
Communications in
Commun. Math. Phys. 77, 229-250 (1980) Mathematical

Physics
© by Springer-Verlag 1980

Functional Determinants in Euclidean Yang-Mills Theory*

Constantine Callias1 and Clifford H. Taubes2

1 Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics,
Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

2 Lyman Laboratory of Physics, Harvard University, Cambridge, MA, 02136, USA

Abstract. We study functional determinants entering the path integral for
topologically non-trivial sectors of Euclidean SU(2) Yang-Mills theory and we
derive some results in exact closed form.

1. Introduction

We present in this paper a calculation in exact closed form of some functional
determinants arising in the study of quantum corrections about multi-pseudo-
particle solutions to Euclidean SU(2) Yang-Mills theory.

Our calculation is a continuation of the results of'tHooft [1] on the quantum
field theory about the single pseudoparticle solution. The isospin-1/2 and fermion
determinants that we calculate, however, only partially extend this program.

We have not attempted in this paper to deal with the general 8n — 3 parameter
multi-pseudoparticle solutions. Rather we restrict ourselves to the 5n-parameter
one [2]. The obvious extension to the 5n + 4 parameters [2] is impossible for
technical reasons having to do with the asymptotic behavior at spatial infinity, as
will become apparent in the statement of Proposition 5. Other authors [3]
however, have studied the properties of the determinant under conformal transfor-
mations and the results can be used to pass from the 5n to the 5n + 4 parameters.
The case we are studying here has also been attacked independently by Brown and
Creamer [4] who use a point-splitting method of regularization and previous
knowledge about the Green's function for the covariant Laplacian to calculate the
determinant.

Our method uses a Pauli-Villars type of regularization, and the derivation
although truly simple covers a much wider class of background configurations
than just the self-dual solutions to the Yang-Mills equations in fact it includes an
infinite dimensional manifold of non-self-dual backgrounds. The final answer can
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be exhibited in the form of a four-dimensional integral when use is made of the
theory of the asymptotics of the kernel function for the heat equation.

We shall see, however, in Sect. 3 and Appendix A that for background
potentials of non-trivial Pontryagin number, the operators involved in these heat
equations are differential operators with singular coefficients. The ordinary
asymptotic theory does not apply in this case. Unfortunately we have not been
able to find a direct way of systematically studying the asymptotics. In our
calculation, however, we only need a few terms in the expansion, and, as it turns
out, those can be obtained by approximating the multi-instanton potential by the
single instanton one at the singular points. These restricted results show clearly
that the small s behavior of e~sH(x,x\ where H is a differential operator with
singular coefficients, contains terms of a kind different from the ordinary power
series. We formulate a general conjecture that extends our low order calculations.

In Sect. 2 we give a definition of the regularized determinant and we describe
the differential operators involved. In Sect. 3 we derive a formula for the
determinant, using results on the heat kernels derived in Appendix A. The first two
appendices provide as much of the theory of the heat equation as is needed in the
paper.

2. Definition of the Determinant

a) Description of the Operators

It is our goal to compute the determinants of the operators H2 and D^D, where

"-&. o)'

where D is a first order differential operator to be defined below. We shall soon see
that each of these determinants can be obtained from the other and thus we shall
compute the determinant of D^D in the next Section.

The operator H above represents the Dirac operator in Euclidean four-space in
the background of SU(2) instantons [5] and D^D turns out to be the operator of
scalar fields of isospin-1/2 in the same background. Precisely, D is given by [5]

, (2.2)

where

(2.3)

is the vector potential of the n-instanton solution of 't Hooft [2] in a convenient
representation of the gauge fields. The tensor product appearing in the operator D
represents a tensor product of vector spaces. The four matrices αμ are 2 x 2
matrices defined by the algebra they satisfy (here αμ = αμt)
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A possible representation for them is α° = l, of = ίσk, where σk are the Pauli
matrices. The τμv appearing in the definition of Aμ are defined in terms of matrices
βμ, that satisfy the same algebra as the αμ, as follows

τ^=~(β^-βψ). (2.5)

Finally the function ρ in the formula for Aμ is given by [2]

1 + Σ 7 Γ Λ*eIR, ΛeJR 4 . (2-6)
—

This function is a solution of the following equation on R4 :

l/ρdμdμρ = 0 (2.7)

which is the necessary and sufficient condition for the gauge field

Pμv = d,Av ~ dvAμ + ίAμ, AJ (2.8)

derived from a gauge potential of the form (2.3) to be self-dual, i.e., to satisfy

Fμ, = *F^μv"βF«β (2-9)

It can be shown easily [5] that if the condition of self-duality is satisfied,

0*0 = 0^90^ , (2.10)

where

Dll = t dtt + Aμ (2.11)

is the operator of the covariant derivative for isospin-1/2 scalar fields in the
background of the gauge potential Aμ.

b) The Determinant of Second Order Differential Operators on lRm

We now proceed to define the determinant of a self-adjoint positive differential
operator. We first consider the case where the base manifold is compact. Let M be
a compact orien table manifold and E a real C°° vector bundle with C°° scalar
product defined over M. Define Γ(E) to be the set of C°° cross-sections of E. Let A
be a second order positive operator which is essentially self-adjoint on the dense
domain Γ(E). We denote by A also the Friedrich's extension of A. As is well
known, naive definitions of such quantities as operator determinants on compact
manifolds can contain so-called ultraviolet divergences corresponding to the short
distance singularities of the kernels of the differential operators. We choose to treat
these within the scheme of Pauli- Villars regulators. Suppose we are interested in
computing the determinant of a second order differential operator with dense
domain Γ(E) and we know the determinant of A0, another second order, positive
self-adjoint, differential operator with the same dense domain. Notice that if A and



232 C. Callias and C. H. Taubes

AQ were finite dimensional square matrices with the same rank, the ratio of their
determinants is given by

In detAA- 1 = ~ ? — Ίτ (e~ sA - e~ sA«) . (2.12)
o s

We shall extend this definition to second order positive self-adjoint operators
with identical cores, Γ(E). The operator e~sA is in this case an integral operator
with kernel in local coordinates e~sA(x,y) and

tr e ~ SA = f [Tr e ~ sA(x, x)] dw(x) , (2. 1 3)
M

where dw(x) is the natural volume form on M and tr stands for the trace over the
matrix indices as defined by the scalar product on E.

The ultraviolet problem manifests itself in (2.12) in the small s behavior of the
integrand. In fact, for a second order operator with C°° coefficients on a manifold of
dimension m we have asymptotically

~ t +... (2.14)

which implies, in our situation,

e-sA(x,x)-e-sAo(x,x)~a_l(x)-+aQ(x)+.... (2.15)
s

As we shall see in the following section, if the coefficients of A are singular at a
finite number of points, this asymptotic expansion may contain logarithmic terms
as well, but nothing more singular than what is included here.

To remove the s-»0 singularities we introduce a regularizing factor r(s) in the
integral (2.12) defined by

φ)= Σef-"*9 (2.16)
i = 0

where e = (— 1)', R is odd, z0 = 0 and the zi satisfy

Σ ^,2=

m
k=0,...,--ί. (2.17)

At the end of the calculation we take the limit Z.-KDO, i^l keeping these
conditions as constraints and z(k) constant. The insertion (2.16) amounts to a Pauli-
Villars regulation [6] of the determinant.
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We summarize the above discussion in

Definition ί. The Pauli-Villars regularized ratio of determinants of operators A and
A0 with the same dense domains, Γ(E) (the set of C°° cross-sections of a C°° vector
bundle E over M) is defined by

00 ds
]n(detA/detA0)=- lim J — τι(e-sA-e-sAo-Π + Π0)r(s), (2.18)

Z I , . . . , Z Λ - > Q O o s

where r(s) is given by (2.16) and the zf satisfy relation (2.17). 77 and 770 are the
projections onto the eigenspaces of the eigenvalue zero of the operators A and AQ9

respectively.
The only ingredient in this definition not included in the above discussion is

the subtraction of the zero-eigenspace from the trace. This is done to avoid trivial
vanishing of the determinant due to zero eigenvalues.

We now consider the case of interest where the base manifold is non-compact
and diffeomorphic to R". In this case all vector bundles are isomorphic to the
trivial bundle and hence can be represented as the direct sum of m copies of R
where m is the dimensions of the vector bundle. There exists a natural choice for
the operator A0 in this case:

4>=V> (2 19)
where A0 is the scalar Laplace operator on M and i is the identity automorphism

ofIRm.
On a non-compact manifold an operator expression such as (2.13) may diverge

due to the infinite volume of the manifold. The expression (2.18) for the ratio of the
determinants of A and A0 in general requires additional regularization in order to
be well defined. From now on we take M = R". If A has the second order term
— 3μ3μ i, then e~sA(x,x) does not go to zero as |x|-»oo.

!, (2.20)

This, however, is just e~sA°(x, x) with A0 given by (2.19). This choice of AQ corrects
part of the infrared problem. What remains may still not approach zero as |x|-» oo
fast enough to be integrable. Actually, as we shall see, this appears to be the case in
our problem but the slowly decaying terms cancel. To make the cancellation
unambiguous we insert a function, χλ(x\ λ > 0, into the integral defining the trace
in (2.18) with the properties

(a) χλ(x) = l for |x|^λ,
(b)χλ(x) = 0 for M^ + l,
(c) χλ(x) is infinitely differentiable.

We then define the ratio of determinants as the limit as λ-+oo.
We summarize the above discussion for the case M = R" in

Definition 2. Let E — IRm be an m dimensional vector bundle over R". The Pauli-
Villars regularized determinant of a positive, self-adjoint, differential operator
A= -3μδμ ί + (lower order terms) with dense domain [CJ(R")]m is defined by

lndetyl=- lim lim J — Ύτχάe-^-e- «-*»*»)- Π)r(s) , (2.21)
λ



234 C. Callias and C. H. Taubes

where r(s) is given by (2.16) and the z. satisfy the relation (2.17). Π is the projection
onto the eigenspace of the eigenvalue zero of the operator A. χλ, A>0 is defined by
properties (a), (b), and (c) above.

From the definition we can study how the determinant is affected by this
regularization. Proposition 1 tells us that the determinant is gauge invariant.
Proposition 2 is stated for dimension 4 but it can easily be generalized to other
dimensions.

Proposition 1. Let A, A, A0= —d2! be as in Definition 2 above and suppose A is
locally unitarily similar to A, i.e. A = g(x)Ag(x)~1, g(x) a unitary transformation of
IRm. Then

Proof.

Kχλ(e-^-e-*°) = tτgχλ(e-^-e-'A')g-^

= tr χλ(e ~ sgAg ~l-e~ sA°) (2.22)

since e~sA°(x,x) is proportional to the identity matrix and therefore g commutes
with it.

Proposition 2. Suppose A— — <32i + V^ '^μ + ̂ o ί5 as ™ Definition 2 above with
n = 4 and Y^ and ¥0 m x m matrices of smooth functions on R4. Then

(a) The kernel function e~sA(x, y) evaluated atx = y has an asymptotic expansion
of the form

e~sA(x,x)~ £ ak(x)sk, (2.23)
k = - 2

where a_2 = constant, independent of V^ and V0, and ak(x) are polynomial functions
of V^(Λ ), V0(x) and their derivatives.

(b) The determinant of A can be written

l n d e t A = lim lim a + β ^ β lnz. + δ ^ eftlnzλ , (2.24)
Zi-+co A-^oo [ .= 1 .= 1 J

where

β= J a0(x)dx
IR4

8 = - J fll(x)dx (2.25)

where 7 is Eulefs constant, y = 0.577....

/ Part (a) is explained in the appendix. For part (b) one only has to integrate
by parts in the formula for the determinant. The asymptotic coefficients α0 and
α _ t are obtained when the limit zt-+co (z^l) is taken.
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As an example, we now return to the case where the positive self-adjoint
operator whose determinant we are to compute is given by expressions (2.10) and
(2.11). That is to say the second-order operator - DVDV is the co variant Laplacian
associated with a connection on the two complex dimensional vector bundle with
structure group SU(2) and base space IR4. We note that in this respect we are
considering the instanton connections as self-dual connections on a trivial bundle
with base space R4. In Appendix A we derive the coefficients β and γ for the
co variant Laplacian DVDV. The calculation of the coefficient α in (2.24) is in general
extremely difficult. We state the results in

Proposition 3. Suppose that A=— DVZ)V, the covariant Laplacian associated with a
Yang-MilΓs connection on the two-complex dimensional vector bundle with structure
group SU(2) and base space IR4. Suppose further that the connection is smooth. Then
the determinant of A is given as in (b) of Proposition 2, where

7=0

and

(2 26)

c) Relation of Fermion to Scalar Determinant

Starting from our definition of the determinant above we shall show how the
determinant of the square of the operator (2.1) is related to that of D^D. We shall
show that

(2.27)

a result which can be anticipated by a formal argument. The result is proved for
single instanton background fields by 't Hooft [1]. It was also derived for general
background self-dual field by Brown and Creamer [4]. Here we prove it as a much
more general operator identity, depending only on the decay of the coefficients of
D at infinity. To prove (2.27) we note that it follows from Definition 2 that

det H2 = (det D*D) - (det /)/>*)

and to determine det DDf in terms of det D fD note that
s J«

In det DD* -In det D*D = - lim f — r(s)Ίr(e-sDDlΓ-e~sD^D-Π+ +77_) ,
zι,...,zΛ-κ»J S

(2.28)

where Π + (Π_) is the projection onto the zero-eigenvalue eigenspace of the
operator DDf (D*D). If we were dealing with operators on a compact manifold it
would follow immediately that the trace in the integrand of the right-hand side is
zero. In Appendix B we explain how things can be drastically different in the case
of an open manifold due to the presence of continuous spectra. But we also show
there how open space trace formulas arising in the study of the index of elliptic
operators can be used to show that again

n_) (2.30)

for all s. This proves (2.27).
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3. Calculation of the Scalar Determinant

As was stated in Sect. 2, the coefficient α in the expression (2.24) for the
determinant of a second order, positive self-adjoint differential operator A as
described in Proposition 2 is in general extremely difficult to calculate in closed
form. We prove in this section that for a certain class of operators the full
determinant can, in fact, be easily calculated. It will be shown that the covariant
Laplace operators associated to the 5n parameter family of self-dual SU(2)
connections discovered by 't Hooft [1] are in this class and we will use these
operators as concrete examples.

We consider operators of the form

H = UL, (3.1)

L=e~ll2lneiάί'Λdμe
ll2lne . (3.2)

With ρ(x) given by (2.6), expressions (3.1) and (3.2) give the covariant Laplace
operators associated with the SU(2) instantons of 't Hooft. (This fact was
discovered by Brown et al. [7].) In general we will consider functions ρ(x) defined
such that the 1 -parameter family of operators

Lε = ρ-εl2LQρ£/2 i 0^β<l (3.3)

are closed operators on the domain

Lemma 1. Let Lε be defined by Eq. (3.3). The one parameter family of operators Lε

are dosed on /^(IR^OC2 iff ρ(x) satisfies for some α<l, b^O ana all

T ί ̂  Sμρdμρφaφa < j (adμφ«dμφ« + bφaφa) . (3.4)
^ R4 Q IR4

Proof. The operator L0 = ίoίμdμ is an elliptic operator that is closed on
H^IR^OC2. The operator Lε is of the form L0 + Aε with Aε a multiplication
operator by a matrix function Aε(x). Now we use the perturbation theorem [8]
that if D(Aε)^D(L0l L0 is closed and

\\Aεφ\\2

L2<a\\L0φ\\ϊ2 + b\\φ\\2

L2 (3.5)

for some a< 1, fc^O and all φeD(L0) then L0 + Aε is closed. QED

By a well known theorem of functional analysis, if LE is as in Lemma 1, Lε Lε

and LεL* are self-adjoint on maximal domains of definition.
For the instanton operator, with ρ(x) given by (2.6), estimate (3.4) is only

satisfied for ε2<l, for Aε(x) is bounded away from a finite set of points (the
positions of the instantons), where it behaves like

λ ε ~ a " ( χ - y (3 6)

by (2.6) and (3.4) this expression squared is just

and the uncertainty principle [9] in four dimensions tells us that

(3.8)
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so that if ε2 < 1 (3.5) is satisfied. But notice that even though ε = 1 is not included in
the range above, the operator (3.2)

H = L+LI (3.9)

can also be defined as a self-adjoint operator on a suitable domain. The reason is
simply that there exist a unitary gauge transformation g such that [7]

is a second order differential operator of the form — d2 + ... where the coefficients
of the lower order terms are continuous functions.

In the derivation to follow one will need the self-adjointness of both UεLε and
LεL\9 so we note first that for ρ(x) given by (2.6)

det L\L1 = lim det L\LZ (3.10)

and we only need to obtain a formula for det UεLε as a function of ε.
We now proceed to compute the determinant of the operator H defined by (3.1)

and (3.2). We first consider the case where ρ(x) is such that both Lε and Uε have
smooth coefficients and

^c—-y as |x|-»oo. (3.11)

The conditions for Lemma 1 are satisfied here.
To make the triviality of the determinant manifest we differentiate with respect

to ε and show that, although we do not get zero, we obtain an exactly calculable
quantity. The following manipulations on the traces will be done formally but they
can easily be justified by a Levy expansion of the heat operators, of the type
described in the appendix.

Note first that

(3.12)

Now we use the definition of the previous section for the determinant, where we
note that Π0 = 0 in our case.

Let det{Zι}^4 denote the expression in Definition 1 before the cutoffs are taken to
infinity. We have

00 J fl

-ί-(-5)Σ^-sz'o s ί = 0

(3.13)
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where χλ(x) is defined as in Definition 2 with λ > 0. The s-integration can be done
yielding

U=0

+ 0(l/λ). (3.14)

It is easy to see that

(3 15)

ί

so that we obtain finally

lndet{2ί)4Lε=2Tr[( £ β(Z ilnρL-i— - ̂ 7̂)} J
L U = 0 VLεjLε~l~Zt LlεLlε + Zil) J

+ 0(1/A). (3.16)

It is convenient to transform back to a representation in terms of heat operators
and define

ρ(e-sL-e-sL)χλ-] . (3.17)

(3.16) can then be written

£- In det{2ί}4Lε = f <fa Σ WSZΐ/ε(*) + 0(ί/λ) . (3.18)
c'ε o i=o

We have now to take the limit z0->0, zf^oo, >i->oo, i>0, subject to the conditions
(2.17), which reduce in dimension 4 just to

Σ *A=O

(3.19)

R

Σ ^lnz f=-

The answer will be independent of z(1) as anticipated by Proposition 3. Assume at
this point that /ε(s) has the asymptotic behavior, as s->0:

/εOO ~ - c0(e) + c1(e) + cl+(ε)]ns+...9 (3.20)
s

where the remainder goes to zero as s->0. A discussion of this type of asymptotics
for the heat kernels will be given in the appendix. (The logarithmic term is
ordinarily not present for differential operators with smooth coefficients. It may
appear, however, because of singularities in the coefficients.1) Given (3.18), for the

1 In the appendix we actually study J dεfε(s), but this is actually all we need see (3.22) below
o
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limit of (3.17) as z^O, i>0, and Λ-»co we find

_3_

dε'

(3.21)

where y is Euler's constant (7 = 0.577...). In the absence of zero eigenvalue modes
for the operators UL and LU the last term is zero. On the other hand,
U0L0= — δ2, so det £01,0 = 1. We summarize in

Proposition 4. Suppose that L is of the form (3.2) where l/ρδμρ is regular
everywhere and |lnρ(x)| satisfies (3.11). Then

i i
In det UL = z(1) In z(1) J dεc0(ε) + In z J dεcl + (ε)

o o
i

o

where c0(ε), c1(ε), cl +(ε) are the asymptotic coefficients given by (3.20), fε(s) is given
by (3.17) with Λ,->oo and Lε by (3.19). z(1) and z are given by (3.19).

Since the coefficients of UL and LU are smooth, these asymptotic coefficients
are straightforward to compute as is explained in Appendix A.

Returning to our example with ρ(x) given by (2.6) we note that ρ(x)>0 and is
regular everywhere except at a finite number of points yi where it behaves like

λ2

+ smooth functions .
\χ-yt\

The analysis that led to Proposition 4 is still valid for ρ(x) given by (2.6).
However, the singularities prevent us from computing the asymptotic coefficients
in (3.20) in a straightforward manner. We can circumvent this difficulty by using
our freedom in the choice of the operator A0 in (2.20). This case is unique, because
the leading order behavior of ρ(x) near a point of singularity agrees with that of a
single instanton potential with the instanton position at that point. The de-
terminant for the covariant Laplacian associated with the single instanton
potential can be computed directly by spectral analysis [1]. In effect we shall
calculate

IndetZ/L- £ IndetL^ (3.23)

with Lk given by (3.2) with ρ replaced by

^This allows us to go as far as is indicated by (3.20) in the asymptotics. The result is
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Proposition 5. Suppose that L is as (3.2) with ρ given by (2.6). Then

1

16τ?
In det UL = — —-̂  z(1) In z(1) J rfx In ρδ2 In ρ

k=l

where

k=l

n

lndet4L f c, (3.25)

the ρ(x) corresponding to a single instanton, and Lk is given by (3.2) with ρ replaced
by ρk. ΌetUkLk is given by '£ Hooft [1].

The proof is contained in the discussion of Appendix A.
We can express (3.25) in a form that agrees with the results of Brown and

Creamer [4] using the property that

0 (3.26)

then we have

(δ2lnρ)2-
k = l

+ £ lndet4Lk. (3.27)

Appendix A: Asymptotics of the Heat Kernel

We wish to discuss in this appendix the asymptotics of the heat kernel e~sA(x,x\
where A is a differential operator. The results have been stated and used in the
main part of the paper. Proposition 1 describes the well-known classical results
about differential operators with smooth coefficients. Proposition 4 relies on an
extension of these results to operators with singular coefficients. It is this extension
as given in Eq. (3.20), that we intend to discuss, but we unavoidably include an
outline of the theory for operators with smooth coefficients.

For simplicity, we restrict the discussion to second order operators of the type
that we use in this paper, i.e., operators on //2(IR4) having — <92 as the top order
term.

We shall sketch the derivation of Proposition 1. At the same time we shall
prove the following very restricted result about operators with singular coef-
ficients. This result is essentially described in Eq. (3.20). At the end of the appendix
we shall formulate a conjecture which generalizes Proposition Al.
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Proposition Al. Let L be as in Proposition 1 and gε(s)= lim fε(s) with f(s) as
λ^oo

defined by (3.17). Then as s->0, we have an asymptotic expansion

i i
$gε(s)ds~-c0 + c1+cί+\ns+..., (A.I)
o s

where

ί dx {[ - (S2 In ρ)2 + i((3 In ρ)2)2]

(A'2)- E C -
k=l

n γ
+ ΊΓ~'

with

1 " Ins

2^ st\ 7
-̂  Σ — , ?=0.577....

Remarks. We emphasize that what is contained in this proposition is all we can
prove about asymptotic expansions of heat kernels for operators with singular
coefficients. Furthermore, the information in (A.I) is completely equivalent to the
calculation of the determinant of an operator UL where L is the general operator
of the form assumed in Proposition Al . Proposition 5, which contains the results
of this general calculation will in fact be demonstrated simultaneously with
Proposition A 1 in the proof that will be given below.

We also stress that (3.20), which is a stronger form of (A.I) will not be proved.
It is rather a consequence of the conjecture formulated at the end of this appendix.

Proof of Propositions Al ana 5. Proposition 4 shows that c0, c l 5 c1 + , as they
appear in (A.I) are defined uniquely by the coefficients of z(1)lnz(1), Inz and the
cutoff-independent term in IndetZ^L, and vice versa. Thus the asymptotics of the
heat kernels involved in (3.17) is known, if and only if the determinant is known.
For the case of regular coefficients in L, it is simpler to compute these asymptotic
coefficients and then use the result to compute the determinant. For the case of
singular coefficients some special information about the determinant of particular
operators is used to study the asymptotics of (3.17) and the latter is used in turn to
compute the general determinant.

To make transparent how the Ins-terms appear in (A.I), we first sketch the
derivation of the asymptotics of e~sA(x,x) with the coefficients of A regular. In part
(b) below we discuss singular coefficients.

a) Regular Coefficients

Let

A=-ί.d2 + Vμdμ + V0, (A.3)
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a second order differential operator : [#2(R4)]M->[L2(R4)]M where M is the order
of the C°° matrices Vμ(x\ F0(x). A systematic way of studying e~sA(x,x) for small s
is by making use of the Levy expansion of the heat kernel in conjunction with a
Taylor's expansion of the coefficients of the operator A [10]. Define the operators

H0=-l d2

(A.4)
w =Vμdβ+V0.

The Levy expansion of the operator e~sA is given by the formal series

n=0 0 0 0

.e-
(n~r2)How ...\ve~rnH° , (A.5)

which is absolutely convergent if A is a matrix, but only asymptotic if A is a
differential operator with smooth coefficients. Looking at the kernel of the integral
operator e~rH° we see that

e-rH'(x, z) = e~rH°(x -z)=-L

2-e-H° .
r \yr I

We then find that the n-th term in the expansion (A. 5) evaluated on the diagonal is

• ί
k=l

(A.6)

We next make a change of variables and write Uj = (x — y.)/ j/s" for 7 = 1 to n. This
allows us to write (A.6) as

k=l

.e-r»H°(-un). (A.7)

In (A.7) we have

~
—
cuj

Aside from the overall factor of sn~2, the s-dependence of the expression on the
right-hand side of (A.7) lies in the dependence of the functions Vμ and F0 on the

quantity x — ]/sUj. These functions are by hypothesis C°° functions on ]R4 so we

can expand them in a Taylor series in j/s to any order. When these Taylor series
are substituted in (A.7), one obtains the desired asymptotic expansion for e~sA, as
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follows. When the series for the w's are multiplied out in (A.7) the coefficient of

each power of ]/s is a polynomial in the w's with coefficients formed by products of
w(x) and its derivatives. The w's then appear only in the exponential and in those
polynomials. The w-integrations immediately yield then (5-functions and de-
rivatives of <5-functions in the variables rf and the r-integrations become trivial to

do. One observes that the coefficients of the odd powers of |/s are trivially zero. In
this way it becomes apparent that the Levy expansion (A.5) is a systematic way of
studying the asymptotics of e~sA(x, x) in the sense that the successive terms are of
higher order in s, and that the ak(x) in Proposition 2 are polynomial functions of
Vf, V0 and their derivatives. Thus the latter Proposition is proved.

b) Singular Coefficients

The situation is more difficult when the coefficients are not C°° functions on IR4

but rather have singularities. In this case, the asymptotic expansion of the kernel
e~sA(x,x) cannot be defined beyond a certain order in s by using the method
outlined above. Precisely, the coefficients ak(x) of Proposition 2, being polynomials
in Vj*, VQ and their derivatives of an order increasing with fc, eventually become
arbitrarily singular at the points where Ff, V0 are singular. Thus, for example, if we
are trying to study the limit s->0 of a quantity like J e~sA(x, x) (dx), we can only go
as far as a certain order in s by using the local asymptotics of Proposition 2,
because the coefficients of the higher powers of s are found to be infinite by this
method. These infinities are interpreted as being the result of an illegitimate
expansion in s, e.g., of a function like 1/s, s1/2, or Ins. Thus, the expansion is either
to be rearranged to give the correct finite result or it may contain new types of
terms, like In 5 or fractional powers of s. This explains why an expansion of the
type (A.I) may be expected.

Our aim here is to prove just the expansion (A.I). If Lε is as in Proposition 1,
UεLε and LEL\ are of the form (A.3) with

(A.8)

ρ>μdv+
ε-(dρ)2+^(d2ρ) ,

where τ is defined by (2.5) and

τ,v=^(βμ'βv-βv'βμ) (A 9)

All the dependence of L\Lε and LεL\ on ε is shown explicitly in (A.8). Near the
singular points the ρ in (A.8) is assumed to have the same behavior as the ρ given in
(2.6). Thus, the coefficient of dv in either expression in (A.8) behaves like
(x — yk)/\x — yk\

2 and the zero-order terms like l/|x — yk\
2.

Recall that we wish to study the asymptotics (A.I) through logarithmic order.
Now the logarithmic term has the same dimensions as the constant term. So
suppose we attempt to carry the asymptotics to constant order by using the same
analysis as we applied to the case of regular coefficients above. Then we notice that
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we obtain for the constant term an integral which diverges logarithmically at the
points yk. For the heat kernel has dimensions (length)"1, the parameter s has
dimensions (length)"2 and, therefore, the coefficient a0(x) of s° must have
dimensions (length)"4; and since ε is dimensionless in (A.8) that implies that a0(x)
must behave like l/|x — yk\

4.
The idea is now to subtract a quantity with the same leading order behavior so

that the logarithmic divergence disappears. Propositions 4 establishes a cor-
respondence between the asymptotics (A.I) through logarithmic order and the
determinant, so we can study the corresponding subtraction on the determinant.
Thus, consider the operators

where

λl

Near x = yk, ρfc has the same leading order behavior as (2.6). Write Lk simply for
Lkv UkLk is the Laplacian of isospin —1/2 scalars in the background of a single
instanton of size λk at yk and det UkLk is computed by 't Hooft [1]. We now write
the determinant

In detUL = (in det UL- Σ In det L\Lk}

According to 't Hooft (see [1], p. 3441, Eq. (7.6) with μg =

while by Proposition 4,
n

IndetZλL- £ lndet4L fc = z(1)lnz(1)d0-d1 , (A.13)
k = l

where d0 and dl are obtained from the asymptotic expansion

o Lz \ / fe=ι

~-dQ + d. + ... . (A.14)
s

We now show that (A. 14) is valid to the indicated order and that

1

ι = ~ 9^2 ί dx {[ - (d2 In ρ)2 + ±((d In ρ)2)2]

(A. 15)
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We claim that (A.14) can be obtained using the Levy expansion and Taylor series
as described above in the case of regular coefficients. To see how this procedure
works, consider the first term in the Levy expansion for (A. 14). It is of the form

ί (dx)\^— f dv f
s [ 2 o

+ - Σ ̂  ί dr J (dy)e-«-*H»(y)υk(x- |/ϊjO*-rfloOO (A.16)
5 k=l * 0

The functions φc), vk(x) are combinations of coefficients in UL, LLβ, Lβ

kLk, LkUk

and they agree to leading order near x = yk. We now rewrite (A. 15) in the form:

x- }Γsy)- £ vk(x- 1/ίjθV rH°00
fc=ι /

Because of the subtractions, φc— j/sy)— £ ϋk(χ~~ 1/^y) becomes a regular
fc=l

quantity, in the first term, while in the second vQ(x — ]/sy) can be expanded to a
higher order than without the subtractions, without making the x-integrations
divergent.

For the higher terms in the Levy expansion for (A. 14) (which are necessary in
order to prove the indicated asymptotic expansion), the subtractions allow us to

carry the Taylor series in \fs for the w's in the generic expression (A.7) one order
higher than without them. This allows us to calculate the coefficients of s~1 and 5°
and with a certain amount of algebra one can obtain the formulas (A. 15).

(A.12) and (A.13) combined in (A.ll) give us

By Proposition 4 we obtain the coefficients in (A.I):

c0 =d0

n
1 12 1 6 72

n
Cl+ = Ϊ2

One would like to be able to prove an asymptotic expansion of the form (3.20)
directly and also have a systematic way of computing asymptotic coefficients to
arbitrary order. The problem basically amounts to studying e~sH where H is a
differential operator with singular coefficients. One can see that although the naive
local asymptotic expansion gives very singular results, the kernel itself is much less
singular at the singularities of the coefficients, so that in general one can define
quantities like §tre~sH(x, x)dx or J χ(x)e~sH(x, x)dx where χ(x) is in the Schwartz
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space or else has a finite number of sufficiently mild singularities. Thus, there are
also different ways in which one can study the asymptotics of e~sH. One may, for
example consider the global quantity Ίΐe~sίl; or more generally the local
asymptotics of e~slί(x, x) in the sense of distributions or again the asymptotics in
the sense of distributions of χ(x)e~sH(x,x) where χ(x) is singular at the points of
singularity of the coefficients of H. The typical kind of result that we expect is
exemplified in :

Conjecture

Let H be a second order self-adjoint differential operator on 1R" of the form
— d2 + Vi

i(x)di + υ0(x), where V\(x\ V0(x) are regular everywhere except at a finite
number of points yk where they are allowed to have singularities of the form
l/|x — yk|

α, α<l and l/\x — yk\
β, β<2, respectively. Then e~sH(x,x) has an asymp-

totic expansion in the sense of distributions of the form

Σ Φtf + Σ Σ 4nVαwiln s\p'Jδ(L}(χ - yJ >
k^-"12 ' L=7C°LM)

where ak(x) are local functions of the nonsingular parts of F0(x), V[(x\ αw, β. are
increasing sequences of exponents, Ak

mjL are constants and δ (x — yk) is the
derivative d\L\/dx[1...dx^nδ(x — yk) of the Dirac ^-function.

Operators with SU(2) Yang-Mills Background Field

We now derive the expressions (2.27) for the β and γ of Proposition 2, i.e., consider
the asymptotics of the heat kernel, exp ( — tAA) with ΔA defined as follows. Let E be
the two-dimensional complex vector bundle over 1R4. Let A be a C°° SU(2)
connection on E. Require that the Lie algebra valued 2-form, F = dA + l/2[A9A]
has finite Yang-Mill's action which is to say that Tr J F Λ *F is finite. The

R4

connection A9 defines a covariant derivative, DA:Ω°(ΊR4,E)->Ω1(lR4,E)ι a first
order differential operator which maps C°° sections of E into C°° 1-forms with
values in E. E has a natural Hermitian metric defined on each fiber. Define
^CE)-»Ω°(IR4,E) to be the set of sections whose components with respect to any
orthonormal frame generating E are elements of the Schwartz space ^(IR4). The
inner product on ^(E) is defined to be <s, s'> = j d4x (s, s')(x). With respect to this

IR4

inner product DA has an adjoint D\. We form the covariant Laplacian, ΔA = DAD\
+ D^DA a second order elliptic operator from <? (E) to ^(E). With respect to some
orthonormal frame for E,

(x)l , (A. 18)

where the σk are the Pauli matrices.
Define the rc'th asymptotic function by the formula:

1 d(n + 2)

α"(x)= (n + 2)! ds^ (*2tr(β-^-e-"°)(x,x))Uo .
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where

From the definition it is clear that each asymptotic function defines a function on
1R4 [i.e., an(x) is gauge invariant]. Because the coefficients of ΔA are by hypothesis
C°°, it is straightforward to compute its asymptotic functions (see Appendix A).
For the operator ΔA above we find that

. (A.20)

For self or anti-self dual connections on IR4, the asymptotic coefficient, α0, defined

by

α0= f d4xlim ~ ^s2Ίτ(e-*Δ*-e-*Δ»)(x,x)

= JΛcα°(jc) (A 21)

is proportional to the winding (instanton) number of the connection.

Appendix B: Trace Formulas for Heat Kernels

In this appendix we show how the quantity

Tr(£ΓsDDt-£ΓsDtD) (B.I)

can be computed explicitly as a function of s for D an elliptic differential operator
on some open manifold with L2 boundary conditions. This expression appears in
Sect. Πc). We note first that if D were an elliptic differential operator on a compact
manifold, then

Tr(e-sDDt-e"sDtD)-Tr(/7+-/7_), (B.2)

where Π+(Π_) is the projection onto the zero-eigenspace of DDf (D*D). The
argument is simple: The spectra of both DD* and D*D are discrete and the
eigenvalues behave like some power of the eigenvalue number. Thus the trace of
each term is finite. On the other hand D fD and DDf have the same eigenvalues,
except perhaps for 0, and their eigenspaces are isomorphic, for if λ ΦO is an
eigenvalue of D fD so that D^Dψ = λψ for some ψ, then '(DD*)(Dψ) = λ(Dψ).

Now an elliptic operator on an open manifold may have a continuous
spectrum, so the above arguments do not apply. All we know is that if D is
Fredholm,

limττ(e~sDD*--e-sD'D)=ττ(Π+--Π_) (B.3)

and, even if D is not Fredholm, we can straightforwardly compute the asymptotic
behavior of (B.I) as s->0. These two different limits can be used as boundary
conditions, for as we will explain, the following proposition can be used to
calculate the derivative of (B.I) with respect to s explicitly as a function of s [11].
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Proposition Bl. Let L be a first order elliptic differential operator on the Hilbert

space K=@L2(JRn):

(B.4)

where δ^x), Φ(x) are MxM matrices of smooth functions. Let δl, Φ denote the
multiplication operators by δ^x), Φ(x). Suppose z<£IR+ and let (DD* + z)~1(x9y)9

(D^D + z)~1(y,x) denote the kernel functions of the indicated integral operators.
Then

~ x] (x, y)

where Jl

z(x, y) is the kernel of the integral operator

j<(x? y) = iΊr(D(tfD + zΓ M't) (x, y) - iTr(Dt(DDt+ z)'1 <3') (x, y) (B.6)

and Az(x, y) is the kernel of an integral operator on L2(R") that can be represented as
the trace of commutators of multiplication operators by smooth functions and the
integral operator D(D^D + z)~1 and D^(DD^ + z)"1 [12].

We remark that the above result can be extended to differential operators of
arbitrary order as well as to arbitrary manifolds.

To apply this proposition to (B.I) we take the inverse Laplace transform of
(B.5), as follows :

- (έ +
+ I ̂ .e- aA_t(x,y) , (B.7)

where C is the contour shown in Fig. 1. The contour integration can be done
immediately :

Now the kernels of the heat operators are smooth, so we can evaluate on the
diagonal, y = x. It is then easy to see that the A.-term in (B.5) gives no contribution.
The result is

OS

x) . (B.9)

Now we integrate over all space and find that the derivative of (B.I) with respect to
s is given by a surface integral at infinity :

lim J dstiττίDe-'D'W-Die-^δ^fax). (B.10)
-+
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Fig. 1. Contour of integration for the definition of e

An asymptotic expansion of the integrand as |x|->oo is done systematically by
using the expansion of the heat kernel around the highest order part (for details,
see [10], end of Sect. 3). Carrying out the calculation we find that the result is zero.
Thus (B.I) is a constant. The constant can be computed by evaluating the limit as
s-»0, according to the standard methods described in Appendix A. We find

Tr[V
1

— e
32τr

$Ίτ(*F(x)'F(x))dx. (B.ll)

But now it is known that the index of D, which is the same as Ύr(Π_ — Π+) is equal
to the negative of this expression. This proves the formula at the end of Sect. 2.

Appendix C: Alternative Methods of Regularization

In this appendix we note the relation of our regularization scheme to others that
are popular in the literature. In the analytic or (-function scheme, one defines

1 °° ds
D(λ)=~Π2^λ)S

07
Ύr(e'SA~e'SAθ) (C.I)

for given operators A, A0 and Re/NO. The ratio of the determinants of A and A0

is then defined as the finite part of the analytic continuation of D(λ) to λ = 1. To see
how this works consider a second order differential operator on IR4 as in Sect. 2.
Let

(C.2)

a regular function of s. We can integrate by parts in the formula for D(λ) to get for
Re/NO

D(λ)=-
1 ds

λ(λ-ί)Γ(2-λ) J

0 sλ (C.3)
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As λ-+l this expression can be evaluated immediately:

-/'(0)(1 + y) - J ds In s f " ( s ) . (C.4)
Λ — 0

The finite part of this is seen to be

00

άetA/A0=- Jds.lns/"(s)-/'(0)(l+y), (C.5)
0

where 7 = 0.577 is Euler's constant. This is immediately seen to be the term α in
Proposition 2b.

Similar .remarks apply to a definition of the determinant as the finite part of the
integral

J — Ύr(e-sA-e-sA°) (C.6)
ε S

as ε->0.
Note that each of the two definitions given in this appendix is unambiguous.

For the significance of the dependence of the determinant on the parameter z, the
reader is referred to 't Hooft's paper [1] for details
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