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Algebras of Local Observables on a Manifold*

J. Dimock**
Institute for Advanced Study, Princeton, NJ 08540, USA

Abstract. We propose a generalization of the Haag-Kastler axioms for local
observables to Lorentzian manifolds. The framework is intended to resolve
ambiguities in the construction of quantum field theories on manifolds. As
an example we study linear scalar fields for globally hyperbolic manifolds.

1. Axioms

Quantum field theories are usually defined on Minkowski space-time, but it
seems desirable to generalize to arbitrary Lorentzian manifolds. This is so not
only to accommodate physical systems that require a manifold model for space-
time, but also as a means of gaining perspective on the general structure of quan-
tum field theories. General references for quantization on manifolds are De Witt
[3]andlsham[12].

The problem can be posed as finding field operators which satisfy given
field equations. However, on a general manifold there is no natural choice for
the Hubert space on which the operators act, and, in particular, there is no vacuum
state to be used as a reference point. This suggests formulating the problem in
terms of the algebraic structure of the field operators, and leaving the specification
of states as a secondary step.

One algebraic approach has been developed by Isham [12], Kay [13], and
Hajicek [10]. They associate with each Cauchy surface S the C* algebra J3/S
generated by the canonical commutation relations (CCR) over functions on S.
The field equations then determine isomorphisms J3/S -> j/$ which give the
dynamics. This type of approach seems quite satisfactory for linear problems,
but one can anticipate troubles in extending it to nonlinear problems: things
are probably too singular to allow a definition of the algebras j/s.

In this paper we propose another algebraic approach which generalizes the
Haag-Kastler algebras of local observables on Minkowski space [8]. There is
a single C* algebra s# together with distinguished subalgebras s#((9) corresponding
to local regions of space-time. All reference to fields to supressed.
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We now explain the ideas in detail. We consider a Lorentzian manifold (Jί, g)
consisting of a four-dimensional manifold Jl, and a pseudo-Riemannian metric
g of signature ( H ---- ). We assume that (Jl, g) is time-orientable. Then an
algebra of local observables on (Jί, g) is defined to be a structure satisfying the
following five axioms. The first three are essentially the same as those of Haag-
Kastler.

Axiom 1 (Nets of local observables). For each bounded open set (9 a Jί there is a
C* algebra j/(0). If 0 c 0' then */(G) c sf(Θ'\ The C* algebra s/ = (j j*(0) is
called the algebra of observables.

Two nets of local observables si(G) and s#'((9) are said to be isomorphic if
there is an isomorphism i:<zf-*£ί' such that z[j3/(0)] = sf'(β\ In accordance
with our algebraic point of view we do not distinguish isomorphic nets. If si is
realized as an algebra of operators on a Hubert space one speaks of a represen-
tation of the algebra or the net.

Axiom 2 (Primitivity). si is primitive.
Primitive means there is a faithful irreducible representation.

Axiom 3 (First causality).
If (9 is spacelike separated from Θ' then [*/(&), J^(0')] = 0.
Spacelike separated means that there is no causal curve joining a point in

& to a point in θ'. A causal curve is a curve whose tangent vectors are either
timelike or null.

Axiom 4 (Second causality). If (9 is causally dependent on $', then si ((9)
The exact meaning of the axiom depends on the definition of causally

dependent. A strong form would be to say that Θ is causally dependent on &
if every endless causal curve through (9 intersects 0'. Weaker forms may also
be adequate.

This axiom embodies the basic dynamical principle that the past determines
the future (in a certain local sense). If we know a state on si(&) then we know
it on s4(G).

This axiom is not usually included in the Haag-Kastler axioms, although
it was proposed by Haag and Schroer [9] at an early date. On Minkowski space
it is perhaps not so important because there is another axiom which says that
the Poincare transformations define automorphisms of the algebra, and this
carries dynamical information. In general we do not have Poincare transforma-
tions. There is however a certain covariance which we now explain.

Let us shift our point of view slightly. Instead of requiring a net of local obser-
vables jtf(Θ) on a particular (Jt,g), we require that there be an si ((9) for each
(Jl, g} in an isometry class. (Recall that an isometry between (Jt, g) and (Jl, g)
is a diffeomorphism κ\Jt^>Jt such that κ*(g) = g.) Isometric space-times are
physically equivalent and so we want to impose an equivalence on the associated
algebras. Specifically we want the following functorial property:

Axiom 5 (Covariance). For any isometry K from (J/,g) to (JΪ,§} there is an iso-
morphism ακ : si -> s/ such that aK[W(0)] = jf(κ(0)). Furthermore aid = id and
(χ o(χ — α .
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If we specialize to the case (Jl, g) = (Jϊ, g) the axiom says that for any isometry
K on (Jt,g] there is an automorphism ακ on j/ such that ακ[j/($)] = s#(κ(Θ]).
In particular if (Jt, g) = Minkowski space, the isometries are the Poincare trans-
formations and we recover the usual axiom.

Having explained the axioms let us turn to a discussion of their status. We
would like to claim that any quantum system for which a Lorentz manifold model
of space-time is appropriate can be described by an algebra of observables in
the above sense. Thus we include linear and nonlinear field theories, massive
and massless particles, fermions and bosons, etc., etc. This seems to be a reasonable
speculation. A deeper question is whether such a structure can provide the basis
for a complete description of any system. This does seem to be true on Minkowski
space. By extrapolation we might expect that it is true for space-time with special
structure, e.g. asymptotically flat or stationary. What is missing in the general
case is some idea of how to associate elements of the algebra with specific operations
or measurements on the system. Similar difficulties crop up in other quantization
schemes.

It would be interesting to further generalize the axioms to a scheme in which
the metric is not given, but is somehow a dynamical variable incorporated into
the algebra. This problem is discussed by Dyson [5].

2. Linear Scalar Field

A. The remainder of the paper is devoted to showing how an algebra of local
observables arises naturally for a particular example—the linear scalar field
on a globally hyperbolic manifold (Jt, g). The program is as follows. We construct
a field operator φ as a solution of the Klein-Gordon equation taking as data a
representation (θ, π) of the canonical commutation relations (CCR) over some
Cauchy surface 5. The field operator φ defines a net of local observables <£/($).
Although the field depends on the choice of S and (0, π), we establish the key
result that jtf((9) does not. Finally, we show that jtf(Φ) satisfies the axioms.

Our treatment of the linear scalar field follows that of Isham [12]. The main
difference (aside from a few technical improvements) lies in our interest in the
local algebras. For further results (and earlier references) on the scalar field see
Kay [13], Hajicek [10], Wald [18], and Dimock [4]. In another paper we study
Dirac fields by similar methods.

B. We begin by defining some function spaces. Let C*(J() be the (real-valued)
infinitely differentiable functions on Jt and C^(Jί} those with compact support.
These are given topologies analogous to the usual topologies for C°°([R"), CJ(IR").
Every weC°°pΓ) defines a continuous linear functional onfeC^(J^) by <«,/> =
\ufdV where dV is the volume element defined by the metric g. Correspondingly
we denote the dual space, the distributions, by [CJMO]' = C~^(M\ The distri-
butions with compact support are denoted C~°°(,JO and one can make the usual
identification [C°°MO]' - C~™(M\ (We use the notation of Guillemin and
Sternberg [7]; one also writes CJ - 0, C°° - δ, C"°° - 9>'9 C"00 - <T.)

We are interested in the Klein-Gordon equation which has the form
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Here the d'Alembertian Π is given in local coordinates by

where \g\ = |det{#μv}|, and m2 ^ 0 is a mass parameter. (Our methods also
work for any equation of the form Π u + < a, Vu > + bu = 0 where a is any smooth
vector field on Jl and b is any smooth function.)

As a consequence of the global hyperbolicity there are global fundamental
solution for Π +m 2 ; see Leray [14], Lichnerowicz [15], Choquet-Bruhat [2].
That is there are unique operators E± : C™(Jί] -> C™(Jl} such that

supp(£±/)c=^±(suPP/)

where for K ^Jί, J±(K) is the set of all points in Jt which can be reached from
K by a future/past directed causal curve. The d'Alembertian is self-adjoint and
correspondingly we may continuously extend E± to operators from C^(Jl} to
C~°°MO by E± = (£τ)'. We also define E = E+ - E~ and have E' = - E.

A Cauchy surface for Jt is a spacelike hypersurface S such that any endless
causal curve intersects S exactly once. We assume that Jt has smooth Cauchy
surfaces. (Global hyperbolicity implies the existence of C° Cauchy surfaces [6],
[11], but there is no published proof of the existence of C°° Cauchy surfaces so
strictly speaking this is an extra assumption.) A Cauchy surface has the property
that J±(K)n J+(S) is compact for any compact set K [11], [16].

For given S let p0 :C°°(^)-> C°°(S) be the restriction operator and let
ρί: C^(Jί] -> C°°(S) be the forward normal derivative.

Theorem 1. (Cauchy problem]. Let S be any Cauchy surface and let uQ,uλ eC™(S)
then there exists a unique ueC00^) such that (Π + w2)w = 0, p0(w) = w 0 , p 1(w) = M , .
Furthermore, supp u c ((J .(J ± J± (supp uj).

This is the classical existence and uniqueness thorem. Apparently the exis-
tence has never been proved in this form (i.e., arbitrary globally hyperbolic mani-
fold, arbitrary Cauchy surface), although Leray [14] constructs solutions
ueHfQC(Jί). We include a proof of the theorem as stated in the Appendix (Lemmas
A.2, A.4).

The operators p0,pl have adjoints p'Q,p\ which map C~CO(S) to C~™(Jί\
Thus Ep'Q and Ep\ map C~°°(S) to C~^(Jί\ As before we have identifications
C°°(5)c:C-00(ίS),CJ(S)c:C-00()S) defined by <u,/> = Jw/dS where dS is the
induced Riemannian volume element on S. Thus it makes sense to talk of the
restriction of these operators to C^(S).

Corollary 1.1 Eρf

09Ep\ restrict to continuous operators from C^(5) to C"°(Jt)
and

u = Ep'oUl -Ep\u0

is the solution of the Cauchy problem with data u0, uv.

Proof. Let u be the solution with data uQ,uleC^(S). Then we have the identity
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for/ 6(7 MO

(see Lemma A.I in the Appendix). This says that the desired identity u = Eρ'0u1 —
Ep\u0 holds in the sense of distributions. However, specializing to w0 = 0 we see
that Ep'Q : C*(S) -> C™(Jt] and specializing to uί = 0 gives Ep\ : C£(S) -» C°°MO.
Thus all terms in the identity are C°° functions and so the identity holds in this
sense. The continuity follows by using the closed graph theorem.

Corollary 1.2. On C%(S):

p0Ep'Q = 0 p0Ep\ = - I

Proof. Apply p0, pl to the identity in Corollary 1.1.

Corollary 1.3. OnC%(Jΐ):

E = Ep'0p1E-Ep'lp0E.

Proof. Insert u1= pίu,u0 = p0u in the identity in Corollary 1.1 to get u = Ep'Qp±u —
Ep\p0u for any solution u such that ρ0u, p^u have compact support. Now take
u = Ef. (p0Ef, pjE/have compact support since 5n J± (supp/) is compact.)

C. Now we turn to the quantum problem. For any Cauchy surface S we
consider representations of the CCR over S. These will consist of a complex
Hubert space ffl and symmetric operators θ(h\π(h), linear in feeC^(S), defined
on a dense domain in ffl, and satisfying

[θ(h\ π(Λ')] = KΛ, /O = ilhh'dS.

The existence of representations is easily established. Let 2tf ί be the completion
of complex valued C%(S) with inner product (h, h') = (h,hfy, let J^f0 = C,^fn =

n co

(x) Jtf t , and let J>f ' = @ J^n be the Fock space. If a(h\ a*(h) are the usual creation
sy™ „=!
and annihilation operators defined on finite particle vectors in ffl and satisfying

provide a representation of the CCjR over S. We do not attach any special signifi-
cance to this representation.

We now mimic the classical Cauchy problem.

Theorem 2. Let (θ, π) be a representation of the CCR over a Cauchy surface
S c M. Define afield operator in the sense of distribution by

φ = Ep'0π — Ep\θ.

Then φ solves the Klein- Gordon equation

(Π +m2)φ = Q
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and

Proo/ The operator </>(/) is defined for/eC^(..JO by

= θ(PίEf)-π(PoEf).

This makes sense since pQEf, pvEfeC%(S\ The field equation </>((Π + m2)/) - 0
follows from E( Q + m2) - 0. Finally

which is 1/i </;£/'> by Corollary 1.3.

Corollary 2.1. Lef 5 be another Cauchy surface in M ana let θ, π be the restrictions
ofφtoS defined as distributions by

6 = PoΦ = PoEP'oπ ~ PoEP\θ

n = Plφ = PίEP'0π - p^Ep\θ.

Then (θ, π) provide a representation of the CCR over S. If S = S then θ = θ, n = π.

Proof. The definition says θ(h) = θ(pίEp'0h)+ ... and makes sense since
PIEP'O:CQ(§)-+CQ(SI etc. For the commutator we have:

\β(h\ π(Λ')] = - i<P,Epr^ pQEp\h'}

But Green's identity gives that for solutions M, M', the quantity ^p^p^u'^ —
<p0w, P j t/ ) is independent of S. Thus we may change p 0 ,p t -^ pQίpl above.
Then by Corollary 1.2 we get i < h, h > as required. The result for S = S also follows
by Corollary 1.2.

D. Next we introduce the algebras. First we pass to the Weyl form of the
CCR. Formally if

') = exp(i(θ(h)-π(h')))
we have

, , h\}W(h2 , ft'2) = ^(Λj + Λ2 , Λ; + Λ'2)expί - ^

This can be made rigorous for the example we gave. In any case, we now define
a representation of the CC# over S to be a function W from C*(S) x C^(S) to
unitary operators on a Hubert space 2tf such that the above identity is satisfied.
We also require t -> J/Γ(ί/ί, ί/z') is strongly continuous. Then by Stone's theorem
one can define self-adjoint θ(Λ),π(Λ') so eimt = W(th, 0) and ^-ίπ(Λ/)ί - W(09 th)
and one can show that these form a representation of the CCR in the previous
sense. Thus the new notion generalizes the old.

Given a representation in the above sense we now define a self-adjoint field
operator φ(f\f&C™(Jί\ via Stone's theorem by
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We define a net of local observables by

j/(0) = C* algebra generated by eiφ(f) = W(p^Ef, p0Ef)9 supp/c 0

and define

The algebra jtf can also be characterized as the C* algebra generated by W(h, ft'),
ft, ft'eCjJXS). Clearly the latter contains the former. For the inclusion the other
way suppose we are given ft, ft', let u be the solution with data ft, ft', and choose
/so w = E/(see Lemma A.3). Then W(h,hf)= W(p1Efi pQEf) which gives the
inclusion.

Theorem 3. The net ^(Θ] is independent of the representation (^ , W) of the CCR
over C™(S\ and is independent of the Cauchy surface S.

Proof. For given S we consider two representations pf , W) and (̂ f , W) over
CJ(S) and the associated nets j/(0), ̂ /(^) We must show there is an isomorphism

ί : J2/ -» j/ such that i[X(0)] = ̂ (̂ ) Different representations of the CCR give
rise to isomorphic C* algebras, a result due to Manuceau and Slawny (see refer-
ences in [10], [12] or Simon [17]). Since j/, ,s/are generated by W, W this says
that there is an i : ̂  -> j/such that i[W(h, ft')] = W(h, ft'). But this entails i[eiφ(f)~\ =

eίΦ(f) and hence i[X(0)] - (̂̂ ).
Now consider two Cauchy surfaces 5, S. To show that they give rise to iso-

morphic nets it suffices to find particular representations (ffl , W) over C^(S)
and (jf , 1/F) over C~(S) such that the nets are identical. Take any (̂ f , W) we define
J7 = $e and W^ as in Corollary 2.1 by

, ft') = W(PlEp'0h - p,Eβ\h'. p0Ep'0h - pQEβ\h'}.

That this is a representation follows as in Corollary 2.1. Then by Corollary 1.3:

= W(PίEf,p0Ef)

= eiφ(f} .

Therefore j/(0) = j?/(ί?) and the proof is complete.
Now we come to the main result.

Theorem 4. For any globally hyperbolic space-time (Jt,g) let jtf(&) be the net
of local observables defined above. Then £/(&) satisfies the axioms 1-5.

Proof. I. is established. 2. follows since C* algebras generated by the CCR are
primitive. For 3 note that

eiφ(f)eiφ(f) __ eίφ(fΊeiφ(f)e<f,Ef'y

If supp/and supp/' cannot be joined by a causal curve then </, £/'> = 0 and
so [eiφ(f\ eiφ(f>γ] = 0 which gives the result.
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For axiom 4 we must say what is meant by "0 is causally dependent on &Γ
By this we will mean that there is a Cauchy surface S such that every endless
causal curve through X<E@ intersects S in & . When this is the case we must show
3f(G) c rf(0'\ We work in a representation based on S with eiφ(f} = W(ρvEf,pQEf\
If supp/c= 0, then

supp(p.E/) c (U J±(supp/)nS) c 0'.

By Lemma A.3, there exists /' 6 C£(0') such that Ef=Ef. Then e'W) - eίφ(f'\
hence elW)e j/(0'), and hence jtf(Θ) c j^(0').

For axiom 5 we suppose that K: : (Jί, g) -> (̂ , #) and show that we can find
representations such that j/ = j/,jtf((9) = jtf(κ(&)). This will determine an iso-
morphism in any other representation. Let (ffl , W) be a representation over
CJ(S) for some Cauchy surface S c M. Define a representation ($, W) over
C J(S), S c Λ? by S = κ(S), ̂  = je, and

where κQ:S -+ S is the induced diffeomorphism. This is easily checked to be a
representation using < κ*/z, κ;*ft' > = </z, Λ ;). From /c*Π = Π^* and the unique-
ness of the fundamental solutions we conclude κ*E± = £±κ*. Using also κ*p. =
P.K* we have

Thus ά(β) = ^(κ~\Θ)) or ^(Φ] = J(κ(Θ)) as required. The remaining properties
are straightforward to check.

Appendix

In this Appendix we prove the existence and uniqueness theorem for the Cauchy
problem as stated in Theorem I, and in the process obtain some results used
elsewhere in the paper. As in the text (Jί, g} is a globally hyperbolic Lorentzian
manifold, E± are fundamental solutions for (Π + ^2)> E = E+ — E~ , S is a
Cauchy surface in M, pQ is restriction to S, and ρλ is the forward normal derivative
on S. The first two Lemmas are standard.

Lemma A.I. Let u be a C°° solution o/(Π + m2)u = 0 on Jί ana set u0 = p0(u\
uί = p^u). Then for anyfeC%(je\

j ufdV = ί(uoPl(Ef) - ulPo(Ef))dS.
Jl S

Proof. Green's identity has the form

ί (u( D + m2)v - v( Π + m2)u)dV
D ,/ dv duJ= ί \u-Γ-v— dS

βiV dn d
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where d/dn is the outward normal derivative on dD. We let u be the solution,
put v = E+f, and take D = S~ = J~(S)\S so that dD = S and pί = d/dn. Since
J+(supp/)n J~(S) is compact the integrals are well-defined and the identity
holds. Thus we have

I uvdV = $(uoPί(E + v) - uίPo(E + v))dS
s- s

Similarly with v = E~f,D = S+ = J+(S)\S and pί = - d/dn:

J uvdV = - ί(uQPl(E-υ) - uίPo(E~v))dS
s+ s

Adding these equations gives the result.

Lemma A.2. (α) (Uniqueness) //(D + m2)u = 0, pQ(u) = 0, Pί(u) = 0, then w = 0
(b) (Support) //(Π + m2)u = 0 and p0(w), Pi(u) have support in N c S then

Proof, (a) By Lemma A.I, \ufdV = 0 for all/and so u = 0.
(b) If supp/d ~ (J+(N)u J~(N)) then there is no causal curve from supp/to
N. Therefore supp E/n N — 0 and by Lemma A.I \ufdV= 0.

Lemma A.3. Let u be a solution o/(Π + m2)u = 0 and let PO(U\ Pi(u) have support
in a compact subset N of S. Then for any open neighborhood (9 of N there exists

such that supp fa (9 and u = Ef.

Remarks. This is a refined version of a result due to Choquet-Bruhat [1]. For
the proof we use the fact that if (Π + m2)u =f,fεC£(Jί), and supp u is compact
to the past/future then u = E±f[ί5~\. A set A is called compact to the past/future
if J+(x)r\A is compact for all x. Examples: 5, compact K,J+(K) are compact
to the past.

Proof. We may assume & has a compact closure. Let θ± = (9uS± and let 0° =
~(J+(N)vJ~(N)). Then Θ±, 0° form an open covering ofJί, and we let φ°, φ±

be a partition of unity subordinate to the covering. By Lemma A.2 φ°u = 0 and
so u = φ + u + φ~u. We define

/= (D + m2)φ+u = - (D + m2)φ~u

Then supp/cι0+n$~ = Θ. Furthermore since supp(φ±u) is compact to the
past/future we have φ±u = ± E±f&nά hence u = Ef.

Lemma A.4. (Existence) For any M0,M1eC^(S) there exists utC™(Jl} such that
(Π + m2)u = 0, pQ(u) = u0,Pl(u) = uί .

Proof. We begin with a local existence theorem. For any point peS choose a
neighborhood with coordinates xμ such that xμ(p) = 0 and S corresponds to
x° = 0. Let Ji be the open lens-shaped region bounded by the hypersurfaces

x°= ±(fi2-(x1)2-(*2)2-(x3)2)
(x1)2 + (x2)2-^(x3)2^s2

For ε sufficiently small these boundary surfaces will be space-like, as well as the
x° = constant surfaces in Ji. Then by using the Cauchy-Kowaleski theorem
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and energy estimates (e.g., [11], Sect. 7.2) one can show that for u0,uίeC™(N n S )
there exists weC°°(ΛO such that (Π +m2)u = Q,p0(u) = u0,p1(u) = u1.

Next we obtain a global solution foϊ local data. That is for any peS there is
an open neighborhood N <= S oϊp such that for u0, u1 e C™(S\ supp w0, supp u1 a AT,
there is ueC™(Jt} so that (Π + w2)w = 0, p0(u) = w 0 ,p^u) = w 1 . To see this take
a neighborhood J\f of p as above let N = ̂  n S, and at first let u be the solution
in J f . Now Ji is itself a globally hyperbolic manifold (with Cauchy surface N) and
so has fundamental solutions E^>. Then by Lemma A.3 we may write u = E^ffor
some/eC^(yf) Now extend w to ̂  by regarding/as an element of C™(Jf)
and defining u = Ef. This is an extension since £*/ restricted to N satisfies
(Π + ^2)w =/ and is compact to the past/future and hence equals E^ f. The
extended u is a solution and has the correct data on N. Furthermore u vanishes
on S\N since supp u c J+(ΛOu J~(ΛO which does not intersect S\N.

Finally we take u0,u1 eC"(S). Let {ΛfJ be a finite open covering of supp UQ u
supp W j by sets for which global solutions exist, let {φk} be a partition of unity
subordinate to the covering, and let uk be the solution with data φku0,φkuί.
Then u = ̂ uk is a global solution with data uQ9uί.

k
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