C and C'nCΦ0 imply σ(C')eC.
Thus in the neighbourhood of σ(C) there exist points in C where the φRm are

simultaneously positive, which proves Lemma 6.
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Now the result expressed by Lemma 6 is true whatever is the fixed maximal
nest Jί = {Rm] originally choosen. Therefore we shall be able to perform the α
integrations with the use of only one further lemma :

Lemma 7. Given a cell C, if for each maximal nest Jt, Cr\AM is not empty, then:

zl c-CnzlGΦ0, (51)

where

0 V i e G } . (52)

Proof. In the space of the Rez's, any cell C is defined by a set of linear boundary
conditions, which we write tp^>0 Vj8. If in C the φ?s cannot be simultaneously
positive, there must exist non-negative real numbers α0, α , aβ9 the α-'s being not all
vanishing, with

Σ aιVi + Σ aβψβ + αo Ξ ° (53)
i β

By ordering the α/s: aim^aim_ l V m > l and putting: bm = aim — aim_ι, V m > l ;
bl=aiι we get a set of non-negative integers bm, not all vanishing, with:

Σ bmΨRm + Σ aβΨβ + ao = ° > (54)
m β

where

Then there would exist a maximal nest, the φRm of which cannot be simultaneously
positive in C, which would contradict the hypothesis.

By Lemma 7, the α integrations may now be performed for zeAc and we set up
the results of this section in the following theorem :

Theorem 2. The renormalized Feynman amplitude corresponding to a graph G is
given by the CM representation:

J ''/ v xΠ^A-Λ)ΠK?)"^A^)> (56)
^ — X k i

where the multiplicities μc are defined in Theorem i and Lemma 3, and μc — 0 if
Δc = Cr\ΔG is empty.

Remarks. We used in this section the ̂  operation of Bergere and Lam, and the
same machinery of equivalence classes of nests [5]. But it can be noticed that this
section gives a proof independent of theirs for the convergence of the renormalized
amplitudes. We find Fm as a sum of integrals. However, in contrast with the usual
renormalization schemes, the integrands are unmodified, and each of these
integrals is separately convergent. The set of cells with non-vanishing multiplicity
is a finite set, and these cells lie on the border of ΔG:

ίΞzeC with Reφ.(z)>0 V i

3i with Infφ^O. (57)
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Translating the integration path farther inside ΔG would correspond to performing
oversubtractions, which could be expressed in our formalism by the simple
replacements :

e->(Pe = (~ — d~
(58)

IV. Additional Topics

/. Dimensional Regularization

The CM representation can likely be used to the explicit study of the dimen-
sionally renormalized amplitudes. We do not attempt here to perform the
dimensional renormalization, but only give indications on the dimensional
regularization. Starting with a convergent Feynman amplitude (for a sufficiently
low value of the space-time dimension), let us show how we can reach the
following results :

- the amplitude is a meromorphic function of the dimension.
- its dimensional analytic continuation has a CM representation with the

same unchanged CM integrand, and again translations of the integration path.
The first of these results is already known (see e.g. [6]), but can be directly

proved from the CM representation, in exactly the same way as was determined
any asymptotic expansion in [1]. Let F(D) be a Feynman amplitude, convergent
for ReD < D0 : it admits a CM representation given by Eq. (8), which we rewrite as :

F(D)= j l\Γ(φr}J(z], (59)

where the zv variables stand for the Xj and yk variables as in (11), the linear forms
φr stand for —Xj, — y^ and φ^

J(z]- L.
^ > Γ / ^

Γ(-?<
is analytic,

y0 = {z|Re<p r>0 V r } .

P(D) is the hyperplane Σ zv = — —.
V ^

The lattice of the polar varieties {φr= — nr}, where the ny's are non-negative
integers, gives the boundaries of a set of cells

y = {z\RQφr >0 for ny = 0; — n y <Reφ y < — nr-h 1 for n y^l}.

For a given cell y, we define Dm and DM by:

—-— — S UP(/ΣRG ZV] 5 —~— — inf/Σ^ezvV (̂ )
^ v \ v / ^ y \ v /

Then Fγ(D)= J J^[Γ(φr)J(z) defines an analytic function of D in the strip

Dm<ReD<DM. In the same way as in Sect. Ill of [1], we use the identities
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expressing that ^zv + DM(y)/2 belongs to the convex spaces generated by some
V

subsets of the boundary forms of 7. We obtain:

1

P(D) reE

where the sets {φr, rεE} no longer generate D — DM, which implies that each term
in (61) may be analytically continued to higher values of D.

Thus, starting from y0, one can explicitly extract the various poles in
dimension, and iteratively translate the integration path to other cells. This shows
the meromorphy in dimension the poles in D belong to the discrete set of rational

numbers corresponding to the values of £zv at the vertices of the lattice

{φr=-nr}.
An alternative way of working is the following: we rewrite (59) as a difference

of integrals over all the Imzv's no longer linked by the constraint ΣZ V — :

Y\Γ(φr) l\Γ(φr)

F(D)= ί ~ J(z)- J J(z), (62)
yonβ + (D) Φθ yoπβ_(D) Ψθ

where

) = {z|-ε<Reφ0<0}

D

and ε is a small positive real number.
In these integrals, we translate the integration path by increasing the dimen-

sion from D to D' and crossing the various singularities of the lattice {φr— —nr}.
Thus we obtain :

z) + residues. (63)

In contrast with Sect. Ill (where we considered only the sub-lattice { — zv= — nv}\
we generally get residues of multiple poles. In any case these residues disappear in
the difference (62) if D' is such that the domain {z| — ε<Re(p0(D;)<ε} does not
contain any vertex of the lattice. This condition corresponds to fix ReD' between
two consecutive poles in dimension. Finally we can come back to the original form
of the integral :

Σλy j Y[Γ(φr)J(z). (64)
y ynP(D') r
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The result (64) is similar to that one of our Sect. Ill : provided that the hyperplane
P(D') does not across the vertices of the lattice {φr= — nr} [that is, for ReD'
distinct from the poles of F(D)], then the continued amplitude has a CM
representation with unchanged integrand and translated integration path. Of
course the multiplicities of the cells in (64) and (56) differ.

To obtain the same result, we could also start from the expression of the
regularized amplitude given in [6]. For ReD between two consecutive poles:

F(D)= lim ]l\daie~^@\e~^aiU-Dl2e-»!v\. (65)

The bracket in (65) has again a CM representation, with additional variables for
the new factor :

e - = Π Γ ( _ ί ι . ) ( m ? ) ( , α ! , . . (66)
Reί;<0 i L Zlπ J

Then the 3% operation acts in the same way as in Sect. Ill, with the replacement :

Φi-»V>i = Φί + f f
Finally the limit μ?-»0 is easily taken, as explained at the end of Sect. Ill of [1],

giving back (64).

2. The Case of Non-Scalar Amplitudes

In this paragraph, we want to generalize our CM representation to the case of
particles with spin, and/or to derivative couplings. In the momentum repre-
sentation, the Feynman amplitude corresponding to a given graph becomes :

where the py's are the external momenta, the fefl's are the loop variables, the q^s are
the internal momenta, and 3P is a polynomial in the momenta, coming from the
derivative couplings and/or from the numerators of the propagators. We take an α
representation by:

(68)( )

which gives the following α representation of the amplitude:

(69)

sk is the cut-invariant of the two-tree k, with the external momenta pv replaced
r

Pv — Pv + Zvi^' εvί being the usual incidence matrix.
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Then we take a CM representation of (69) in the same way as before. For each
/ 1 d \di

monomial Π —- of 9 we obtain:

In (70), the action of the differential operators —- results in translations of the
^Ci

linear forms — yk or φ. — d., and factorization of tensors built from the external
momenta. The main difference with the scalar case is the complicated list of cells
which enter into the new integration domains A, depending on the various
monomials of ̂ . Otherwise the renormalization will follow the same lines as for
the scalar amplitudes.
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