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Statistical Properties of Lorentz Gas
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L. A. Bunimovich and Ya. G. Sinai

Landau Institute of Theoretical Physics, Academy of Sciences of the UdSSR, Moscow, USSR

Abstract. In our previous paper Markov partitions for some classes of
dispersed billiards were constructed. Using these partitions we estimate the
decay of velocity auto-correlation function and prove the central limit theorem
of probability theory and Donsker's Invariance Principle for Lorentz Gas with
periodic configuration of scatterers.

1. Introduction

We consider in this paper the dynamical system which corresponds to the motion
of a single particle between fixed scatterers on the plane R2. Outside all scat-
terers the particle moves with the constant velocity and at the moments of
reflections it changes its velocity according to the usual law of elastic collisions.

We assume that scatterers are disks of arbitrary diameters and the configura-
tion of scatterers is invariant under a discrete subgroup Γ with a compact
fundamental domain of the group of all translations of the plane. The fundamental
domain of Γ can be chosen as a semi-open set the closure of which is a rectangular.
We shall denote it by

Another assumption concerns the existence of a constant A such that the length of
any straight segment which avoids all scatterers cannot be more than A. Some-
times the last property is called as the property to have a finite horizon (see [1]).

The phase space Jί of our dynamical system consists of points x = (q, ύ), where
q = (q1>q2) are coordinates, υ = (υ1,υ2) is velocity of the particle. Without any loss

of generality we can restrict ourselves by the case \\v\\ = ]/(^1)2 + (v2)2 =1. The flow
corresponding to our dynamical system will be denoted by {$*}. In Theorem 1 we
consider a natural special representation of the flow {S*}. Namely let Jt± be the
space of points x = (q, v) such that q belongs to the boundary of one of the scat-
terers and υ is directed inside the scatterers. We denote by T0 the transformation of
Jί^ into itself which arises when the point xe Jίλ moves along its trajectory till the
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next reflection from a scatterer and T0x = (q1,vί), where q1^R2 is the point where
the next reflection takes place and v^ is the velocity in the moment after the
reflection. If q is a point on the boundary of a scatterer then n(q) is the unit normal

vector directed outwards the scatterer and cos φ — (n(q), υ\ -\ -- < φ < — - , where

( , ) denotes the scalar product. Thus for every scatterer 2\ we can introduce
natural coordinates r, φ on the set ̂ C^ of points x — (q9v), qe^'{, where r is a
cyclic coordinate along the boundary 3)'{ and φ measures the angle between n(q)
and v. Let dμ0 be the differential of the measure on the set S)(per}= (J &.1 such

@iCΠ

that its restriction to 3){ is proportional to \cosφ\drdφ.

Theorem 1. There exists a constant y, Q<y^ 1, such that for all sufficiently large n

Here for x = (q,v)e@(per} we denote v(0) = v, T£x = (q(ri),v(rij) and expectation is
taken with respect to the measure μ0.

The proof of the Theorem 1 is contained in the Sect. 2. Let μ be a probability
measure concentrated on the set Jίπ(ΠxS1} which is absolutely continuous with
respect to the Lebesque measure on Jt and its density p(x)e C1. We consider x as a
random variable distributed according to the measure μ. If S*x = x(t) = (q(t), v(t))
then q(t\ v(t) are also random variables.

Theorem 2. There exists a non-degenerate two-dimensional gaussian probability
distribution with the density g such that

'
] / t

Here C is a bounded open subset of the plane, the boundary of which has the
area equal to zero. The next theorem is a stronger version of Theorem 2. For every

ί we put qt(s)=—=q(st\ Orgs^l . The measure μ induces the probability

distribution on the set of all possible trajectories qt(s), O^s^ 1, which are points of
the space C[0 ^(R2) of continuous functions defined on the segment [0, 1] with
values in R2. We shall denote this measure by μt.

Theorem 3. The measures μt converge weakly to a Wiener measure.

Theorems 1-3 are derived from the properties of the Markov partition η
constructed in our previous paper [2]. The Markov partition η is a countable
partition of the phase space &(per\ Its elements are denoted by Aωι, ω^e W where
W is the set indices.

Let T be the transformation of the set @(per] induced by periodic boundary
conditions. We shall list the properties of the symbolic representation of T
established in [2]. Let Ω be the space of sequences ω = {ωί}^00 where ωί takes
values in W. We consider the mapping φ \@(per}-^Q where φ(x) = ω if Tnx e Aωn,

1 The notation ^ fC/7 means that the centrum of @\ belongs to Π
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— oo<n<oo. For every Aω. one can define its ± -ranks which are denoted by
r + (Aω)> r-(Aω). We shall write r+(ωn\ r_(ωn) instead of r+(Aωn)9 r_(Aω). The
measure φ*μo is defined on the natural σ-algebra of subsets Ω and is invariant
under the shift. It will be convenient to denote φ*μ0 by μ0. In all cases it will be
clear whether we consider the measure on @(per} or on Ω.

Lemma 1. (see [2, Sect. 6]). There exists λi9 0<A 1 < 1, such that for all sufficiently
large k

Let us introduce one-sided conditional probabilities

which exist with μ0-probability 1. Many important properties of our dynamical

system follow from the possibility of approximation of μ0(ω0|ω_ 1? . . . , ω_π, . . .) by
conditional probabilities with finite memory μ0(ω0 |ω_1? . ..,ω_n). We shall de-
scribe the character of approximation which is valid in our case (see [2]). For any
constants A20, A 2 1 ? ^22* λ2Q<λ22> 0<^2o> ^2i> ^22 <-^ we introduce the sets:

Um = {x : dist(x, d@(per)) < λ™0} , w = 1, 2, 3, . . .

m = [nλ2ί]9 |k |^w; TxφUJoτ \i\>n}9

Here ζ ~~ is the partition of Ω which appears when we fix all ωί? — oo < i rg 0, Cζ - (x)
is the element of ζ~ containing φ(x).

It is easy to see that

2n

Lemma 2. Lβί Cζ-, Q'- correspondtoω0,ω_ί, ...,ω_n+l,ω'_n9ω'_n_l9 ...9andω0,
ω _ l 5 . . . ,ω_ n + 1 , ωln, ωln_ 1 ? ... respectively and Cζ-, Cζ- eφ(ZM). Γ/zβn one can
choose λ20, λ21, A2 2, anJ /12, 0</12< 1 m SMC/Z a way ί/iaί

The last property is an analogy of the famous Doeblin's condition in the theory
of usual countable Markov chains (see [3]). Let us consider conditional
probabilities

πi(ω3»+ 1» ""> ω4n) = μ<)(ω3n+ 1» ' ' ' ' ω4nlω-»+ 1» ' ω/θ) '

We have the probability distributions π1? π2 on the space of words co3n+ 1? . . . , ω4n

under different conditions α/_M + 1, ...?ω
;

0 and ωlw + 1 ? ...,ωQ.
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Lemma 3. Suppose that r±(ωj.)5 r±(ω")^w, l^i^n. There exists a constant Λ,3,
0 < λ3 < 1 such that for all large enough n

Var(π l 9π2)=| £ K(ω3n+1, ...,ω4ll)-π2(ω3n+1, ...,ω 4 Λ) |^A 3.

Only the properties of μ0 which are presented in Lemmas 1-3 will be used
during the proof of our Theorems.

2. Proof of Theorem 1

Let h(ω) be a function defined on Ω such that \h(ω)\^Cί where Cί is a constant
and there exists a constant 14, 0<A 4< 1, such that for all sufficiently large n one
can find functions hn(ω) = hn(ω _ n,..., ωπ), §hndμ0 = Q, depending only on coor-
dinates ωί9 |i|^n and sup|/z(ω)-/ιn(ω)|^^. We denote also by T0 the shift in the

π co
space Ω.

Lemma 4. Let the measure μ0 satisfy the assertions of Lemmas 1-3. If Eh = Q then
\Eh(T£ω)h(ω)\-^Qxp( — ny) for all sufficiently large n and some constant y, 0<y<l.

Proof. Let n and n±<n be chosen. We have

\Eh(Ί^ω) ft(ω) - Ehnι(T%ω)hnι\

where C2 is a positive constant. We can write

Now we shall transform the probability distribution μ0(ω_nι, . . . , ωn+fl l). Let An

be the set of words (ω_M ι 5 ...,ωn+nι) such that rg±(ω/)^2n1 + l,
and

where Vnι = M—Vnί, — n^fc, i^n + n^ An easy application of Chebyshev's

inequality shows that μ0(/4n) ̂  1 - n2 |/μ0(Fnι).

Lemma 4.1. For (ω_W ι ...ω r t +^)

μ0(ω_Π l ...ωnι)

for some λ4, 0<Λ4<1.

Proof. We have

μ0(ω_nι ...ωn + n ί ) = μ0(ω_nι ...ωj
i

We shall estimate the fraction
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We can consider also the fraction

483

For words (ω_n ι ...ωn+nί)eAn we have

Therefore it is sufficient to estimate 7ί0). We can write

where v(1)(v(2)) is the induced probability distribution on the space of

Cτi- lr €(«(_!, ...,ω_B l)(C τ i-ι rC(ω i_1,...,ω ί_2 n ι_1)).

Let us fix
C (

Γ

0λ l re(ω ί_ 1,...,ω_Π ι)C(ω ;_ 1,...,ω ;_ 2 π t_ 1)

and rewrite lf} as follows
.μ0(ωίnFnι|CΓ.- lζ-) (1)

(2)

The sets (ω nl^JnC^-^- and (ω^nl^^nC^-iζ- are canonically isomorphic for
arbitrary CΓ l- l ζ-, C(^λιζ- (see [2]). The absolute value of the difference between
the corresponding density and 1 is not more than λn

4

l for some A4, 0<A4<1.
Therefore

and (l+λ^Γ^I^^l+λl1)2. Now we have

>-„••• ωj Π

In an analogous way one can get easily a similar estimation from below. Q.E.D.
It follows easily from the Lemma 4.1 that the problem is reduced to the

investigation of the expression

Π

The numbers

_ Π l ...ωπι) fl
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define the probability distribution on the space of all words ω_ n ι ... ωn + nι which is
homogeneous Markov chain with the memory 2n^ 4- 1. Its stationary probabilities
are equal to μ0(ω_nι ...ωnι) while the transition probabilities have the form
μ0(ωί\ωί_1 ... ωI _ 2 n ι_ 1). The space of states of the Markov chain consists of all
words (ω_nι ... ωnι). Let us introduce the subset $nι of the space of states which is
defined via the conditions :

1. rg± (0^2^ + 1, -w^ίgKi;
2 Mo^-ni-'^^^^il-l/Mol^jK^-^..^^);
3. a transition (ω_Π l • • ωM l)-»(ω_W l + 1 ...ωnι + 1) will be called admissible if

by definition for all states (ω_n ι ...ωnι)e$nί the conditional probability of ad-

missible transitions is not less than |/V0(Ku)
We introduce the subset J*n of all words (ω_nι ...ωπ + lll) for which

(ω ί_ f l l ...ω ί+rll)e^π, O^ί^π, and all transitions

are admissible. We define a new probability distribution μ(

0

1} on the space J*n by
putting for (ω_π l . . .ωΛ + Λ 1)6β | l

where Z is a partition function,

n + n\

z= Σ μo(ω-wι ωπι) Π i
i = «ι + l

An easy application of Chebyshev's inequality shows that

It follows from Lemma 4.1.

" μo(co-ttί...ωn+nι)

for

As a result we get an estimation Z^μ0(FΠι)exp( — εn) which shows that the
probability distributions μ(

0

υ and μ0 are very close to each other on the set Anr\Bn.
It shows also that it is sufficient for our aims to consider the expression

ω-πi ^+JM^
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The probability distribution μ(

0

1} is a non-homogeneous Markov chain of the
memory 2n1 +1. Its transition probabilities have the form

μ(o\ωi\ωi_ί...ωi_2nί_1)

n + ni

μ0(ωί\coi_ί...ωi_2nι_ί) Σ Π /*oKK'-i ••• ωj-2nι-ι)
cΰi+ i ...ωn .7 = 1+1

n + ni

Σ Π μo(ωJK -,...cv2,M-ι)
ωi. . .ω n + nι j = i

In both cases the sums are taken over such words that (o}j_2nι ...θ)j)ε$n and all
transitions are admissible. It follows easily from the properties of Sn that these
sums are very close to one. Namely, the absolute values of their differences from 1
are not more than (1- }/μ0(Vnι))n + 2nί + ί. Thus

μ (

0

1 )(ω ί |ω ί_ 1...ω f_ 2 l l l_ 1)
-1

μo(ωi\ωi_1...ωi_2nί_1)

The same arguments show that for any m the variation

differs from the analogous variation for μ0 to a number whose absolute value is
not more than 2|1 -(1 - ]/μ0(Fnι))4(2nι + 1)|. Now from Lemma 3 we get that the last
sum is not more than Λ/3 where 0 < λ'3 < 1 and does not depend on n. Therefore
from the usual ergodic theorem for Markov chains

Let us fix . We have

The absolute value of the second term is less than const(/l3)3(2"1 + 1).
Concerning the first term we can write

ω_ n ι - ωnι)hnι(ω_nί ...ωπι)
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The absolute value of the last expression is not more than

[1 - (1 - ]/μo(Vnί))2(n + 2nι + 1}] max |ftj . Q.E.D.

Theorem 1 follows immediately from Lemma 4.

It follows easily from Theorem 1 that for considered h El ]Γ h(Tx)2

~ const k as fc— >oo, where const depends only on h.

Theorem 1'. For the same class of functions h

El £ hCrx)\*~ const k2 .

Proof. Let n1 — [nαι] where oq is small enough. It is sufficient to estimate

Σ h^Γ^γ^Eh^r^h^r^h^r^h^x).
We shall estimate expectations

Eh^r^h^r^h^r^h^r
assuming that ^ gz 2 rgz 3 5gz 4 . Also we can assume that

α2>0

because the total number of terms not satisfying this conditions is less than
const n1 + 3αι(1+OC2)<?t2 if α1 is small enough. The next approximation consists of
replacing μ0 by μ(

0

1} and considering

because the error also is sufficiently small. Now we consider three cases.

1. m = z4 —z*3. In this case we estimate the conditional expectations of hnι(Tί4x)
under fixed ω_ n ι, ...,ωi3 + rlί. The same arguments as above show that its absolute
value is not more than const (λ'3)

m/Wl. Therefore the absolute value of the whole
expectation is not more const (Λ/3)

m/Ml and the total amount of such terms is not
more than const ran2. Thus the absolute value of the sum over such terms is not

more than const n ]Γ w2(Λ,3)w / l l l~Q(n2) for w-»oo.
m=nί * + α2^

2.m = i3 — ί 2 . In this case we fix ω_n ι . . .ω ί 2 + W l and consider the conditional
expectation of hnί(Tί2x)hnι(Tί4x).

The absolute value of the difference between it and the unconditional one is
less than const (A3)

m/nι. From the other side we have shown during the proof of
Lemma 4 that the unconditional expectation of hnι(Tί3x)hnι(Tl4x) with respect to
^Q1) decays very quickly and in particular is less than const (z4 —z'3)~2. The
summation of all estimates gives the desired result.

3. m = ί2 — iί. This case can be treated in the same way as 2. Q.E.D.
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3. Proof of Theorem 2

We start with proving a central limit theorem of probability theory for a function
h(ώ) satisfying to the same conditions as in the beginning of Sect. 2. From
Theorem 1 it follows that

and consequently

σ(h)= Σ E(1«h.h)«x)
n = 0

where the expectation E is taken with respect to the measure μ0. Suppose that
σ(h)>0.

Lemma 5. Let E(h) — 0. Then for every a,b,a<b we have

I 1 "~1 \ 1 b I u2\
lim μ0 ω : a < — -==. Σ h(Tkω) < b = _ J exp ——\du.
«-^°° \ yσhnk=o I |/2π α \ 2 /

Proof. The statement of lemma means that the probability distribution of the
j n- l

normed sums - £ h(Tkω) converges weakly to the standard gaussian
yσnn k=o

probability distribution. The machinery of proving such theorems is now suf-
ficiently far developed and we shall use one of the usual ways.

Let us introduce a characteristic function

A= ϊ h(Tkω) .
σhn k =

I λ2\
--In order to prove lemma we must show that %(λ)-»exp -- when λ takes values

from any compact set and n-»oo. Let us decompose the whole interval [0, n— 1]
onto non-overlapping subintervals

in such a way that the length \A[1}\ of each A\1} except the last one is equal to \n
while the length of each A(2} is equal to [n72], where /y1,y2

>^'i~'~) ;2<) ;ι<^ a

''1'|^[nV1]. We can write now

»JI(A) = £exp(i-A=[ Σ k Σ M7*ω)+ 'Σ ^ ξ^ω)]).Φ«

We have
p-1

Σ Σ
s = l

^ const p ny2 ̂  const n - V i + 72

From our assumptions concerning y l 5 y2 it follows that

sup -i= "l



L. A. Bunimovich and Ya. G. Sinai

when n-> oo and the limit behaviour of φn(λ) is just the same as the limit behaviour
of

2 P

σyι s=ι

We shall show that is close to

i.e. ψ^1}(A) is close to the characteristic function of the normed sum of p

independent random variables distributed as the random variable Σ h(Tkω).
fce^D

We choose 0<y3 <y2 and nl = [^73] and the function hnι(ω) (see the beginning of
Sect. 2). We have

Σ k Σ,

Therefore we can replace ψ^\λ) by

< const n

The function exp<i
λ

Σ ^wiί1
depend only on variables

ω_ n ι , . . . , ωπ+ll l. Let us restrict ourselves in the integral which gives ψ(*\λ) only by
sequences for which r±(ωi)^2n1 +1 = n2.

According to Lemma 1 the probability of these sequences is not less than
(1 — (n + n2)λn

1

2). Therefore we can consider

p ϊ
Σ Σ hni(Tkω)\ μ()(ω_ni...ωn + n ί ) .

ω-n, ...ωn 'σk n s=ι

The next step is to replace the probability distribution μ0 by the Markov
probability distribution μ^ constructed in Sect 2 and to consider

λ

σh n s=ι
Σ Σ hnι(Ί*ω)\ι$\ω_aί...ωβ+J.

It follows easily from Sect. 2 that the absolute value \ψ(*
uniformly in λ. Now we can write for m = n— [n71] — [n7

PΣ Σ ,̂(

as n-^oo

s=l

_ n ι ...ωm + π ι)

σ n
ΛBl(T*ω)
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The same arguments as in Sect. 2 show that the last conditional probabilities
depend very weakly on conditions. More precisely,

haι(Ί*ω)
'σ n

Σ hnι(

Also the absolute value of the difference

T7== Σ hn1(Tkω)\μ0(ωn_[nγι]_nί...ωn+nι)
]/σh n ke jy> J

is sufficiently small. We get as a result that the difference

-^= Σ hnι(Ί*ω)

tends to zero uniformly in λ

It is easy to see that the variance El Σ hnί(Tkώ)}2 ~σhn
γι and

Σ Σ ^m

for ft— »oo. Thus in order to show the desired limit relation we must check the
Lindeberg's condition (see [4]). In view of Chebyshev's inequality it is sufficient to
estimate

Σ hnι(Ί*

which can be estimated by constjzJ^I2 in view of Theorem Γ. Q.E.D.
Now we can formulate a natural extension of Lemma 5.

Lemma 6. Suppose that we have r functions {/ι1? . . . , hr } = h with the same properties
as in the beginning of Sect. 2 and Eh^Q for all i=l, ...,r. Suppose also that the
series

are such that the matrix σh= | |σ ί7 (/ί)|| is the positively-definite matrix. Then

k = 0
<bt, ί^i£r = $

/ A
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where A = {u:ai< w < bt, i^i^r} C Rr, gσ is the density of the gaussian probability
distribution with the covariance matrix equal to σh.

The proof of Lemma 6 goes in the same way as the proof of Lemma 5.
Therefore we omit the details.

Now we shall derive a weaker version of Theorem 2. Let us take x06^l5

X^ΏCQ and put Λ1(x0) = g(1)(x1)-^(1)(x0), Mxo) = 4(2)(*ι)-4(2)(*o) K is easY to

see that Eh1=Eh2 = 0 and /z1? /z2 satisfy the properties described in the beginning
of Sect. 2. Thus in order to apply Lemma 6 we must check whether the matrix σh,
h = (hί,h2) is non-degenerate.

Suppose that this is wrong. It means that one can find real numbers α1? a2 and
a function H(x) on the phase space Jίγ of the billiard problem under consideration
for which

-H(x). (1)

From this equality we have for arbitrary n

"Σ (α1/ίl(Tfcx) + α2Λ2(Tftx)) = H(T"x)-H(x). (2)
fc = 0

We shall denote by Π(k) a connected rectangular of the plane R2 consisting on k2

rectangulars i.e.

Let us consider now a billiard in (Π(k)x x $l}r\Jt . It follows from the equality (2)
that for every ε>0 there exists a constant C4 not depending on k such that for an
arbitrary n the inequality

\a^\Tnx) + a2q
(2\T»x)\^C4 (3)

holds with probability (calculated with the help of measure μ0) more than 1 — ε.
But from the theory of dispersed billiards it follows that for any k the billiard
dynamical system in Π(k) is ergodic. It means that for any n the measure μk of the
set consisting of all points x satisfying the inequality (3) tends to zero as /c-»oo
where μk is the invariant measure for billiard in Π(k) which is absolutely
continuous with respect to Lebesque measure. From this we obtain that
μ0-measure of the set of points x satisfying (3) also tends to zero as fc— »oo.
Consequently we get a contradiction with the assumption that inequality (3) holds
with big probability. Thus the matrix σh is non-degenerate. Q.E.D.

Now from Lemma 6 we derive immediately.

Theorem 2'. Let q^\x\ ^(x) be coordinates of the moving point on the plane R2

after k reflections from the scatterers. Then

ί ^ gσ(ul9u2)duldu2yk yk I b, b2

fc->00 ,

where gσ is a two-dimensional non-degenerate gaussian probability density.
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Now we proceed to the proof of Theorem 2. Let x^Jίl and F(x) be equal to the
time of the motion of this point till the next collision. Then again the function
F(φ~ί(ώ)) satisfies the conditions of the beginning of Sect. 2.

Let us denote by ί~ for every x^Jί and every ί>0 the largest non-positive
number, for which x~ =St- = xe^ι and t+ >t be the last number, for which St + x

1. Let kQ = —I and kί be such that x+ = Tkίx. We can write
t-j±

The same formula is true for —j=q(2\Stx). It follows from the usual Birkhoffs

ergodic theorem that - Σ F(Tx~) converges in probability to 1. Therefore

i = 0

where ut(x) converges in probability to zero when ί-> oo and Σ' is taken over i lying
between k0 and k1. We shall show that

j- T—\. -, , ,

Σ

converges in probability to zero. Let us fix ε > 0 and choose A = A(ε) in such a way

that μ0(|fc0 — kl ^ A ]/k^) ^ ε. It can be done in view of Lemma 5. Now the desired
result will follow from the assertion that both

1
max

and

max

Σ

Σ
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converge in probability to zero. Because T is measure preserving we can consider

max —
fco |/fe0 o^i^i

and

max — U Σ Mτ~~ίχ)
fco |/fe0 l ^ Z g Λ l / E o

The convergence in probability of last expression to zero is an easy consequence of
Birkhoff s ergodic Theorem. Thus we see that the limit of

. —
yt yt

is the same as the limit of

K Σ
V i = 0

which in view of Lemma 6 is equal to

bi b2

where gσ is the corresponding gaussian density. Q.E.D.
Now we can formulate a direct generalization of Theorem 2.

Theorem 2". Let be chosen 0<s1 <s2< ... <sr= 1. For ei er); ί>0 consider random

variables q(sfί) = (q(1)(sίί),^(2)(sίί)), 1^/^r, and ί/ze normed ones ——q(s>t). Then for

arbitrary pairs of real numbers fc ,d t,b.<d f, l^i^r,

;ί"s^"
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4. Proof of Theorem 3

Let Pt be a probability distribution on trajectories qt(s) = — = q(s£), q(sί)
l/ί

= {q(i\st\ q(2\st)}, O^srgl, induced by the probability measure μ0. In view of
Theorem 2" and Theorem 8.1 from [5] it is sufficient to show that Pt is a tight
family of probability measures on the metric space C[0 ^(R2) of continuous
functions q(s), 0^5 ̂ 1, q(s)eR2 (see [5]). To do this we shall use Prohorov's
theorem [6], [5] which gives the necessary and sufficient condition of tightness of
a family of probability distributions. Namely, for every ε > 0 there must exist a
compact set Kε in the space C[0>1](^2) such that Pt(Kε)>l~ ε for all ί.

Using Theorem 8.3 from [5] [more precisely, formula (8.12)] it is sufficient to
show that for arbitrary ε>0, η>0 there exist δ,0<δ<l, and ί0 such that for all
t^t0 and all s, Ogs^l,

δ^Pjx : sup \\qtf) -qt(s)\\ ^ε\ £η . (4)
I s^s'^s + δ J

Thus we fix ε, η and put δ^ε114. The value of ί0 will be chosen during the proof.
We decompose the whole segment [0,1] on subintervals by points 0 = sQ<sl

< ... <sr = l where 5 ί+1-5.-^ί~7/12 and |sί+1 -s.|<^f~7/12. For each 5, sf, 0 ̂  5,
s' ̂  1 we take sjV 57 2 which are the closest points to s, s' and

Here we have used

llβ/(Sl)-«t(S2)ll = —r =

-,

if ί is large enough. Now in (4) we can consider ŝ ., sjl instead of s, s' and estimate
the probabilities

For every Sj we put k = J and consider the norm of the difference

)- — V1

where
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Lemma 7. max aj} converges in probability to zero as £-»oo.

Proof of Lemma 7 will be given slightly later. We have now for arbitrary sp sjι

il^.)-^.)iι^--|| Σ h(^*) Λ7 ' "Ji '

g g
If ί is large enough, then PΓprobabilities of the inequalities α^}^ —, α^}^ — will

12'
be more than ί—^δ η. Therefore we must estimate only

where j ^ z j

Pt = Pt < x : max

The last probability does not depend on fe7 because T is measure-preserving.
Thus it is sufficient to estimate

max
O^k^δt/EF

max

12

12

Our arguments will be of the same nature as in the proof of the classical
Kolmogorov's inequality in the theory of probabilities. We shall consider only the
first term. Let be

O^i^/c

The subsets Sk do not intersect and we are interested in P=

have

124

^^ΓsΣfί Σ

124

χ[ Σ
fc<i<

Σ fc(1)(T<x»0

4-124

0 - Σ ί f Σ

4-124

4-124

k Sk



Statistical Properties of Lorentz Gas with Periodic Configuration of Scatterers 495

The first term is not more than const ε 4t 2δ2t2 = δ const ε 4δ. Suppose that δ is
chosen in such a way that const ε~4δ^η. Then the first term is not more than δη.
Thus we must estimate

1
Σ dμ0

Σ

We approximate /z(1) by /z^ where π1 = [ΐf~\ and α is small enough. The error is of
order const ίαι exp { — ία2}, α1? α2 >0 and therefore sufficiently small in order to be
neglected. Thus we shall consider

Σ

For we have
Q<i<k

^(Γx)3 ^const ε3ί3/2. The expectation Eh(» = Q.

The same arguments as in Sect. 3 show that the conditional expectation

for i^k + nf, a 2 > 1 when ωj9 —n^j^k + n^ are fixed is less than (A4)
const^. The

part of the sum corresponding to z, fe ̂  z ̂  fe + n^2, can be estimated simply by
const n^2. Thus we get

h^(ΓX)\dμ0

const ri[2

= 7 = - *

The factor
*?

>0 as ί-^oo. In the same way one can estimate \Γ2\. We have

where y(f)-»0 as £-»oo.

Now we have P ̂  Λ ^ E ( £ h(Tlx)\4. In view of Theorem Γ (see Sect. 2)

the last expression is not more than const ε ~ 4δ2 — δ - const ε4 (5. If δ is so small that
const ε4δ ̂  77 then we get the desired estimation.

Proof of Lemma 7. We shall estimate the probability

k,-l

ί = 0

>ε

Let j be fixed and ίj (x)= Σ F(Tlx). For every α>0 from Chebyshev's inequality

and Theorem Γ
P{x:\tj(x)-sjt\>a}

>a\<
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We take a = t2/3. The right-hand term is not more than const t"13/64kj. Therefore

Σ F(Tx)^s.t^ Σ F(Tx).
ί = 0 ί = 0

The next remark is that if \tj{x) — Sjt\^a then |fcj(x) — fcyl^j const a. Therefore we
can write

<

1

1

q(1\Sjt}-

const

The last problem consists in estimating

P max
i:\i-kj] ^constα

i

Σ
= kj(x)

>b\=P

for b = ε]/t. Again our arguments will be of the same nature as in the proof of
Kolmogorov's classical inequality in probability theory. Let 5fc, fe^O be a subset
consisting of such x for which

Σ 7 / rwi\
/71(T7Λ

J = kj

"j •-

Σ hι >&.

) AnThe events Sk are pairwisely disjoint and we shall estimate P1 = Σ
k = 0

analogous sum of P(Sfc) with fe < 0 can be estimated in the same way. From the
definition of Sk we have

Σ
k / g i g t j + β

Σ

,.Σ

Σ

h^(Γx)dμ0Σ

The first term is not more than const a2b 4 = const ί4 / 3fc 4 (see Theorem Γ). In
order to estimate the last sums we approximate h(1) by the function h(^ where
nί = [ί<x] an<i α is small enough. The error is of order const ίαι exp {— f*2} where α1?

α2>0 and therefore very small. We must estimate only

1

¥ Σ ί f Σ W
k Sk[kj£i£kj + k
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The first remark is that ]Γ h^(T zx)3 ̂  (b + const)3 in view of the definition
kj^ί^kj + k

Sk. In particular (b + const)3 ̂  const b3 for b>l. The expectation E/ij^^O. The
same arguments as in §3 show that the conditional expectation of h(^(Tx) for
ί^.kj + k + n^2, α2 > 1 is very small and can be neglected. The estimation of the rest
part of the last sum is const b~1n([2P1. Similar arguments can be applied to the
expression

^Σ ί [k <(Σ +tW*)] ,.+k<>.|+consta^
)(τ"x)3^

Here we must estimate conditional expectations of

when ω_ Π l ...ωkj+k+nι are fixed.
These expectations are very small if i3 — i2^ri*f. The total amount of other

terms is less than const a2n\2. Therefore the absolute value of the whole sum is not
more than const b" 3a2na

1

2Pί. Finally we get for sufficiently small α2 and sufficiently
large t

The whole estimation of P takes an analogous form

P^ const ε~4Γ55184

The final result follows from the last estimation because the total number N of j
is not more than const ί7/12 and therefore

P<max max
[ j i : |kj-i | ^constα

1
>ε

as ί->oo. Q.E.D.
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