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Abstract. We present a method of computing the Coulomb forces on particles
in an infinite configuration of charges in one dimension. The resolution of the
apparent nonuniqueness in this problem leads to a structural proof of the
translation symmetry breaking in jellium, at all temperatures, and to a related
phenomenon of phase nonuniqueness in the two component system. The
appropriate generalizations of the DLR and KMS conditions for these states
are discussed.

1. Introduction

Coulomb systems are of interest even in one dimension since :
1) Coulomb forces play such a fundamental role in Nature.
2) The systems offer tractable examples of situations in which the infinite

range of the interaction poses difficulties already in the formulation of the laws of
motion and of the conditions which are generally used to describe equilibrium
states (KMS, DLR). The resolution of these difficulties requires the introduction of
new methods which take into account the collective effect of the bulk system.

3) Some of the systems exhibit symmetry breaking and others may exist in
various phases. The two component systems will be shown to admit states with a
non vanishing electric field. Our method offers a unified treatment of this
phenomenon and of the translation symmetry breaking in jellium, which in [1, 2]
was proven to form a Wigner-lattice.

The one dimensional Coulomb interaction energy of particles with charges σ{

located at eR, is:

H(q,σ)=-l/2Σσiσj\qi-qj\, (1.1)
ij

with the corresponding electric field at XEIR:

E(x q, σ) = £ σj sgn (x - q) . (1.2)
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We shall consider the following two types of systems :

1) Two component systems, in which the charges take only the values σ.= ±e.
2) Jellium, consisting of — e(e > 0) charged particles immersed in a uniformly

charged positive background.

Equilibrium states of finite two component systems are described by the
Gibbs distribution

n ~
{ }(Norm.) Nl

which has to be summed over all N and charge assignments of σ. = + e.
Limits of such ensembles with the neutrality constraint were studied by

Edwards and Lenard [3] and Lenard [4]. They provided a very useful form for the
system's correlation functions. Additional information about the approach to the
limit is contained in the work of Frohlich and Park [5].

While the correlation functions in principle provide all the information about
the local behaviour in large systems, a number of properties, and questions, are
more naturally described in the phase space formalism [6]. In it, the same state is
represented by a probability measure on the phase space of infinite configurations
of charged particles on a line. We denote by Ω this space whose points, ω, may be
regarded as equivalence classes, with respect to relabeling, of sequences {(qt, <7f)}i6Z.
States of the system can now be described by probability measures on Ω which we
denote by μ. We should also use μ(/), or simply </>, expectation value of a
function /(ω) on Ω.

By the fίniteness of the density of particles in the system [3] we know that
typical configurations ωeΩ have only finite occupation in any bounded interval.
In this setup, we now pose the first problem which bears on the physics of the
system.

Question ί

What are the forces on the particles in a completely specified configuration

ω = {(«l,σ()}?
In contrast with forces due to short range interactions, the one dimensional

Coulomb force does not decrease with the separation, which renders the usual
summation meaningless. In fact, the problem may seem to be deeper than that of a
good summation procedure. The infinite system formalism has been devised for
the study of local behavior as an approximation to a finite system which, on the
scale of interparticle distance, is extremely large. However, since all the charges do
contribute directly to the local field, it is not a-priori clear whether in this
formalism there is no loss of important information about charges whose distance
is of the order of the system's length. Nevertheless, we shall see that the existent
effect of the bulk system can be computed quasilocally from the positions of the
charges.

The above problem is related to another question which bears on the structure
of the general formalism.
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Question 2

What local condition of the states reflects their equilibrium character?
The standard Dobrushin-Lanford-Ruelle condition [7,8] is that the density in

any region A, conditioned on the configuration outside of that set, is given by a
corresponding grand-canonical ensemble, with the energy function which takes
into account also the interaction with the outer particles. To state this condition
one has to make sense of the electric potential throughout the system, which leads
to even worse summation problems than those with the electric field.

Our method would yield an answer to this question, revealing an interesting
feature. Namely, for typical configurations, once the particles outside a region A
are specified the total charge in A is sharply defined. This is related to the
surpression of charge fluctuations discussed in [9]. Non-normal fluctuations have
also been found by Dyson and Mehta [10] in the distribution of eigenvalues of
random matrices, which is given by a Gibbs state with the logarithmic potential.
They suggested an application of the understanding of such an effect to the study
of nuclear interactions.

2. Electric Field Ensembles for two Component Systems

The first of the two problems mentioned above can be restated as the question of a
quasi-local inversion of the correspondence

electric-field -> charge configuration. (2.1)

For finite systems, where it certainly is well defined, the electric field is
piecewise constant and has jump discontinuities, whose size is twice the charge, at
the particles locations (see Fig. 1). Thus the charge configuration is a local function
of the electric field. In the other direction, however, the correspondence is not
local. A uniform shift of E(x) by a constant inside a large interval corresponds to a
change in only the boundary charge. In the thermodynamic limit one may expect
that two electric field configurations which differ only by a constant would
correspond to the same charge configuration. A key observation in the following
method is that in this limit the relation (2.1) is, nevertheless, invertible when
restricted to typical configurations, i.e. after excluding a set whose measure is zero.

In view of the local and unique correspondence (2.1), and regardless of its
inversion, the statistical distribution of the electric field completely determines the
state of the system of charges. This observation was used by Lenard [4], who thus

Fig. 1. The electric field in the relation to a charge configuration
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studied the limiting state of finite systems which were constrained to be neutral. He
found the following result :

Proposition 1. For any β, z>0 the distribution of the electric field in the ensemble

(1.3) with the constraint £σ. = 0, locally converges to a limit. In this limit:
ί

1) E(x) takes values in 2eΈ, and typical configurations of E(-) are pίecewise
constant with discrete jumps of ± 2e.

2) The probability distribution of E(-) has the Markov property and is trans-
lation invariant, and mixing with respect to translations.

More specifically, if the physical position, x, is viewed as a "time" variable, E(x]
has the distribution of the path of a Markov random process. The corresponding
semigroup, on ^2(2eZ\ is generated by

£>=-zA + ̂ E2 (2.3)

with the discrete Laplacian, A, defined by:

(A φ) (u) = φ(u + 2e) + φ(u - 2e) - 2φ(u) ,

and the multiplication operator :

(Eφ)(u) = uφ(u). (2.4)

The invariant distribution of the electric field at a site x is

= u) = ψ(u)2, (2.5)

where ψ is the eigenvector of 3? in £2(2eTL] corresponding to its minimal eigenvalue
there, λ. The probability kernel of the process is

P(E(x) = u\E(0) = ϋ) = ψ(u)e~ x(^~ λ\u, v)ιp(vΓ 1 (2.6)

for any x^O.
A major reason why the electric field, E, is a convenient variable for the system

is that its fluctuations are controlled by the Gibbs factor. This is due to the well
known electrostatic identity, which relates the energy of a system of charges σi

located at <^e ^L — [ ~ A/2, L/2] to a positive quadratic form in E :

,σ) = l/4 f dx\E(x)\2 - l/4/£σA 2L. (2.7)

Another convenient feature is the simplicity of the measure on the electric field
ensembles which corresponds to the distribution of non-interacting particles.
Namely, it is the shift invariant measure v(dE) on the space of paths of a random
jump process on 2eTL, which is generated by — zzl, for which v({E(Q) = 2ek}) = l,
VfceZ. With respect to v, the probability for E(-) to have a jump discountinuity of
2e or of — 2e in an interval dx, are each of the order z dx, independently of the
jumps made outside of dx. The probability to have no jump in an interval of length
x is thus e~2zx. Therefore, the v-measure of paths whose discountinuities in IL
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occur at dqt and are of the sizes 2σi(=±2e) is, (ignoring infinitesimals in the
exponents

e-2zqιzdq1e-2z(q2-qi}zdq2 ... - e~ 2zL ]\(zdq^ (2.8)

assuming qί^q2^q3 ....
The measure v(dE) reproduces therefore the (Liouville-Lebesgue) a-priori

distribution of the charges. The neutrality constraint corresponds to conditioning

Placing these elements together, we see that in the above finite volume neutral
ensembles the expectations of local functions of E can also be written as :

(2.9)

Proposition 1 follows from this formula using the Feynman-Kac prescription
[11] and some properties of <£, [4, 12]. We provide the complete details for the
last step in this argument in the proof of Proposition 2.

The existence of a well defined limit for the states of E( ) reduces Question 1 to
the problem of reconstruction of £(•) from the position of its discontinuities -
which are the locations of the charges. Technically the question makes no a-priori
sense in the particle phase-space formalism, where £(•) has no clear definition. As
we shall now see, the reconstruction can be done, despite the apparent nonunique-
ness, by a method which gives the right result for typical configurations. We shall
state the result in the particle phase Ω, with the understanding that we really deal
with a problem on the space of configurations of E( - ).

Let μ0 be the limiting state of neutral ensembles described in Proposition 1. We
say that a property holds almost surely, or for almost every (a.e.) ωe£2, if the set on
which it fails has zero measure.

Lemma 1. Let xeR For μ0-a.e. configuration ωeΏ the following limit exists and
gives the value of E(x):

E(x) = - lim 2 Σ
K-+CG qie[x,x + K]

Proof. Let y > x. Assuming there are no particles at x or y :

X σt. (2.11)

By the ergodic theorem, which is applicable by Proposition 1 (2),

x + K

lim- j dyE(y) = μ0(Em (2.12)
K^ooJ^ x

μ0-almost surely.
Substituting (2.11) in (2.12) we obtain, for μ0-a.e. ω,

E(x)= - lim 2 Σ σ.(l- ̂ ] +μ0(£(0)). (2.13)
K^co qιe[x,x + K] \ ^ /
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By the charge conjugation (σ-> — σ) symmetry of μ0:

μ0(E(0)) = 0 (2.14)

which leads to (2.10). D

Remark i. A resolution of the apparent conflict between (2.10) and the nonunique-
ness which we discussed above is that in each family of electric field configurations
which differ only by constants, all but at most one would not occur in the
equilibrium state. In terms of finite ensembles, this is related to the fact that the
change in the energy produced by a shift of the electric field by a constant is of the
order of the volume. The associated entropy is only of the order of the size of the
boundary, since that is where the charges which produce the shift are located.

Lemma 1 answers Question 1 but also leads to the following surprising
observation.

Corollary 1. For μ0-a.e. ωeΩ

limexp[2/π £ (|V^)]=1. (2.15)
κ->« L g ι e [ θ , K ] V v \ e / J

Proof. Exponentiating (2.13) we get, after dropping trivial terms

Σ i ϋ
for μ0-a.e. ωeίλ However, £(0) takes only values in 2eTL. This, together with (2.14),
implies (2.15). Π

(2.15) is surprising since for each K< oo the left hand side varies continuously
over the full unit circle when the charges are shifted. This suggests the following
question.

Question 3

Does the two component system have other "equilibrium states" for which the left
hand side of (2.15) takes, almost surely, other unitary values?

In the next section we shall discuss such states which also correspond to
situations of physical interest.

3. The 0-States

In the previous section we have discussed limits of neutral systems. A more general
class of ensembles, which will also be needed to describe the local structure of the
above states, is obtained by considering other values for the total charge and
adding external charges as boundary conditions. It is easy to see that such
ensembles in an interval [α, b~\ are completely characterized by the values of the
electric field at the boundary E^ = E(a\ E^ = E(b).

For specified (E^E^ the total charge in the interval [α,b] (with a<b) is
constrained by:

Σ σ;=fc^=β(£,,£4). (3.1)
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The energy of a charge configuration in [α, b], with the above constraint on E
can be calculated from (2.7), using (2.11). A simple way of representing the answer
is by adding to the system's Hamiltonian (1.1) the effect of two boundary charges:
C C
— at a and — — at b, with

C=^±Λ (3.2)

We shall refer to the distribution (1.3) in [α, b] with the above described
Hamiltonian and the charge constraint (3.1) as the (E^E ^-equilibrium ensemble in
[α, b] (omitting β and z in this terminology all statements in the following will
hold for every fixed β, z > 0).

The main result in this section, which would also provide an answer to
Question 3, is:

Proposition 2. Let β, z>0. For any given (£/?EJ with Q(E^E^eeTL (a consistency

condition) the (£,, EJ-equilibrium ensembles in\ , — converge locally, as L-> oo,

to a state μθ, θe [0,2e], which depends only onθ = E^/mod2e. Further, any two states
μθι, μθ2 with Θ19 $2e[0,2e\ Θlή=θ2, are mutually singular.

Remarks. Two interesting situations to which this result refers are:
1) Ensembles with a fixed total charge, free of other boundary conditions,

(Ep EJ = (— g, β). The limiting state is different in the case the charge is odd, in
units of e, from that of even charge, which leads to the same limit as the neutral
ensemble.

2) Neutral ensembles in the presence of constant external field D, E^ = E^ = D.
In this case the limiting state is a nondegenerate periodic function of D.

We shall prove Proposition 2 at the end of this section using the electric field
ensembles. These are constructed similarly to the neutral ensemble discussed in
Lemma 1.

Lemma 2. Let β, z>0, and let (E^E) be given with Q(E^E)eeTL. As L-»oo, the

distribution of the electric field in the (E^E ^-equilibrium ensembles in — —, —

locally converges to a limit. The limiting distribution depends only on θ = E^/moά2e
= EJmod2e and has the properties listed in Proposition /, except that the range of

E(x) is 2eΊL + θ and the relevant domain for the semigroup (and its generator) is

Proof. The range of E(x) in the finite volume ensembles is clearly 2eTL + θ. An
a-priori measure which satisfies this constraint is :

) = v(d(E-θ))9 (3.3)

obtained by shifting v.
Repeating the argument which led to (2.9), one finds that in the (E^E^)-

equilibrium ensembles in JL, the expectation of a local function of E is :

(3.4)
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Let {AX}X^Q be the semigroup of (Hermitian) operators on £2(2eZ + θ} with the
kernels :

Λfc υ) = J vθ(dE) exp f - £ J dy\E(y)\2} . (3.5)
E(0) = u \ ^ 0 /
E(x) = v

I.e., by the Feynman-Kac formula [12], v4x = exp( — xJ^f0), where <£e is the operator
which formally looks as =Sf, (2.3), but acts in /2(2eZ + θ). We shall also denote by

the indicator function:

For f(E)= Y[gi(E(xί)\ with some — L/2<x1 <x2 ... <xN<L/2, we may
ι = l

rewrite (3.4) as :

While one could now deduce the lemma using the spectral decomposition and
properties of &Θ9 we shall prove it without using the self-adjointness. As a
consequence, the following argument will also be applicable in the analysis of the
jellium. With this purpose in mind, let us recall the following generalization of the
Peron-Frδbenius theorem.

Theorem (Krein and Rutman [13]). Let A be an operator on /2, with the kernel
A(m, n), such that

1) A is compact.
2) A(m9n)^Q Vm,n.
3) For any pair m, n there exists N(m, n) such that for all k > N(m, n)

(Ak)(m,n)>0. (3.8)

Then:
1) A has a real and nondegenerate eigenvalue, λ(A\ which is larger (with a

positive gap) than the modulus of any other point in the spectrum.
2) λ(A) = λ(A*) and the corresponding eigenvectors ψ, ψf of A and A* are strictly

positive.

3)

(in Dίrac notation), uniform convergence of operators.

Assumptions 2) and 3) are clearly satisfied by any Ax with x > 0. We shall now
prove that so is 1). By (3.5)

Ax(u, υ) - j vθ(dE) exp ( - £ } dy\E(y)\2}
E(0) = w \ ^ 0 /
E(x) = v

E(0) = u
E(x) = υ

2e# >w/2
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where # denotes the number of jump discontinuities E has in [0,x], and
w = max(|M|, M). Using an energy bound for the first term and an entropy bound
for the second, we have

β

+ Σ e~^ (3.10)

Therefore

tr^*Ax= X \Ax(u,v)\2 «x> ,
u,ve2eZ+θ

i.e. A is in the Hubert-Schmidt class, and hence compact.
Since {Ax} is a strongly continuous semigroup (its continuity can be easily seen

by an entropy estimate as the one used above), the eigenvector ψ of Aχ9 discussed
in the Krein-Rutman theorem, is an eigenvector of the generator and is inde-
pendent of x. Similarly, (3.9) holds with Ax substituted for Ak and x->oo as a
continuous variable. Substituting it in (3.7) we obtain a proof of the lemma.

We note, in particular, that the limiting distribution of £(0) is given by

< {£(0) = u}ye = v>β(«)vi(«) = ψθ(u)2 ,

where ψθ(u) is the ground state of <£e (self-adjoint). Π
We shall refer to the states on Ω which correspond to the above distributions of

E as the 0-states, and denote them by μθ (consistently with the previously defined
symbol μ0).

The extension of Lemma 1 to these states is, in the sense explained in Sect. 2 :

Proposition 3. Let xeIR, 0e[0,2e). For μθ-a.e. configuration ωeΩ the following
limits exist and each gives the value of E(x]

E(x) = - lim 2 £ σ, (l - ̂ ] + <E(0)>Θ , (3.1 1)
K-^co qie[x,x + K] \ ^ I

E(x) = lim 2 Σ σ, l + + <£(0)>θ . (3.12)
^-^oo qie[x-K,x] \ ^ I

Proof. The derivation of (3.11) is identical to that of (2.11) except that (2.14) no
longer holds. (3.12) is proven similarly. Q

Adapting the arguments which led to Corollary 1, we also have:

Corollary 2. Let 0e[0,2e), then for μβ-a.e. ω:

l i m e x p i π
. ίθ-μe(E(0))\

(3.13)

In order to see that in fact the θ-states have the property suggested in Question
3, we need:
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Lemma 3. The function g(θ) = θ—(E(Q)yθ defines a monotone bijection
g:[Q92e)->[0,2e).

Proof. For any 0e[0,2e), jSfθ is unitarily equivalent to the operator

on /2(2eZ). The ground state of &θ is given by :

Since &θ — — θ2 is affine in θ, its lowest eigenvalue is a concave function of θ. In

fact it is strictly concave, since otherwise it would follow that for two distinct
values of θ the operators ^θ have the same ground state, a possibility which can

easily be contradicted. Further, for each αe [0,2e\ the graph of I φα, I jέfθ θ2 \ψa\

(viewed as a function of θ) is a tangent, at θ = α, to the graph of

inf spec [&e — — θ2 I . It is a well known consequence of the strict convexity that the

slope of such tangents increases in α. By this argument (or, alternatively, using the
Feynman-Heillman formula) the following function of α is monotone decreasing:

= β £ (M + α)φ> + α)2-θ = -βg(Λ). (3.14)

Thus g(θ) is strictly increasing in θ on [0,2e). Further, the boundary values are 0
and 2e, since <£(0)>0 - <£(0)>2e = 0. Π

Pr06>/ of Proposition 2. The existence of the limiting states and their sole
dependence on θ follows, as discussed above, from Lemma 2. Their mutual
singularity follows from Corollary 2 and Lemma 3, which prove that each of the
^-states is supported on a set of configurations which has zero measure with
respect to the other states. Π

Remarks. 1) The periodicity in θ of < ...)β is due to screening, which in one
dimension is not complete. When a system is placed in an external electric field
(e.g. one produced by boundary charges), the integral part of the field, in the units
of e, gets screened by the transfer of some of the system's charges. The total effect
depends only on the unscreened fractional part of the applied field - θ. This
argument does not yet prove that the various 0-states have different distributions
of charge. That is a consequence of the reversibility of the correspondence (2.1).

2) The charge densities in the θ-states are always zero. This can be shown as
follows. Let ρθ be the charge density in < ... >θ.

Then for any L > 0:

Qe=~( Σ σλ =^τ<(£(L))-£(0)>β = 0 (3.15)
^ W[O,L] /θ ^
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by the translation in variance and integrability of the distribution of E. However,
the average electric field in a 0-state is not zero, except for θ = Q,e. This follows
from the fact that λθ is strictly decreasing (resp. increasing) in (0,e) [resp. (e, 2e)~],
[12].

3) There is another fruitful approach to the study of Coulomb systems, based
on the "Sine-Gordon transform". It turns out, [14], that in this formalism the
^-states offer simple analogs of "θ-vacua", and related phenomena, which are
studied in the context of gauge fields in higher dimensions.

4. Jellium

In this section we shall consider the jellium, which is a one component system of
negatively charged particles, with charges —e, distributed over a uniformly
charged background with the charge density ρ > 0. Among the system's interesting
features is the translation symmetry breaking, which for the classical jellium was
proven to occur at all temperatures [1,2], and which (at low temperatures)
corresponds to the formation of "Wigner-lattice".

The Hamiltonian for such a finite system in [ —L/2,L/2], with N negative
charges located at {q.}, is

(4.1)

Fig. 2. The electric field in jellium

We shall consider neutral ensembles, i.e. constrained by:

N = ρL/e. (4.2)

Because of the translation symmetry breaking it is now important to vary L over
only such values that the total positive charge in [0, L/2] is an integer in the units
of e, i.e.

L/2e x0Z with x0 = e/ρ.

Our main result about the jellium is:

(4.3)

Proposition 4. For any β>0, the finite volume ensembles with the Hamiltonian (4.1)
and the constraints (4.2) and (4.3) converge, as L->oo, to a limiting state which is:

1) Non invariant under continuous translations, although it is periodic with
period XQ = e/ρ and ergodic with respect to shifts by x0.
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Further :
2) In the limiting state for almost any configuration, q = {qt} :

lim eίπy/X° ΓT ei
2π[qί-x)ly = ei2πx/x0 (44)

y-^GO qτe[x,x + y]

[(4A) being a very explicit manifestation of the non-invar iance].
In order to prove this proposition we shall follow the method explained in the

previous sections. Namely, first study the electric field ensemble and then prove
that the relation between E(-) and the charge configuration, {#.}, is invertible.
From this point of view the non-invariance is an obvious consequence of the
following structural fact. In the neutral ensemble E(±L/2) = 0 and for any x^y in
[-L/2,L/2]

) = E(x) + 2ρ(y-x)-2e £ 1, (4.5)

assuming there are no charges at {x, y}. Therefore the range of values of E at a site
x is constrained by

(4.6)

This periodic constraint implies that the distribution of E(-) cannot be invariant
under continuous translations. It should be noted that (4.6) does not yet prove that
the distribution of particles is non-invariant. That would follow once we know that
E(') can be reconstructed from {qt}.

Lemma 4. The distribution of the electric fields in the ensembles mentioned in
Proposition 1 locally converges to a limit. The limiting distribution has the following
properties.

1) It is periodic, with period x0, and ergodic with respect to shifts by x0.
2) It is Markovian.
3) E( - ) satisfies the constraints (4.6), and almost surely has only isolated jump

discontinuities of size — 2e.
4) With probability one, E( ) may be recovered from the location of its

discontinuities, {#•}, by:

) = H m 2 e £+ 11 - ̂ -) -eK/x 0

and

E(x)= lim -2e £ l + +eK/x0. (4.7)
£-+oo qie[χ-K,x]\ A /

Proof. Let Vj(dE) be the distribution on "paths" E(x) which satisfy (4.6), having
jump discontinuities, by — 2β, independently distributed with density ρ/e=l/x0.
Most of the discussion of Proposition 1 and the proof of Lemma 2 apply to the
jellium, with v,( ) substituted for v( ) and vθ( ). In particular, with this change,
formula (3.4) describes the finite volume ensembles of E(-).

For the sake of comparison with v(dE), we remark that for x<y:

(y-χ)D(u,v) (4.8)

E(y) = v
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with the operator D, defined on L2(IR) by

(Df)(u) = 2Q-^f(u)+^U(u-2e)-f(u)-], (4.9)

replacing the difference operator A.
As a consequence of the constraint (4.6), the jump process generated by e~xD is

not transitive. However for any fixed u,ve2eZ

(4.10)

if

k>(υ-u)/(2e).

Substituting v, for v in (3.5), with x = x0, we obtain a kernel operator A(^ on
/2(2eZ). Similarly to (3.7), the finite volume expectation value of a function f(E)
which depends on E only in the interval [ — nx0, mx0], n,meZ is

with B given by the kernel:

E(mxo) = v

By (4.10) and the estimate (3.10), A(£ satisfies the assumptions of the Krein-
Rutman theorem. The claims 1-3 follow now by the application of (3.9) to (4.11).

In order to recover E( •) from {q.} we first note that the finite volume ensembles,
and thus also the limiting state, <(...},/, have the symmetry: E(x)-> — E( — x).
Combined with the periodicity, this implies that

]dyE(y)\ =0. (4.12)
o /j

By an application of the ergodic theorem,

ι x + kxo

lim — ί dyE(y) = 0 for almost every £(•). (4.13)
|fcj-oo \k\ x

keZ

In fact, by the local integrability of £, (4.13) holds also without the restriction keTL.
The reconstruction formulae (4.7) follow now by the substitution of (4.5) in
(4.13). Π

Proof of Proposition 4. The existence of a limiting state and its periodicity is
implied by the stronger statement of Lemma 2.

Equation (4.4) is just the exponentiation of (4.7), which is intended to
emphasize the non-invariance of the state, even in its restriction to the particle
variables {qt}.

Remark. The above proof of translation-symmetry breaking relies on the struc-
tural constraint (4.6) which holds irrespectively of the temperature. Thus we regard
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this argument as considerably simpler than those used previously [1,2]. However
it leads only to the conclusion that some correlation function is not invariant. We
do not offer a simplification of the proof of that statement for the one particle
density.

5. Equilibrium Conditions

We shall now discuss the structure of the states we have considered from the three
points of view which are generally used to locally characterize thermodynamic
equilibrium. We shall focus on the two component system. Extension to the jellium
requires only the obvious modifications.

a) The Structure of the Conditional Distributions

In the introduction we have explained the inapplicability of the DLR condition in
its usual form. Having gathered more information, we may now complete the
analysis of the conditional distribution of the particles in a finite region A,
conditioned on the configuration in Ac.

For typical configurations, formulae (3.11) and (3.12) permit us to reconstruct
the total electric field at the boundary of an interval A = [α, b~\ from the location of
charges in Ac. To be specific, the calculation of E is really carried in three steps:

1) Computing the limit in (3.13) one finds the value of g(θ) for θ = external field
mod2e.

2) <£> is calculated for the state for which the given configuration is "typical",
using the inverse function of g(θ) and an explicit computation of <(£>#.

3) Using the above information and the limit in (3.11), (3.12), one finds E(-).
It may be shown that this procedure is equivalent to a more direct, but less

explicit, variational method in which one first solves for £(•) up to an addive
constant, and then selects the solution which minimizes §dx\E(x)\2.

Thus the local distribution conditioned on the particles in Ac directly
corresponds to the local distribution of the electric field E( -), conditioned on E( )
in Ac. However, in a sharp contrast with the long range of the Coulomb interaction
between particles, E( ) has the Markov property. It implies that the above
distribution is given by the corresponding (E^EJ equilibrium ensemble, in-
troduced in Sect. 3. A striking implication is that the total charge in [α,b] is*
restricted to be Q(Ea,Eb) [see (3.1)] (i.e. adding a single particle to a "typical"
configuration leads to one which is "α-typical"). Otherwise the distribution is given
by the Gibbs prescription, which is :

1/Norm

(5.1)

Thus the θ-states satisfy a version of the DLR condition which, with respect to the
charge, is canonical rather than grand-canonical (i.e. the ^-states are canonical, in
the terminology of [15]).
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b) KMS Condition

Adding the momentum degrees of freedom, with the independent distribution

.), we obtain states of an infinite classical system which

might be expected to be invariant under the Hamiltonian dynamics. The action of
the generator of this time evolution, on local smooth functions /, is given by

^ι}) (5-2)
k lm °Pk °Pk\

with

Fk({qP σj}) = lim σk\_E(qk + ε) + E(qk - ε)]/2 ,

and E( ) computed by the procedure discussed above. In this setup we may
formulate the classical KMS condition [16].

Proposition 5. In each of the θ-states :

for any pair of local, C2, functions f,g :Ω->IR. ({ , } is the Poίsson bracket.)

Proof. For any finite interval [α, b~\ let us consider the time evolution for which all
the coordinates of the particles outside of [α, b] are kept fixed, and the particles in
[α, b~] evolve under the Hamiltonian evolution which corresponds to the (£Λ E J
ensemble, with reflecting boundary conditions at a and b. Our previous analysis of
the conditional distributions implies that the θ-states are invariant under such
evolutions and obey the corresponding KMS conditions. These are described by
(5.3) restricted to functions which satisfy the reflecting boundary conditions at a
and b. Choosing [α, b~] to strictly contain the domains in which given / and g are
measurable we have a proof of the claim.

c) BBGKY Hierarchy

Let {ρ£°} be the correlation functions of a θ-state. We shall now see that they obey
the following form of the BBGKY hierarchy of equations :

Σ

with

The special features of (5.4), in comparison with the BBGKY hierarchy for short
range systems, are the use of the limit y-*ao and the term with <£>θ. The
significance of this term was discussed in [17].

+ /Πim £ dqn + 1Fί>n+l^
+ί\{(qkyσk)}k^^_n+1) (5.4)

y""00 σ n + ι = ±e -y
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To prove (5.4), we observe that for any a,be(— oo, oo) the invariance of < ... >θ,
(with the added Boltzmann distribution of momenta) under the modified dynamics
discussed in the proof of Proposition 5, implies the following set of equations:

d (n}

dqQβ 1k>°k *=!,.. .,»,

= β

(5.5)+ β Σ
σn+ i = ±e a

for {qk}k=lt > > ι j Π e ( α , b). Here ( \{(qk,σk)}yθ is tne state conditioned on the existence
of the charges {σk} at {^} f c=ι ) >..> w. Alternatively, one may derive (5.5) using the
explicit formula (5.1).

The mixing property of < . . . >β implies that for any given {(qk, σfe)}

\a\, + oo

Substituting (5.6) in (5.5) we obtain (5.4), in the limit α-> — oo, fe->oo.

6. Remarks on the Phenomenology

The 0-states can be viewed as limiting states of finite, neutral systems placed in a
condenser. In the corresponding electrostatic terminology the applied field is the
electric displacement D. At any temperature and density, the average field, <E>(D),
is a non-trivially periodic function of D depending only on θ = D mod 2e, with
<£>(-£>)=-<£>(/)) and <£>(£= e) = 0.

Fig. 3. The effective field as function of the applied field (schematically)

The dielectric constant ε= ——
\ dD

-1

is finite at all temperatures and

densities (the one-dimensional Coulomb system is an insulator, see [18] for a
discussion of this point).

If Q(x) and P(x) = xQ(x) denote the charge and polarization density in a finite
neutral (E^ = E^ = D) equilibrium ensemble in [ —L,L], the total polarization PL is
given by
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Therefore we get in the thermodynamic limit the usual phenomenological relation

)= lim <P>L(D

For small values of the plasma parameter —-τ? and 0 ̂  D < e, the system can be
βe

viewed as a collection of dipoles which interact only when overlapping. The
binding potential of a (H—) pair in the D field is VD(x) = e\x\ + Dx, Q^D<e. For
D = e, VD(x) is no more confining and the dipoles disassociate. It is easily checked
that for 0 ̂  D ̂  e the equation of state at low density is that of a free gas of binary
molecules (i.e. βp=ΐ/2ρ, ρ->0) whereas for D = e we have a free gas of particles (i.e.
βp = ρ, ρ-+Q). When e<D<2e, one (H—) pair is broken; the corresponding
charges go to boundary and over screen the applied field, hence the change of sign
of <£>(D) at D = e. For D = 2e, this surface charge shields the applied field exactly,
and therefore the D — 2e state is identical to the D = 0 state. As D increases the
same mechanism repeats: Whenever the value of D passes an odd multiple of e,
another dipole disassociates, and the surface charge increase by one unit. However
just at these odd values of D/e each of the dipoles is unstable.

The above discussion in terms of dipoles is meaningful only when the length of
a dipole is smaller than the dipole separation. Although there is no sharp phase

transition, in the plasma limit, —j- > 1, dipoles overlap and typical configurations

look qualitatively completely different.
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