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Abstract. We give an expression for the perturbed evolution of a free evolution
by gentle, possibly velocity dependent, potential, in terms of the expectation
with respect to a Poisson process on a group. Various applications are given in
particular to usual quantum mechanics but also to Fermi and spin systems.

Introduction

Since the proposal of Feynman [1] of a quantization procedure by means of path
integrals, a great deal of effort has been devoted to make precise the definition of
such an integral (see e.g., [2, 3] for references). An important step has been to realize
that in some cases this path integral can be interpreted as the expectation with
respect to a stochastic process [4]. One of the most natural stochastic processes
which has been considered first is the Gaussian process. Another one is the
Poisson process [5, 6]. In this paper, we shall consider the connection between
Poisson processes on groups and the usual Weyl quantization procedure. More
specifically, let H0 be the free hamiltonian of a single particle and V a multipli-
cative potential which is the Fourier transform of a bounded measure v. In the "p"
representation H0 is just a multiplication operator by h0(p) = p2, then for any
square integrable, continuous function ψ one has

where £j(Γ) = 0 denotes the expectation value with respect to a Poisson process
naturally associated to v, Proposition (3.7).

In fact this result is a special case of a more general result. Let G be a
topological group which acts on a topological space £, and let μ be a quasi-
invariant measure on 3E with respect to the action of G. Under these assumptions
the action of G on 3£ induces ^-automorphisms of 1̂ (3;, μ) which are unitarily
implemented by a unitary projective representation U of G. Let 9M be the cross
product of L^(Ji, μ) by the action of G. Then it is possible to write a formula of the
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previous type for the one parameter group whose generators are of the form
HQ + V where H0 is an operator affiliated to L^X^μ) and V is of the form

J dv(g)U(g) with v a bounded measure on G (Theorem 2.11).
G

The first section is devoted to the unitary projective representations of a
topological group G induced by its action on a topological space 3E. In particular it
is possible to give a fairly complete description of these representations when G is
abelian, acts transitively on £, and •£ can be identified to a subgroup of G
(Proposition 1.9).

In Sect. 2, we give a definition of Poisson processes on a group G associated to
bounded measures v on G. In particular we describe the sample paths space,
which is the set of left continuous, piecewise constant, with a finite number of
jumps, functions from te [0, T] to G, ending at the origin. This leads to main
theorem (2.11). More specific potentials with definite support properties are
investigated.

The last two sections are concerned with specific groups G, namely abelian
groups of the form ©0 x ©! where ©x is a subgroup of ©0 the dual of ©0.

In the third section, ©1 = (50 with the two examples:
i) @0=IRN with the usual topology. This is nothing but ordinary quantum

mechanics with N degrees of freedom. The main theorem allows to treat some
velocity dependent potentials namely those of the form

V= j dv(x,p)U(x,p),
1R2ΛΓ

where U(x9 p) are the ordinary Weyl-operators el(xP~pQ) and v a bounded measure
on 1R2N then

- i h0(p-p(τ))dτ .e-Π p(τ)dX(τ) . e - ip*<0) _

ϋ) (5Q = ty(A) the group of finite subsets of a countable set with symmetric
difference as group law. That gives models for spin systems in the usual Fock
representation.

Fourth section deals with "quantum field like models" where ©1$©0. The
specific examples which are given are the following:

i) ©0=RN with the discrete topology, ©1=IRN.
Beside ordinary representations of G there exist representations in non

separable Hubert spaces which simulate representations with position or momen-
tum eigenvectors.

ii) ©0 = ty(Λ) as previously with A strictly infinite and ©t = ©0. It is possible
to describe in this context the Fermi anti-commutation relations. In particular, we
apply the main theorem to bounded perturbations of the number operator.

iii) In this last example ©0 is the additive group of a real prehilbert space H
®ι = ®o The main theorem applies but the fact that the potential has to be the
Fourier transform of a bounded measure introduces strong restrictions.

There are many interesting applications of the previous general theory for
more specific models which will be treated in separate forthcoming papers.
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1. Unitary Projective Representations Corresponding to Group Action

Let G be a topological group and 3£ be a topological space. A continuous action of
G on £ is a continuous mapping (denoted multiplicatively) from 3E x G to X which
satisfies

(1.1)

where e is the identity of G

(I-2) (*0ι) 02 =

Let ζ be a multiplier on G, i.e. a continuous function from G x G in the torus T
which satisfies

(1-3) C(01, 02)C(0102> #3) = C(02> 03)C(01» 0203)

Let μ be a positive measure on 3£ which is quasi-invariant for the action of G on 3£.
Then it is possible to build a unitary projective representation of G according to
the following proposition (see e.g. [7]).

Proposition 1.4. Any continuous function Z from £ x G into T which satisfies

a) Z(x, 01)Z(x01,02) = C(01? 02)Z(x, 0!02)

defines a continuous unitary projective representation Uz of G on L2(3£, dμ):

b) (I

Conversely ifUz is a unitary projective representation ofG on L2(3£, dμ) defined by b,
Z satisfies property a).

G has a continuous transitive action on itself by right multiplication. To that
action corresponds the regular unitary projective representation Uζ defined as

(1-5) (t/ cto)/)(flf /)=fte ίflf /)

for a quasi (right) invariant measure μ on G.
This representation is unique in the following sense.

Proposition 1.6. Let G be a topological group and μ a positive (right) quasi-
invariant measure on G. Let Uz be a projective unitary representation of G on
L2(G, dμ) corresponding to the function Z defined in Proposition 1.4. Then Uz is
unitarily equivalent to ί/ζ and the intertwining operator V between Uz and U^ is of
the following form

(Vf) (o) — v(d)f(0) j /e L2(G, dμ)

for v a continuous function from G to TΓ.

The proof uses the following lemma.

Lemma 1.7. Let Z be a (continuous) function from G x G to the torus T which
satisfies

h,g2)Z(gίg2,g3) = ζ(g2,ί
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Then there exists a (continuous) function v from G to T such that

,g') = ζ(g,g')v(g)v(gg').

Let now G be an abelian group which acts transitively on 3E, and μ a positive
quasi-invariant measure on •£. The existence of a unitary projective representation
implies some restrictions on the multiplier ζ.

Proposition 1.8. Let G be an abelian topological group which acts transitively on a
topological space £, and G0 be the stabilizer of the points in X. Let ζ be a multiplier
on G. Assume there exists Z satisfying property Proposition 1.4 a), then ζ restricted
to G0 x G is trivial in the sense that there exists a function λfrom G to T such that

C(0o> 9) = %o W0M(0o0)' v#o e Go > 9 e G

As a corollary the Uz(gQ), gQeG^ commute.

Conversely we can describe the unitary projective representations of G
corresponding to a closed subgroup G0 on which ζ is trivial in the above
mentioned sense, more precisely:

Proposition 1.9. Let G be a topological abelian group such that G = G 0 x G 1 ;
moreover let ζ be a multiplier on G such that

ί£0Γ)

where λ is a function from G to the torus ΊΓ.
Consider the following action of G on Gί

Let μ be a positive quasi-right invariant measure on Gr Let Z be a function from
G! x G in the torus T which defines a unitary projective representation of G on
L2(G1,dμ). Then Z has the following structure

Z(k, to0? βl)) = λ(e, 01)λ(gθ9 g$fi((g» e) (e, k

χtoo)C((^fe)(

where bζ is the bίcharacter defined by

X a continuous character on G0 and v a continuous function on G1 with values in T.
Conversely, given χ a continuous character ofG0 and v a continuous function from

G! to T, then the previous formula defines a function Z which verifies
Proposition 1.4a).

This proposition is an easy consequence of a more general theorem whose
proof is given in the Appendix.

These representations are obvious generalizations of "x" or "p" representations
of the usual quantum mechanics (see later). Nevertheless they are not necessarily
irreducible, at least if G0 is not ζ maximal abelian.
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In what follows we shall be interested in some algebras of bounded operators
associated with these representations, the most natural being the von Neumann
algebra AuZ(G,ζ) generated by the Uz(g). Furthermore, the Uz(g) implement the
group of automorphisms of L00(3£,dμ) defined by

(1.10) (θgM)(x) = M(xg) μ-a.e.

that is

θgM=Uz(g)MUz(g)*

[the same notation is used for an element of 1̂ (3;, dμ) and the associated operator
on L2(3£,dμ)].

So, another interesting algebra is the von Neumann algebra 9W generated by
both the Uz(g) and the elements of L^X, dμ), i.e. the cross product of L^(%, dμ)
by the action (1.10) of G. Let us remark that in some cases 9JI is identical to

^Z(G,0
Now, we define a dense subalgebra Q of Auz(G,ζ) in the following way.

Definition l.lί. Q is the *-algebra of elements in AuZ(G,ζ) of the form

where v is a bounded measure on G.
This is a generalization of the Weyl quantization procedure. In this case G is an

abelian locally compact group, G its dual and dg, dg the corresponding Haar
measures. Let ζ be a multiplier on G, the associated bicharacter bζ on G ensures a
homomorphism of G into its dual G. Let us assume, that is the case of ordinary
quantum mechanics, that this morphism is an isomorphism, then

(1.12) (&f)(g) = [tf(g,g)mdg
G

defines a Fourier transform of functions on G. The operator Qω(f) defined by

(1-13) Qω(f) == j (Ff) (g)ω(g)Uz(g)dg
G

when the right hand side makes sense, is usually called the Weyl quantized of the
function / on G, the continuous function ω from G to T being such that

ζf(g,g') = ω(g)ω(g')ω(gg')ζ(g,gf)

is a bicharacter.
In the general case, ω can be chosen quite arbitrarily and will be called

ordering.
The quantized operator Q(v) is just a multiplicative operator when v takes

some simple form. We generalize here a well known result for ordinary quantum
mechanics:

Proposition 1.14. Using the assumptions and notations of Proposition 1.9 and
Definition 1.11, if v is a bounded measure on G such that
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where v0 15 a bounded measure on G0 and δe the evaluation in e on G^ then its
quantized Q(v) satisfies

keGlf

the bounded continuous function N being given by :

N(k)= J
Go

2. Perturbed Evolutions. Poisson's Formula

As previously, let G be a topological group, ζ be a multiplier on it. G acts
continuously on a topological space 3£, which has a positive quasi-invariant
measure μ with respect to the action of G.

Uz is a unitary projective representation of G on L2(3E,μ) associated to a
function Z which satisfies conditions of Proposition 1.4.

Let ί-»l7f° be a unitary continuous one parameter group in L^X^μ) and let us
define H0 its infinitesimal generator

(2.1) £— iH0U?.

Let us assume moreover that there exists a continuous function /ι0 such that

(2.2) (H0f)(x) =

for a dense subset of vectors / in L2(3E, μ).
Let v be a bounded measure on G, and Q(v) its quantized (see Definition 1.11).
Our aim in the following is to describe the solution of the equation

(2-3) (Utf)=-i(H0 + Q(v))Utf, Utf\t = 0=f

for a dense set of functions / in L2(3£, μ). The solution of such an equation for
bounded β(v) can be obtained by the wellknown Dyson expansion. It is this
expansion that we want to analyze in terms of Poisson process.

A generalized Poisson process on G for the finite time interval [0, T],
corresponding to the bounded measure m on G is defined in the following way (see
e.g. [5, 6]).

Ω is the space

where ω0 is a point.
2F is the Borel σ-algebra generated by the sets $£° a B B which are defined

by

where the Bt's are sequences of Borel sets in G and the αt's are sequences of Borel
sets of [0, T] which satisfy V ί eα^Vf eα,., i<j=>tt<tj.
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Given m a bounded measure on G, Pm is the (bounded) measure on Ω such that

P (7<°)) = i
(2.4)

where |αf| is the Lebesgue measure of αf.
If F is a measurable function on Ω then its expectation value defined by

(2.5) Eτ(F) = \F(ω)P(dω)
Ω

can be explicitly computed

(2.6) ET(F) = Σ f it, f *„-!-.. j A! ί <M<7n) - - f dm(9ί)F(n, ί, βl) .
n = 0 0 0 0 G G

Moreover a G valued generalised Poisson process on Ω is defined in the following
way:

(2.7)

i 9 g j = gϊl ...g'1, ίεflUJ.

In fact we shall be interested by measurable functions F defined as functionals on
the previously introduced process. In order to underline this fact and noticing that
every associated path ends at g = e, the identity of the group, we shall in the
following denote the expectation value by E^(T) = e. More precisely we shall be
interested in the following measurable functions (or associated functionals):

Definition 2.8. Let G be a topological group and ζ a continuous multiplier on G.
Ξζ(g) is the measurable functional defined on Ω by

Ξζ(g)(n, tt, gj = ζ(g(tnΓ\ g(tn)g(tn-ιΓ ')

...ffo(ίJ-Sίrtg^
where to simplify we have written :

This functional has the obvious property :

Proposition 2.9. Let ζ and ζf be two equivalent multipliers, namely there exists a
continuous function λ from G to the torus T such that

Hence

and

Ξζ(g)(n, t i 9 g t ) = A(0i)... λ(gn)λ(gn ... gjΞζ(g)(n, ti9 g t ) .

Another measurable functional is important:
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Definition 2.10. If /z0 is a continuous function on 3£

T ϊ f n+ίn+ί ϊ

-i £ (tk-tk_1)h0(xgn+ί ...gk)\
/c=ι J

for ω = (n, £;,#,-), ίπ+ι = T9 gn+1...e9 defines a measurable functional on Ω.
As a last example let us mention that if /is any continuous function on G, the

functional ωeΩ-^/feίO)"1) is measurable. Now we are able to state the main
theorem.

Theorem 2.11. G is a topological group and ζ a continuous multiplier on it. G acts
continuously on a topological space 3£ and μ is a positive quasi-invariant measure on
•£ with respect to the action ofG. Uz is the unitary projective representation ofG on
L2(X,dμ) corresponding to the function Z defined in Proposition 1.4.

h0 is a continuous function on 3E and v a bounded measure on G, ω is an ordering
factor and H0 denotes the operator associated to h0 on L2(X, dμ). Denote by

Qω(v) = $ω(g)Uz(g)dv(g)
G

the quantized ofv with respect of the ordering ω. Let Us be the solution (in SOίj of the
equation

Then if f is a continuous function of L2(3£, ^Aθ> f°r

where £j(Γ) = e denotes the expectation with respect to the Poisson process on G for
the measure dm(g) = — iω(g)dv(g).

Proof. The right-hand side is well defined according to the previous remarks.
Moreover from (2.7)

'-/(xg^ΓΎ,

n=ί 0 0

• J . . . J ω(0!) . . . ω(gn)dv(gi) . . . dv(gn)
G G



Poisson Processes and Path Integrals 277

where gn+ί = e and tn+1 = T

n = l 0 0 0 G G

ω(θl) ...ω(gn)dv(dl) ...^(g^e-^-'^θ^e' «'--'- 0*0)

-θβn...βl(e-i'ίH°K(gn,gn-ί)ζ(gngn-1,gn-2)
...ζ(gn...g2,gί)Uz(gn...g1)f}(X)

oo Γ ίn ί2

= (e-lTB'f)(x) + Σ (-irfdU^-i...! AI
n = l 0 0 0

• J . . . j cotei) . . . ω(gn)dv(gί) . . . dv(gn)
G G

-^H^Uz(gn)e-i(t--tn-^HGVz(gn_l)...e-i^-^^
00 T tn t2

= (e-ir«°/)(x)+ Σ (-iTίΛjΛ,,-! ..jΛi
n = l 0 0 0

-ί(T- tn)H0ωs\ - i(tn -tn- ι)H0 ~ i(ί2 - f i J H o ω Λ Λ - ίί iflίo W

which is precisely the Dyson expansion of
In Theorem 2.11, the functional Ξζ can be dropped in some important case:

Corollary 2.12. Under the same assumptions and notations as in Proposition ϊ.9 and
Definition 1.11, assuming moreover that v — δe x vί where vx is a bounded measure on
G^ we have

for u defined by

u(k) = λ(e,k)v(k)

and for the Poisson process on G± with measure

dm(g1) = - iλ(e, g^)ω(e,g^)dvl(gl}.

3. Specific Examples in Generalized Quantum Mechanics

In this section, we shall apply the previous results to specific examples, namely the
usual quantum mechanics with N degrees of freedom and also to spin systems in
the Fock representation. All these results apply as well to more general situations
where G is of the form (5 x (5, (5 being an abelian locally compact group and the
bicharacter bζ associated to the multiplier ζ being of the form:

(3.1)

where ( | •) denotes the duality between (S and (5, [8].
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a) Quantum Mechanics with N Degrees of Freedom

In this case © =RN. G = RN x RN is an abelian locally compact group for the usual
topology. We choose as multiplier :

(3.2) ζ((x, p), (x'p')) = exp - - (xpf - x'p) .

This multiplier restricted to RN x {0} x RN x RN (resp. {0} x RN x RN x R^) is
trivial

(3.3) ζ((x, 0), (x', p')) = exp ̂  x'p' j exp ( - l- (x + x')p'

hence

λ(x,p) = exp -xp resp. exp --xp
w / L \ ^

The "x" and "p" representations can be written explicitly in L2(^N,dξ) [resp.

(3.4) {l/*(x,p)V}«) = e x p - xp - i

and

(3.5) { Up(x, p)φ}(π) = exp ί 1 xp + iπxj ψ(π + p)

these two representations are intertwined by Fourier transformation.
Despite the complete symmetry between the two representations, the study of

unitary groups generated by operators of the type Q(/z0) + δ(v) singles out a
representation since in general h0 is just a continuous function on RN which is not
the Fourier transform of a bounded measure. Hence we can state the theorem.

Theorem 3.6. Let h(x,p) = h0(p) + v(x,p) be a classical hamiltonian on R^xR^,
where hQ is a continuous function and φc,p) the symplectic Fourier transform of a
bounded measure v on RN x RN then :

) = (0,0)

-il h0(π-p(τ))dτ -iT p(τ)dx(τ)- iπx(O)

where E^x(T) p(T^=(0 0) is the expectation of the Poisson process on

associated with the bounded measure — iexp -xp) dv(x,p) and Ql(ti) is defined in

I T \
(1.13). Moreover the exponential exp — i J p(τ)dx(τ) is the measurable function on

\ o /
Ω defined by :

I T \ I n

exp -if p(τ)dx(τ) -exp -ί £ p(tk)(x(tk)-x(tk_1)
\ 0 / \ fc=l

for (x, p) (ί) - (x, p) (ί) (ω), ωe Ω.
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This theorem is a direct application of Theorem 2.11 and Proposition 2.9. Let
Ξζ be the functional defined in (2.8)

Ξζ((n9tl9...9tn9(xl9p1)...(xn9p,))

ί
= exp -i X p(tk+ί)(x(tk+l)-x(tj))

\ k=ι
n \ / n

l l e χ PUPΛ exP -^ L ft L xk
k = l V I \ Z\k=l / \ f c ' = ι

the factor Y[ exp(-p f cxk) can be embedded in the measure whereas the factor
fc=ι

-

cancels the same factor coming from the action of Up.
The result is simpler for velocity independent potentials:

Proposition 3.7. Let h0 be a continuous function on R^ and V be the Fourier
transform of a bounded measure v on IRN, let f be a continuous function o/L2(IRN, dπ)

where £j(Γ) = 0 is the expectation with respect to the Poisson process on IR^/or the
measure — idv and

Another example of the general theory is given by the gentle perturbations of
classical evolution of quantum spin systems in the Fock representation.

b) Quantum Spin Systems on a Lattice

Let A be an at most countable set, © = 9β(A) the group of finite subsets of A with
respect to the symmetric difference denoted by Δ [9-11], its dual (S = g?(A) the
group of all subsets of A for the same group law. Moreover choose

(3.8) f((X, Y),(*', F)) = (- l) |yn*Ί , X,X'eφ(Λ)9 Y9 Ye0(Λ)9

where \K\ denotes the cardinality of Xety(Λ). This example corresponds to spin
systems in the Fock representation [8, 12]. A classical Hamiltonian for a spin
system is just a function u0 : s$(/t)-»C whose quantized Q(u0) acts on l2(ty(A)) as
follows

(3.9)

We consider the potential ι?:^(/l)->(C which is continuous [hence bounded since
g?(A) is compact] and consider v its Fourier transform which is a bounded
measure on the discrete group ty(A). Then one has the following proposition.

Proposition 3.10. Let u0 be a function from φ(yl)-*(C and v be a continuous function
on 3?(A). Let Q(v) the quantized of v defined by :

(Q(v)φ)(Y)= X v(X)φ(XA Y) ,
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Then, for any ψel2(ty(Λ)\ we have:

where Eγ(T) = ϋ denotes the expectation with respect to the Poisson process whose

sample paths are pίecewίse continuous functions with finite number of jumps in

9β(Λ) the measure is m(X) — — v(X).

In this paper we refrain to consider more general potentials.
A more exotic example is furnished by the group Z x T where Z is the additive

group of natural numbers and T the torus. We shall not elaborate on it but
postpone to a forthcoming paper where it is used to treat some bounded
perturbation of the harmonic oscillator.

Before closing this section we want to make a remark: in the examples we
considered, the groups are locally compact hence they possess an invariant
measure, the Haar measure. This is not necessarily the case, for in Boson Field
Theory (see next section) the group is the additive group of an infinite dimensional
Hubert space. Nevertheless, even for the case of locally compact groups, it can be
of some interest to consider unitary projective representations corresponding to
quasi-invariant measures. A well known example is given by the Bargmann
representation [13] where the quasi-invariant measure is the Gaussian one.

4. Specific Examples in Quantum Field Like Theories

In this section we shall be interested by groups G of the type

(4.1) G = © 0 x © 1 .

©Q is a topological abelian group and ©1 is a subgroup of the dual of ©0.
ζ is a multiplier on G such that the associated bicharacter bζ satisfies

(4.2)

where ( | •) denotes the duality between ©0 and ©0. We shall treat three examples
of such a situation.

a) IRN x IRN with Discrete Topology

We choose the same multiplier as previously

(4.3)

The dual group of IR ,̂ endowed with the discrete topology, is compact and strictly
larger than IRN. Beside the usual representation, there exists a lot of irreducible
unitary projective representations of JRN x IRN which are not unitarily equivalent.

Let us consider for instance the "pure momentum" representation in that case
ΐ^IR^ taken with the discrete topology, the invariant measure being the counting
measure. Hence the Hubert space of the representation is /2(Π^v) The projective
unitary representation of 1RN x RN on /2(D^v) is formally the same as the usual "p"
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representation, i.e.

(4.4) { U(x, p)ψ}(π)=Qxpl xp + iπx\ ψ(π + p)

except that now ιpe/2(IR]V). More precisely, for every φe/2(IRN) there exists a
countable set {πf}ίeZ, π^elR^, such that

φ(π) = 0 if π£{πjfez

and moreover

Notice that the representation space is not separable. Nevertheless, within these
representations, there exist pure momentum states

For those states, one has

(4.6) {U(x9p)ψpo}(π)=exp< - l- xp + ixp0 1 ψpo _ p(π) .

Consequently the ψpo are simultaneously eigenvectors of the U(x, 0) with eigenval-
ue exp(ip0x). As in the previous example, we can state:

Proposition 4.7. Let G = RN x IR^ be endowed with the discrete topology. Let h0 be
any function on IR^ and v the Fourier transform of a bounded measure on RN (taken
with discrete topology) and ψpo be a pure momentum state. Then

£P(Γ)-O_ refers to the expectation value corresponding to the Poisson process in IRN

with jump measure —lav and

Let us remark that in the case of velocity dependent potential, the previous
expression can be extended :

(4.8) {e-iTQ(ho + v)ψpo}(π)

- Π h0(π - p(τ))dτ - i ? p(τ)dx(τ) - ίπx(O)

b) Fermi Systems

The example corresponding to Fermi systems is closely related to the previous
example of spin systems [10]. Let us detail the formalism. H is a real infinite
dimensional separable Hubert space with s as fundamental real strictly positive
symmetric bilinear form. A ^-representation of the Clifford algebra 91(̂ ,5) [14] is
given by a (real) linear map xeH-*b(x) into the (bounded) self-adjoint operators
on a Hubert space ffl which satisfies

(4.9) b(x)2 = s(x,x)ί.
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Moreover, let {e^fy^ be an orthonormal basis of H. Let J be the complex
structure on H defined by

(4.10) Jet = fi9 Jft=-ei9 ieZ.

Creation and annihilation operators associated with this complex structure are

(4. 1 1) b* (Γjx) = %b(x) + ib(Jx)) V XE H ,

where Γj is the identification map of H to the complex Hubert space whose scalar
product is

(4. 12) <Γj(x)\Γj(y)y = s(χ9 y) + is(Jx9 y) .

Proposition 4.13. Let ξ be the following multiplier on φ(Λ) x

ξ((X, Y),(X', Y')) = ω(X, Y)ω(Xf, Y')ω(XAX', YΔ Y')(-

where

ω(X y) = ϊlχΔθ^Δy)nyΔ^xΔy)l

and θ is the unique homomorphism of 9β(Λ) which satisfies

Θ({χ0})=0
θ({xj}) = {XieΛ ,i<j} r>0

for a given but arbitrary order on Λ = {x;};eZ.
There exists a bijection between the unitary projective representations U of

x ty(Λ) with multiplier ξ and the ^-representation 0/51 (H,s) which is given by

ieX j<=Y
<

where f| denotes the product in increasing order and F is given by

F(X Y) = / l X n Y l + \Θ(χΔY)nY\ + |Xnθ(XΔY)|/ _ j\|

For the proof, see [10, p. 231] and [15].
As a special case

U({xi},0) = b(ei)

l/(0, {*,}) = &(/,)

We can apply the general theory which has been developped to the group
9β(Λ) x ^β(A) with the multiplier ξ. However, both to simplify the proofs and to
treat Fermi systems and quantum spin systems on lattice, we shall deal with the
multiplier ζ defined in (3.8)

This is possible since we have the following theorem [10] :
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Theorem 4.15. There is a bijection y between the projective unitary representation of
x ty(A) with multiplier ξ and the projective unitary representation of
x φ(Λ) with multiplier ζ

γ(Uξ(X, y)) = ω(3f,

where τθ is an automorphism of 9β(A) x ty(A) which satisfies

τθ(γ, Y) = (XΔ Θ(XΔ 7), YΔ Θ(XΔ Y)) .

Moreover τθ leaves the diagonal A = {(X,X) ',Xe ty(A)}, invariant and satisfies τ^ = ί,
the identity automorphism.

Hence we shall consider the group ty(Λ) x φ(Λ) with multiplier ζ - φ(Λ) x
acts on ty(Λ) according to

and the counting measure on ^β(Λ) is an invariant measure for this action.
Moreover one has as the following lemma :

Lemma 4.16.

', Y')λ(XAXf, 7Δ Y)

with λ(X,Y) = ίW.

According to Proposition 1.9, there exists a unitary projective representation
Uζ of φ(Λ) x φ(Λ) on the space /2(φ(/t)) which is given by

(4.17) (i/c(
this representation corresponds to Fock representation : as one can easily see the
representation space contains a vacuum vector

ίl if Z = 0
V 0 otherwise.

Let Λ0 be a real function on ty(A) it defines a self-adjoint operator on l2(fy(A)) by

(Ho/) (Z) - h0(Z)f(Z) fe l°

where /2(φ(Λ)) is the set of functions from φ(/l)->C with finite support.
It is a matter of easy computation to see that the number operator

(4.18) JV=

and more generally an operator

(4.19) H0

acts in that way with

Consequently according to Theorem 2.11, we have:
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Proposition 4.20. Let HQ be an operator in the Fock representation which can be
written as

Let V be a bounded operator of the form

where Vis a bounded measure on ty(Λ)x ty(A). Then for any fin

\ — j- \Z\ fT
) — 1 rj

e-«ΪM^(^r(^β-(.Tl^^l.|I(0) |̂Λz^(0^y(0))j>

where as usual Efx,τ. y(T)) = (0 0) denotes the expectation with respect to the Poisson
i T \

process on 9β(Λ) xty(A) whose measure is— ίV(X,Y) and exp — iπ J | Y(τ)r\dX(τ)\ is a
\ o /

functional, on the sample paths set, defined by

_ Σ ι \ Y ( t k + ί ) ( n ' , t i , ( X l Y ί ) ) n ( X ( t k + 1 ) ( n ) t l ( X ί Y ί ) ) n X ( t k ) ( n > t l ( X i Y i ) ) \

Corollary 4.21. Let H0 be an operator in the Fock representation of canonical
anticommutation relations which can be written as

ieTL

Let ¥ be a bounded operator of the form

v=

where V is a bounded measure on 9β(Λ) x 9β(Λ), then for any fin l2(9β(Λ))

-
where £j(Γ) = y(Γ) = 0 is the expectation with respect to the Poisson process on
ty(Λ) x ty(Λ) whose bounded measure is z ( 'X n Y '~1 )K(τθ(X,Y)), and τθ as being
previously defined.

c) A Model of Bose Field Theory

This last example is devoted to a very simple model of field theory to show that
even in that case the previous considerations can apply. Let G = HxH, where H is
an infinite dimensional real vector space, with the discrete topology. To be specific,
let us consider the more special case where H = ̂ R(IR3) is the vector space of real
functions of 1R3 indefinitely differentiable with compact support.
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The symplectic form on H x H is given by

(4.22) σ((f9g)9(f9g'))=ί f (f'(p)g(p)-f(p)gWdp

which is clearly non degenerate.
The multiplier one chooses is

(4.23) «(/, g), (/', g1)) = exp (iσ((f, g\ (/', g'})

this multiplier restricted to the subgroup Hx {0} x G is trivial.
On H there exists an invariant measure, namely the counting measure. That

measure would lead to a Hubert space 12(H) which is non separable. Nevertheless
there exists on H quasi-invariant measures.

Let us consider a norm on H, for example

(4.24) \\f\\2 = ^f(p)2dp.

The Gaussian measure μ associated with that norm is quasi-invariant, namely

(425) \lwt~\" ' »/ _^^( f Λn\u^\ 1||^||2\

Let H be the Hubert space closure of ®Λ(IR3) with respect to this norm, ffl (0) is the
vector space_of functions from H to <C which depend only on a finite vector
subspace of H (cylindrical functional) and which are square integrable with respect
to the Gaussian measure. Jtίf is the completion of J^(0\

Corresponding to the Gaussian measure, one has, by Proposition 1.9, a
representation of H x H on ffl which is given by

(4.26) {U(f,g)Ψ}(h)

(̂  f f(p)g(p)dp + ί J f(p)h(p)dp- f g(p)h(p)dp -\ \\g\\2\Ψ(h + g)

. Notice that U leaves Jf (0) invariant. The unitary groups αeR-» ί/(α/, 0) and
g) are continuous. Their infinitesimal generators are respectively

(4.27) (Π(f)Ψ}(h) = j f(p)h(p)dpψ(h)
R3

and

(4.28)

for ψ such that

exists.
Let us consider the functional

(4.29)

then

(4.30)
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which shows that the cyclic component of Ω with respect to U is nothing but the
usual Fock representation.

Consequently, one can apply the previous results to HQ of the form

where P is a polynomial in n variables, and even to

where ft (resp. gt) is an orthonormal basis in H. The potential may be taken of the
form

v= Σ VijV&gj) with Σ l *
i, jeZ i, jel

Thus we can write a Feynman formula for that model :

where the Poisson process is taken in H x H for the discrete measure which is
defined in the following way :

0 otherwise,

where the brackets denote the scalar product in H.

Appendix

Theorem. Let G be a topological Abelian group and H a closed (invariant) subgroup
ofG. Let gε G->[#]e G/H be the canonical surjective homomorphism ofG onto G/H.
Let ζ be a continuous multiplier on G such that there exists a continuous function
λ:G-+T with the property

C(/z, g) = λ(h)λ(g)λ(hg) , V Λ e H ,

Let us consider the natural action of G onto H/G

gεG

and let μ be a positive quasi-invariant measure on G/H for this action. Then any
unitary projective representation U of G onto L2(G/H, dμ) is given by

(U(g)f) ([0']) = λ(g")λ(g"g)ζ(g", g)χ0

for some character χ0 of G, some continuous function u from G/H to T and for g"
arbitrary element of G such that
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Conversely for u and χ0 the previously formula defines an unitary projective
representation of G.

Proof. Let Z:G/HxG-+TbG defined by

(Uz(g))f) ([0']) = Z([flr'], g)

Of course Z satisfies (1,4)

Z([0'], gJZWgά g2) = £(0!, 02)Z([0'], 0!02)

Defining Uz'(g) = λ(g)Uz(g) allows to consider only the case where ζ(h,g) = l,
VheH and geG. In such a way, one has

Now let us define

where g" is any element in G such that [#"] = [#']. Hence w satisfies

(*) w([0'], 0)w([0'01], 02) = w([0'], 0!02) .

From this equation, we see that the restriction of w to H is a character of H

Take

Let us now compute in two ways

(U(g)U(h)f) (g') = Zfltf],

Hence

With the condition ζ(h, g) = l we have

so χ[gΊ does not depend on the point in G/H and defines a fixed character χ0 of H.
Given χ0 a character of H, there exists χo character of G which extends χ0.
Hence we can write

where w' becomes 1 on H.
Come back to (*), we can write :
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Taking g2 = gί V l with [0"] = [0']

w([fl'/]^ι) = w([^/]>^/'~1)
and

with
Hence w'^gi'],^""1) only depends on the class [#'] we take

then

and

Moreover

(Uz(g)f) ([flf']) - % W'

where
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