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Abstract. The renormalization group technique is used to study rigorously the
A(P(/>)4 perturbation of the massless lattice field φ in dimensions d^2.
Asymptoticity of the perturbation expansion in powers of λ is established for
the free energy density. This is achieved by using Kadanoff's block spin
transformation successively to integrate out high momentum degrees of
freedom and by applying ideas previously used by Gallavotti and Balaban in
the context of the ultraviolet problems. The method works for arbitrary
semibounded polynomials in Vφ and Δφ.

1. Introduction

During the last fifteen years renormalization group (RG) has become one of the
main tools in both quantum field theory and statistical mechanics. Still, compared
to the numerous works devoted to a variety of heuristic applications of this
method, see e.g. the articles [1] and references therein, the rigorous results
concerning RG are rather few, dealing with very simple models or attempting a
rigorous formulation of the problems [2]. Here an exceptional position is
occupied by the work of Gallavotti and collaborators [3, 4], where RG ideas were
employed as a tool to prove ultraviolet stability of φ* quantum field theory. This
allowed to turn RG into a powerful method in rigorous study of more complicated
superrenormalizable field theory models, see [5] for an announcement of results
concerning gauge theories.

In this paper we modify the technique developed by Gallavotti et al. and apply
it to an infrared problem, namely the lattice model with hamiltonian density

)^, in dimensions d^2. The method works for arbitrary "irrelevant"
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(with respect to the Gaussian fixed point) polynomials involving Vφ and Λφ. For
simplicity we consider only the least irrelevant case. Our modification goes along
the lines suggested by Balaban [5] who proposed to use Kadanoff s block spin
transformation version of RG in the context of the ultraviolet problem. The main
result of the present paper is establishing of asymptoticity of the perturbation
series in powers of λ for the free energy of the model mentioned above. We hope to
be able to obtain also information about correlations and their decay using similar
ideas and to extend the results to more complicated models, such as the dipole gas,
in the future.

To understand why the standard techniques which would work if we added a
mass term \m2φ2 to the hamiltonian fail here, write the free energy in unit volume
(pressure) p(λ) as

1
p(Λ,) = lim —-logjexpl — λ £ (^φx)

4 dμG(φ),
ΛϊΊL* \Λ\ [ xeΛ

where dμG is the lattice Gaussian measure with covariance G = ( — A)~1 (which
makes perfect sense in d^3). We may generate the perturbation expansion for p(λ\
together with the remainder, by writing (formally)

p(X)= lim — \άt —
ΛϊTL* \Λ\ J

0 at

Γ>α> (1-1)
o

where

< )ίλ = J expf — tλ^(Vφ^ dμG(φ)/§exp\ — tλΣ(Vφx)
4]dμG(φ), (1.2)

L x L x \

and subsequently integrating by parts using the formula

Performing (1.3) sufficiently many times we can generate from (1.1) the per-
turbation series to arbitrary order τ together with the remainder, which is a sum of
terms of the form (we suppress indices in FJ

C^+1 Σ Π (WGXtΛ)\dt(f\(?ψx)"\ (1.4)
*1, . . . ,X« (iccjoc) 0 \i = 0 /tλ

with lines (iαjα) forming a connected graph joining all points x0, x l 5 . . . ,xn. Then,
assuming one could bound the expectations in (1.4) (e.g. using superstability of the
interaction), summability of the propagators

Σ\WGXoXl\<κ (1.5)
Xl

would imply finiteness of the remainder and hence asymptoticity of the per-
turbation expansion for the pressure. The problem, however, is that (1.5), which is
obvious in the case of massive free propagator decaying exponentially fails for
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massless G where, although £ F7P7GJCo;cι exists it does not converge absolutely since

X ί \ = 0(\x0 — Xι\~d) for large |x0 — xj. It should be remarked that this gives
rise to no infrared divergences in the perturbation series which is finite as one
easily infers through momentum space analysis, but invalidates the above
argument which provided an estimate for the remainder.

The idea we will follow in this paper is to save the argument by applying it to
the integral over the high momentum degrees of freedom (rather than to the total
integration at once) and then repeating the procedure many times. The re-
normalization group transformation we use here is Kadanoff's block spin
transformation and it consists of two steps : integration over fluctuations within
square blocks of 3d spins, keeping the average spins in the blocks fixed, and
rescaling the distance by 1/3 and the spin variables according to their canonical
dimension, i.e. by the factor 3<d~2)/2. Hence, the first block spin transformation
may be written as

((/>'), (1.6)

where

d-2 ^

•̂  r μ = 0 , ± l ^

gives the (rescaled) block spins. V^φ') is the effective interaction for the new
distance scale (the old one multiplied by three), and G1 is the new covariance
(defined as the one which would appear if λ = 0).

(1.6) is now iterated yielding effective hamiltonians Vn, describing the system in
scale 3", and covariances Gn. The point is that formally the transformation drives
our measure to a Gaussian fixed point. Namely, the canonical dimension of our
coupling (in units of length) is d. Thus, heuristically one expects the effective
coupling for distance scale 3" to be ~3~ndλ and thus Vn to go to zero. This is not
quite, but almost, what happens. In fact, Vn will approximately have the form

Vn(φ) = (φ- independent term)- 0(λ) £
*e 3-M (18)

-3~ndλ X (rφx}
4 + "smaller" terms

xe3~nΛ

and the covariances Gn tend to a massless Gaussian fixed point

(GJxy= j άx j dy(-ΔcT\x,y), (1.9)
Δ(x) Δ(y}

where A(x) is the unit cube centered at xeZd and Δc is the continuum Laplace
operator. G^ has long distance behavior identical to that of ( — zl)"1. Note that
(P</>)4 in (1.8) has the expected 3~nd factor (thus being "irrelevant") but we also
obtained a quadratic ("marginal") term which does not disappear as n—»oo. This
corresponds to the fact that there is a continuum of Gaussian fixed points for
Kadanoffs transformation, namely μG^ μ>0, and the one corresponding to our



34 K. Gawedzki and A. Kupiainen

interaction with /IΦO is different from the λ = Q case. The transformation thus
generates terms which take us to the correct fixed point, (l + Of/ΓDG^.

In practice it is convenient to perform the block spin transformation by
realizing the Gaussian measure dμGn as a product of two measures, one corre-
sponding to the block spin degrees of freedom and the other to the fluctuations
within the blocks. Then the block spin transformation consists simply of in-
tegration with respect to the second measure. This brings our formulation quite
close to the setting of [3].

The problem with implementing the above procedure is, of course, that
formally Vn is an infinite series of arbitrary many body interactions and in order to
obtain the perturbation series for p(λ) up to order λτ we want to retain at least all
the terms of order less than or equal to τ, and preferably to be able to ignore the
rest. However, it is not obvious that we can do that since the spins φ are
unbounded. Here we apply the ideas of Gallavotti et al. which allow to eliminate
large gradients due to their small probability assured by positivity properties of
the effective hamiltonians. Now we can compute Vn perturbatively to order τ by
integrating by parts with respect to the fluctuation measure as in (1.!)-(!.4). The
remainder can be estimated since the fluctuation covariance has exponential falloff
(the high momentum cutoff provides an effective mass) uniformly in n and the
external fields (block spins) are bounded. The bound for the remainder will be
0(3~ndλτ+ί), 3~nd coming from contraction of interaction volume in subsequent
effective hamiltonians. Summing over n would then give the 0(Aτ+1) bound for
difference between p(λ) and its perturbation expansion up to order τ, thus proving
asymptoticity of the latter.

Actually slight problems arise from the marginal terms in Vn. Namely those of
order higher than 2 eventually pick log(cutoff)~n contributions due to mainly
technical reasons. These would eventually spoil the positivity properties of Vn and
we have to stop the iteration when nλ2~λ i.e. n~1~λ. However, then our
interaction lives in the volume 3~"d |yl|~3~dM |yl| and it turns out that a brute force
argument suffices to complete the estimation.

The paper is organized as follows: After Introduction, Chap. 2 gives a detailed
description of the model and of the block spin transformations and states the main
results. Chapter 3 establishes a lower (easier) bound for the difference between p(λ)
and its perturbation expansion to order τ and Chap. 4 the (more involved) upper
bound - they are separated because the arguments used to eliminate large spin
variables are different in both cases. Detailed properties of effective hamiltonians
used in the estimation are proven in Chap. 5. Finally, Chap. 6 contains proofs of
probability estimates used to eliminate large spins. We would like to stress the fact
that the technical core of our estimates is based on combining integration by parts
with Ruelle's superstability estimates [6]. This distinguishes it from the technical
part of [3] which dealt with continuum fields and used in an essential way the
Markov property of the measures, lacking here, and hard results of the theory of
elliptic boundary value problems [4].

After this work was finished we obtained a paper by J. Bricmont, J. Fontaine, J.
Lebowitz, and T. Spencer proving asymptoticity of the perturbation expansion for
pressure and also for correlation functions in the same model by a different
method.
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2. Block Spin Transformation

In this chapter we define our model, formulate more precisely the main result and
discuss some properties of the block spin transformation.

We work with periodic boundary conditions. Let A denote the set of integral
Γ 3N 3N]d

points in the periodic box ——, — , d^2. This will be our initial lattice. We

shall also use lattices An consisting of integral points in the periodic boxes

, —— , n = 0,1, . . . ,ΛΓ, and An: =3~"A. Notice that A = Ar, = A®. Points in
2 2 J

An will be denoted by letters x,y,u,v,..., and those in An by z. For any two points
in one of these lattices the magnitude of their difference with subscript p will
denote their periodic distance.

Let A denote the lattice laplacean on A, i.e. (φ,—Aφ)= £ (φx — φy)
2. A

x,yeΛ

has a zero mode and we shall define the massless Gaussian process φ on A as that
with covariance G0 inverting — A on the subspace orthogonal to the zero mode.
More precisely,

(Go)»,= Λ- Σ rtpΓV*-", (2.1)

where

Let dμGo denote the measure of the process. It is concentrated on 0's orthogonal to
the zero mode. Denote the lattice gradient by V and consider the random process

(yφx)
4, where we use shorthand notation (Vφx)

2m = (Σ(Vμφx)
2\m. The periodic free

\ μ /
energy density (pressure) p(λ) in volume A is defined for λ ̂  0 by

p(λ): = -ί-logjexpf-A Σ
K M [ xeΛ

Our main result consists of showing that the perturbation expansion for p(λ) in
powers of λ is asymptotic, uniformly in A. This yields asymptoticity of the
perturbation expansion for the infinite volume free energy density in the thermo-
dynamic limit. Throughout the paper we shall always assume λ to be bounded
from above.

It is convenient to define for DC A

v° . = -λΣ(VΦxΐ- ΣΠΓ- Σ
xeD k=l κ" x ι , . . . , X k e D

)4yGo, (2.3)
where < . . . ) Jo denotes the truncated expectations with respect to dμGo. The
truncated expectations on the right hand side of (2.3) give the first τ orders of
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perturbation expansion for the free energy in volume D. Now our main result may
be restated as

= 0(λτ+1) (2.4)

Theorem 2.1. For each τ and for small λ

1

\A\

uniformly in A.

Remark. (2.4) will be deduced from two bounds

• '/*)μ| (15)

proven to hold uniformly in \A\ in Chaps. 3 and 4. Of course (2.5) yields
immediately (2.4) with " = 0(Γ+1)" replaced by "^0(Λτ+1/2)". However, the latter
with τ higher by one implies (2.4) in its original form. From now on we shall
consider τ fixed.

As stressed in the Introduction, in the proof of (2.4) a critical role is played by
Kadanoff s block spin transformation [7]. We shall describe it in detail now.

The block spin variables are defined exactly as in the Introduction and the first
block spin transformation consists of integration (φ = φ°)

f δίφ1 - Cφ°)exp[^(φ°)]^Go(φ0) (2.6)

with C given by (1.7) but now transforming finite dimensional spaces R^-^IR"11. In
the case when λ = Q (2.6) is easily computable yielding

Lemma 2.1.

dφί$δ(φ1-Cφ°)dμGo(φ) = dμGί(φ1), (2.7)

where

G^-CGoC7^ (2.8)

(CT denotes the transposed operation mapping ]RAί-^]RΛ).

Proof. Immediate, since

ĵ 1'̂ 1}^^
= exp[-i(/z,CG0C

Γ/z)], (2.9)

where ( , ) denotes the scalar product. Π
Denote by E the projection on the constant sequences in ]RAn. Explicit

computation, see (A.I), shows that EJR.Λί is the zero eigen-subspace for Gί and that
G1 is invertible on (I — E)JR.Al. With a slight abuse of notation define G^1 to be the
inverse of Gt on (I-E)^Aί and to annihilate EIR^1. Notice that

G1G~1=I-E. (2.10)

We shall compute (2.6) by perturbation expansion around the A = 0 case (2.7). To
this end it is convenient to realize the Gaussian process φ as a sum of two
independent ones, corresponding to block spin variables and fluctuations inside
blocks respectively.
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Let φ1 be the Gaussian process indexed by the points of Λl with covariance
G x. Let us also consider another process, ξ°, living on A: =Λ — 3Λ19 that is on
points of A which are not centers of the 3 x ... x 3 blocks. ξ° will have the
covariance

Γ0:=R(G0-G0C
TG^CG0)RT , (2.11)

where

β lR^IR^ (2.12)

is the restriction.
It is shown in Appendix (see Proposition A. 3) that Γ0 is a strictly positive

operator on R^1. Let now A0 :TSLΛl->TBLΛ be given by

(2.13)

and β R^-^ Rby

<? if xeΛ
(2.14)

- Σ ξx+r if *eΛ\Λ.
rκ = 0, ±1

We have

Lemma 2.2. The process φ° may be written in terms of the two independent
processes φ1 and ξ° as

(2.15)

Proof. We have to show that the covariance of A^ + Qξ0, which is A0G1A^
+ βΓ0β

Γ, equals G0. By (2.10) and (2.13)

AQG±Al = G0C
Γ(1 - E)G~1CG0 = GQCTG~1CGQ . (2.16)

On the other hand by (2.11)

GQCTG-1CGQ)RTQT . (2.17)

Now G0 — G0C
TGi"1CG0 maps on sequences in IR"1 with vanishing averages over

the blocks since by (2.8) and (2.10)

C(G0-G0C
ΓG1-

1CG0)-CG0-(/-£)CG0 = £CG0 = CEG0-0 (2.18)

as E is the zero mode projection of G0. But on sequences with zero-block-averages
QR acts as identity. Hence

QΓ0Q
T = (G0-G0C

TG^1C60)RTQT = G0-G0C
TG^CG0. (2.19)

(2.16) and (2.19) prove our assertion. Π
To see that the decomposition (2.15) realizes the splitting of the process φ0 into

the block-spin and the fluctuation parts insert it to (2.6). This gives

(2.20)
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where we have used

CAQ = I-E, Cβ-0 (2.21)

and the fact that dμGι(φ^} is concentrated on φ1 such that Eφ1 — 0 since E is the
zero eigen-projection of Gt. Thus in the language of realization (2.15) of φ° the
block spin transformation consists of integrating out ξ°. Let FeL1(dμG ). Define

dμΓo(ξ°). (2.22)

We have an obvious formula

. (2.23)

T! gives the first block spin transformation. The next ones will be defined similarly
by induction. Put

1, (2.24)
where

Am^ = Gm_^G^ (2.25)

with Gm, the covariance of φm, being

Gm = CGm_1C^C-G0(COm (2.26)

and

GmG~l=I-E. (2.27)

ξm has covariance

rm_ 1=K(G I 1 1_ 1-G I I I_ 1C rG- 1CGm_ 1)K r . (2.28)

φm is indexed by the points of Λm and ξm by those of Λm = Λm — 3Λm+ v We get
analogues of (2.22) and (2.23)

(TmF) (φm) = $F(Am_ ,φm + Qξm- l)dμΓnι_^m- *) , (2.29)

. (2.30)

Certain Fs are reproduced in their form under Tm. Introduce a kernel ̂ mzy for
zεΛm and yεΛm (see the beginning of this chapter for the notation)

ίd-2\

J^^—^AAi...^^. (2.31)
Put

\pm\=stfmφm, ζm:=jtfmQξm (2.32)

so that the random processes ψm and ζm are indexed by the points of Λ™. As we
shall show in Appendix relations (2.32) are "almost local". With

V ιp™ = 3m(ψ™+3-me -ψ™) (2.33)
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and J dz denoting the Riemann sum 3 ~md ]Γ for D C Λ™, consider the general local
D zeD

Wick monomials of degree M in V\pm:

M

π
Λ™ ί=l

C..^: = ί ΠW oJz (2-34)

Lemma 2.3

- d M - i )
y pm— 1 Q ^ 2 ] pm /Λ oc\

m μ ι . . . μ M μ i .μM' \£.JJ)

Proof. By (2.24), (2.31), and (2.32)

d-2

ψm-1 = 3 - ~φ™/3 + ζ«-1 (2.36)

and consequently

Ft/;™-"1 = 3 ^Fφ^ + FCΓ" 1 - (2.37)

Since the Gaussian processes Vμ\p™ and V£™~1 are independent, we have

M _^

Under the dμΓm_ι expectation all terms but the one with 1 = 0 vanish. Hence

ΠΓ pTft— 1 Γ pw— 1 A11 (fYn— 1\

M _d_ -xί/M-i^

= ί :Π( 3~ 2W/ 3):Gjfe = 3~ l2" j^...,M. D

Corollary 2.4

T"1 T"1 TP pO Q \ 2 / p^ /O ^Q^

If the terms of the type P^...μΛί appear in the initial hamiltonian then in the first
order approximation the block spin transformations reproduce their form, as
(2.35) and (2.39) show, except for an overall factor 3~ ί ί(M/2~1)n

t χnis js driven to
zero for M>2 (irrelevant hamiltonians) and stays constant if M = 2 (marginal
ones). Thus it is natural to write our hamiltonian in volume D given by (2.3) in
Wick ordered form

+ field-independent polynomial in λ of order τ
starting with a λ2 term, (2.40)

= 2δμv(ί - \Λ\- !) + 4 j Fμ^ F»Go . (2.41)

The first term on the right hand side of (2.40) is marginal, the second irrelevant
according to the above analysis. However, the information about how the
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hamiltonian behaves under the linearized renormalization group transformation is
not sufficient. We shall have to trace the effect of the transformation beyond the
first order of perturbation expansion, in fact up to order τ. To this end define
inductively for D C Λm

τ ik Jk

VD.= v L Λ

' m ' / , ι Ί

Iterating (2.42) gives

vD=Σ-—k
rn Z^ if i J 3 f c

t = 0

I J T / C iv& *m*'"Jf r m - l ' (2A2)

logTBTB_ 1...T 1exp^"B. (2.43)

Notice that F^=0, where JV defines the volume A.
By (2.29)

(TBTB_, ...T1

-1(Γ-1)...dj«ro«0) (2 44)

Thus by cumulant expansions formula
τ 1

VD— V __/F 3 n
κ ~~ K

where C )©rm denotes the truncated expectations with respect to
dμΓn_ ^(ξn~ l) - . . . dμΓo(ξQ). To compute the right hand side of (2.45) it is convenient
to use the random fields ψn and ζ""1, ...,ζ° [see (2.32)]. Iteration of (2.37) gives

Fχ = 3"^Vμ^ + 3^(""1VμC^i+ ... +3~^C1+P;Cz

0. (2.46)
3n 3 n-i 3

Notice that the fields on the right hand side are independent. Together with (2.40)
and (2.45), (2.46) allows an effective computation of V£ by use of Wick's theorem.
The results, after the change of variables z-»3"z, may be expressed in terms of
(generally non-local) Wick-ordered polynomials in random variables Vip™. We
shall divide these polynomials into three groups writing

Vn

D=Vn

D

0 + Vn

D

1 + Vn

D

2. (2.47)

V£0 includes the terms that are of the first order in λ :

Vn

D

0 = - λ Σ Mμv I : PμV;|F>; :0ndz - 3 ~*>λ j :(F^)4 :Gdz . (2.48)
μ,v D D

Note that (2.48) is identical in form with the first two terms of the initial
hamiltonian (2.40) except for the factor 3~dn at the quartic term. This is in
agreement with the previous analysis of the linearized renormalization group
transformation given in Corollary 2.4.

V^i groups all contributions to V^- V£Q which are Wick-ordered monomials
of non-zero order in Fφ's and V^2

 all Pφ-independent terms. A diagramatic
analysis gives the following result :
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Proposition 2.5. V^ + V^2

 may be written as a finite sum of terms

ί -J 'o4)..Wzι> •• > Z J : Π Π ^K'cA ...dzr
(2.49)

wzί/z 2^r^τ, 0^αρ^3 and D-independent Γs satisfying for each I^ρ0^r ί/ie

ί - ί ι > " >*r)l Π
Q φ ρ0

(2.50)

Moreover Jor Γs corresponding to terms contributing to V£ί9 i.e. such that £ aρ >0,
β=ι

(2.50) /zo/ds also with I . . . (zl9 . . ., zr) replaced by I . . . (z1? . . ., zr) exp [εd(z1? . . ., zrj] for
small ε >0, where d(z1? . . ., zr) is the length of the shortest connected graph joining the
points (z1? ...,zr) in the periodic lattice Λm.

In Proposition 2.5 as throughout the whole paper C and ε denote various
constants which are independent of λ, A, and n. They do not have to stand for the
same constants even when they appear several times in the same formula.

The proof of Proposition 2.5 will be deferred until Chap. 5. Here let us mention
that the main input are the estimates giving a uniform exponential decay of Γmxx,
and resulting decays for <F£™Pr£™>rm

 and (^Γ^^G^ (exponential and poly-
nomial ones respectively) proven in Appendix, Proposition A.7 and A.8.

3. The Lower Bound

In this chapter we shall prove the first (lower) bound of (2.5). This will be done
inductively by inserting suitable characteristic functions under the integral and
integrating out the fluctuation field. The characteristic functions will cut off large
values of the fields V\pn and VQ1 in a λ dependent way : the smaller λ the higher the
cut-off. Let

Λ- 1 ), (3.1)

where b, independent of n, λ, and Λ, will be chosen later. Denote

Let for n = 0,l, . . . ,JV-l

Gn (3.2)

ZN = Z'N= 1 (N defines the volume A) .

We shall prove

Proposition 3.1. There exists δ>0 such that for λ small enough and

(3.3)
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Given Proposition 3.1, we can prove the lower bound easily. Iteration of (3.3)
gives

Z0^exp[-CΓ+1/2μ|]Zn(λ^)+1, (3.4)

where n(λ,Λ): = mm([λ~δ~]- 1,N- 1). If n(λ, A) = N - 1 we are done since ZN=1.
Suppose that n(λ,Λ) = \_λ~δ]-l. Using (2.47)-(2 50) of Proposition 2.5 we obtain
the bound

n\ if \\Vιpn

z\\^B (3.5)

(the Wick-ordering of the V\pn monomials causes no trouble since (V\pn

zVιpn

z^ Gn is
uniformly bounded, see Proposition A. 8). Thus,

^ (3.6)
Now we may replace Zn(λ>A) + ί on the right hand side of (3.4) by Z'n(λfΛ) + 1

increasing C and continue iterating (3.3) in the Z' version until n = N—l when it
yields the lower bound (2.5).

Proof of Proposition 3.i. First let us notice that in order to get rid of large values of
\\Vιpn\\ it is enough to restrict both \\Vιpn+l\\ and ||F£"||. Namely (2.37) gives

^XiJFΠ (3.7)
3

in the obvious notation.
Moreover, since by (2.32)

and the kernels jtfnzx have a uniform (in A and n) exponential decay, as shown in
Proposition A.6, in order to restrict Vζn it is enough to bound ξn:

(̂ΓH^D, (3.8)

where B = yB with y independent of A, Λ, n. (2.37), (3.7), and (3.8) together with (3.2)
allow to write

Zn^ J ̂ (Py +1)(ί ̂ (Γ)exp Vn

ΛndμΓβμGn+ί. (3.9)

To extract from the dμΓn integral the desired exp V^\ term, the integration-by-
parts argument sketched in Introduction is applied. We write

ί IB exP Vfdμr = exp J at — log J χB exp (t Vf)dμΓn - j u<lμΓnLo at j

9 (3.10)
LO

where

< >( = J U exP (tVf)dμΓJl u exp (tVf)dμΓn . (3.1 1)

The integration by parts is performed according to the formula

£»H£")> - V Γ — + 1 ̂  + * F(ϊn} (3 12)ς^Vζ )/t— L 1 n X y ϊ κ n +Γ n ^ ) V^-1^
yeΛn *y y y t
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δ log y-
where the — term should be understood as replacing the characteristic

function χ(\ξy\^B) in the numerator of { }f by the sum of ^-functions
^^y

Since ¥„ is a polynomial in the ξn field we may apply (3.12) to <( J ^ X or to any
polynomial-like term produced by the earlier integrations by parts. The

δ Iθ2 Ύ -
^"-independent terms, the terms with — or the ones with the overall power of

λ larger than τ will not be transformed further. After a finite number of steps all
terms are of this form. Then we may write

i
log Jχ^exp P^dμ^ —log J χBdμΓn=\dt(V^yt = V^li + J at (Rn(t)yt, (3.13)

o

where V^+l* groups all ^"-independent terms of order rgτ in λ and Rn(t) all terms
δ los y -

either of order > τ in λ or with — g contributions. That the ^"-independent

terms reproduce exactly V^^1 is easily seen from the inductive definition (2.42).
The structure of Rn follows from Proposition 2.5 and the method to generate it.

First write the ξn dependent part of V^ as a combination of terms

^ Σ j(x , ,x \Vwn+l] Γf ξn (3.14)
xι,...,xseΛn σ=l

undoing the Wick ordering in (2.48), (2.49) and using (2.37) and (2.32). Due to the
uniform exponential clustering of V<s$nzx, see Proposition A.6, and Proposition 2.5
/s satisfy

(3.15)
xσeΛn

σ φ σ o

Now the integration by parts either
A) contracts ζn

Xσ with £"σ/ replacing it by ΓnXσXσr within one or between two
expressions (3.14) or

B) contracts ξn

Xσ of (3.14) to δl°?**.

In case A) we produce either another term of the type (3.14) or a
^"-independent term

A7(Pφ"+1) (3.16)

with

as easily follows from the uniform exponential decay of Γn's. In case B we obtain a
term

(3-18)
xι,...,xseΛn σ = l °ζχs

again with j satisfying (3.15).
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Summarizing, Rn(t) is a combination of terms (3.14) and (3.16) with r^
and of terms (3.18). Since on the support of

l\\L^B and \\ξ»\\L

we obtain finally using the bounds (3.15) and (3.17)

^C(l+nc)Bc\Λn\(λτ+1+sup (3.19)

where "sup" on the right hand side is over Ft//1* * with || V\pn+l\\LOO ^ B, xeΛn and
te[0,l].

To complete the proof of Proposition 3.1 we need the following estimates
which express the fact that probability of large values of the ξn fields is small. They
will be proven in Chap. 6 together with their counterparts used in the proof of the
upper bound.

Lemma 3.2. Provided that b in (3.1) is large enough and λ is small enough

sup <e -CB2

and

(3.20)

(3.21)

(3.22)

for ng λ~δ ifδ is chosen so that λ1/2(l+λ~δc)Bc^l. Now (3.9), (3.10), (3.13), (3.21),
and (3.22) give

Ce-c^

Using (3.20) together with e~c^2^Cλτ+1 we get from (3.19)

i

which is (3.3).
The version of (3.3) with Z replaced by Z' follows from (3.21) above. Π

4. The Upper Bound

In proving the second inequality of (2.5) (the upper bound) we shall use a slightly
different argument, also borrowed from [3], to eliminate the large values of the
fields. Namely, we shall exclude the interaction from the regions where the fields
are large. To this end define

_d_

Dn' ~ {zεΛn: \\ Ffy"|| ^B}, D'n\ = {zeΛn: \\Vψ"\\ ^^"3 2B}, (4.1)

where B is the ^-dependent constant given by (3.1) with b large enough.
The manipulations with the interaction region will be based on the following

estimates using the positivity of the leading terms of the interaction hamiltonians.
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Lemma 4.1. Let b of (3.1) be large enough.

A) V^V^Do. (4.2)

Moreover, there exists <5>0 such that for small λ, n = Q, 1, ...,min([Λ,~δ], JV — 1) and
BnCD<n

B) VB^VBn\cn tf CnCD,n (43)

C) \Vn

B"-Vn

B^c»\^CλB4\BnπCn\ for any CnCΛ". (4.4)

Proof. A) First notice that the difference of the field-independent terms in (2.40) for
D = Λ and D = Λ\D0 is by virtue of Proposition 2.5 a combination of the terms

J . . . J J J ... ί 1(2,,...,2^2,..^
Λ A DO Λ\DO Λ\DO

and, as a result of (2.50), is bounded by λ2C\D0\. However, the difference of the first
two terms in (2.40) for D = Λ and D = Λ\D0 is easily seen to be less than
— λCB4\D0\ if only b in (3.1) is chosen large enough so that the negative quartic
term dominates.

B) Similarly as in A) (V£ι + V%n

2)-(VffiCn+V$Cn) is a combination of the
terms

J . . . J J ί ... J l(2,,...,2r):i[(Vrty:ed2,...d2r
Bn BnBnnCnBn\Cn Bn\Cn ρ=l

[where we suppressed the μ subscripts of (2.49)] and is bounded by
Cλ2(l + nc)Bc\BnnCn\ because of (2.50) and the bound \\7ψn\\ ^B holding on Dc

n.
Now in Vfy — V^Cn the quartic term is negative if b in (3.1) is large enough but

it is suppressed by the 3~dn factor. However, the quadratic factor is also negative
[Mμv is positive definite, see (2.41)] and is bounded above by — CλB2\BnnCn\ for b
large. This dominates Cλ2(l + nc}Bc\Bnr\Cn\ if n^λ~δ for small δ and if λ is small
enough.

C) This is proven as B except for the term Vfy — VffiCn whose magnitude is
bounded by Cλ(B2 + 3~dnB4)\BnnCn\ which dominates again the
Cλ\l + nc)Bc\BnnCn\ contribution yielding (4.4). Q

Remark 4.2. For proving (4.3) we have used the negativity of the marginal
quadratic term of V£ to dominate the other irrelevant terms. In other (Ft/;)2"
models the quadratic term coming from the Wick ordering does not have to be
negative. However, we may extract a small negative 0(λ) quadratic term from dμGo

and use it to the same end.
Define now

Zα:=ί&ιpVf^-dμβn (4.5)

for n = 0,l,...,JV-l and

Zw: = l . (4.6)

Here is the upoer-bound counterrmrt of Proposition 3.1.
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Proposition 4.3. For δ>0 small enough, λ small enough and
/7 = 0,1, ...,min([;r*]-l,N--l)

Z"^exp[3-d"CΓ+1/2|yl|]Zn+1. (4.7)

Now, since by Lemma 4.1 A

the iteration of (4.7) gives

Jexp F^μGo^exp[Oτ+1/2|yl|]Z"(A^)+1 (4.8)

similarly as in the proof of the lower bound, compare (3.4). If n(λ, Λ) = JV — 1 we are
done again. In the other case

(4.9)

where we have used Lemma 4.1C.(4.8) and (4.9) give the upper bound (2.5).

Proof of Proposition 4.3. We start by inserting a partition of unity to Z" in order to
control the range of the values of ξn at each point. Denote by p a collection of even
integers {px}xeΛn Let χpx(ξn

x) be the following characteristic functions

χ Px(ξn

x) : = χ(ξ"xε [(p, - 1)5, (p, + 1)5)) , (4. 10)

where B = γB and γ will be specified in a moment. We denote also

^")= Π xPx(ξ"J
xeAn

Given p, define

Rn= (J {zeΛn:\z-x\p<b'B2\og(l + \Pχ\). (4.11)
xeAn

We have

^"w"υlwdμrιι)dμβB+l exp [CAB*|Rn|] , (4.12)
P

where we have used Lemma 4. 1C.
The purpose of the elimination of the interaction from Rn becomes clear

because of the following

Lemma 4.4. Ifγ in the definition ofB is small enough and V in (4.11) is large enough
then

Proof. By virtue of (2.32) and of the uniform exponential decay of V^nz^ see
Proposition A. 3,

(4.14)
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But if p xφO then, since zeRc

n, \z-x\p^b'B2log(l + \px\). Hence

Σ (415)

if V in (4.11) is large enough. (4.14) and (4.15) yield (4.13) if y is small enough. Π
The next step in estimation of Zn will be to remove the interaction on the right

hand side of (4.12) from the region 3Dn+1. Notice that on Rc

nn3Dn+1

\\vipi\\ ^3" 2 I I ^ V H - I I Γ C II^S^B-IS" ̂ =13"^

by virtue of (2.37) and Lemma 4.4, so that ^n3Dn+1cD^. Hence we may use
Lemma 4.1B in order to replace in (4.12) Vf^(D^R»} by vf\(D^3D»+*uR»>.

Moreover

1 (4.16)

or equivalently

again by (2.37) and Lemma 4.4. Hence we obtain

Ji]. (4.17)

Notice that the interaction region Λn\(3Dn+1vRn) = Λn in (4.17) does not depend
any more on £"'s over which we integrate in the n'th step of the block spin
transformation. As in the proof of Proposition 3.1 we compute this integral using
integration by parts. Write

n n (4.18)
Lo

compare (3.10). As in Chap. 3

F/%(= F™ + dt<Rn(ty>f>t, (4.19)ί Λ<F/%(= F™ + }
0 0

where Rn(t) is again a combination of the terms (3.14), (3.16) with n^τ + 1 and
(3.18) (with logχ^ replacing logχ^). Now/s satisfy a modified version of (3.15) and

(3.17). The modification replaces; in (3.15) by jexp d(xσ9Λ") and |

in (3.15) and (3.17) by \\^ψn+1\\Loo(Λn). This is clearly possible since ξn enters Vf
only via Vζn \^ to which it is connected by an exponentially decaying kernel, and
V\pn+1 only via V\pn+1 \^n. Notice that since large values of \ξn

x\ may appear only for
x far from Λn,
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if b' in (4.11) is large enough. Also

Hence,

^C(l + nc)Bc\Λn\λ
δξ"x

(4.20)

compare (3.19).
We need the following probability estimate which will be proven in Chap. 6:

Lemma 4.5. Provided that b in (3.1) and b in (4.11) are large enough and λ is small
enough,

supe -εd(x,Λn) <e~

and

(4.20) and (4.21) give

compare (3.22). (4.17)-(4.19) and (4.23) yield in turn

(4.21)

(4.22)

(4.23)

Now 3~1^i" = yl"+1\(Dn+1u3"~1Kπ) and we may restore the interaction in
(An+ί\Dn+ί)r^3~1Rn in order to obtain Z"+1 using again Lemma 4.1C. The sum
over p is controlled with help of (4.22) which shows that non-zero values of p have
very small probability. Thus,

xeΛn

^Zn+1exp[3~dnC/lτ+1/2 |yl|],

where we have used the estimate \Rn\ ̂  ^ (Ib'B2 log (1 + |pj))d and have assumed λ
xeΛn

to be small. This completes the proof of Proposition 4.3. Π
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5. Effective Interactions

In this chapter the graphical representation of the effective potential V® is derived,
which allows us to prove Proposition 2.5. We recall here the basic formulae for Vj?:

VD = V /v3nD 'V3nD\τ

n-ί = VD +VD + VD (245} (241}n / j 7 f \ 0 ? • • • ? 0 / XΪ-N ^ w, 0 n, 1 π, 2 V /? \ * / ?
Λ = 1 ^ Jφo Γw

where

D D

and thus by (2.3) and (2.40)

τ ι
y/3nD T/3nJD V"1 /r/3nD. . r/3nD\T /c -i \

' k=2 k ' ' °

We also defined J^ such that (V?tiyGn = Q. Thus by (2.45), (2.47), and (5.1)

τ i
yD —/yD\ _ V Γ//y3nD. .y3nD\T \ _/p/3"D. . jr/3"D\ Γ π

, (5.2)
and

— __ _κn,ι~~ 2^ / » \ ^0,0 ' ••• 5 ro,o /®rw >χo
Λ = l ^ !

We can now easily write down the "Feynman rules" for V^ and V^2 using (2.48),
(5.2), and (5.3) together with the decomposition of V\p® given in (2.46).

Namely consider vertices uρ, carrying indices μρ, ...e{l, ...,d} and zQeAn

(which for brevity we suppress) :

or

where M is defined in (2.41). Build connected graphs y by joining pairs of legs of
ι;fi's, each element in the pair coming from a different vertex, to form lines of either
of the following two types:

(1) hard lines

n- 1

m = 0

coming from integrations with respect to dμ@Γm,
(2) soft lines

Sμv(z, z') = 3~d"<Fμφ"(ζφ",>Gn (5.5)

arising during Wick ordering with respect to dμGn of the result of integration.
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Denote the subgraph composed of all vertices of y together with all hard (soft)
lines by H(y)(S(y)\ and the end points of a line / by zl_ and zl+. For a vertex vρ let aρ

be the number of legs which are not contracted.
Given now such a graph y, we assign to it the interaction V^y :

( _ 1 y(y) r(y)
v»D^-^r3dnr(7}ί S ΓK Π H(zt_,zj π s(*,_,*,+)

r\ϊ) D Dρ=l leH(γ) leS(γ)

= J . . . J I fa, ..., zr(y)) : Π (Fψ"e)
a° :G,A . . . dzrM , (5.6)

D D aβ>0

where for simplicity we have not written explicitly summations over indices of the
gradients μρ, vρ, . . . .

V^Λ and V^2 can be now described in terms of Vj? as summarized in the
following

Lemma 5.1. Let $1 = {y :H(γ) is connected and Σαρ = 2} and ^2= \y:H(y) is not
connected, £<zρ = θl. Then

Vn

Dt= Σ C(y)V£y9 i=l ,2, (5.7)
ye^i

where C(y) are combinatorical coefficients.

Proof. Because of truncation, the first term on the right hand side of (5.3) produces
connected graphs of hard lines. Wick ordering does not produce new vertices, so
H(y)'s will be connected. The resulting vacuum graphs will cancel the constant in
(5.3) so £αρ^2. This settles i= 1. Similarly, in (5.2) the first term of the summand
involves only y's with H(y) connected which are cancelled by the second term since

/ H - l \

upon expanding G0 = Gn® (+) Γm it involves all y's. The factor 3dnr(y) arises from
\m = 0 /

the change of variables used in (2.46) z->3πz. Π
Proposition 2.5 follows now from (5.6), (5.7) and the following claim:

Lemma 5.2. A) Let ye^2. Then for all 1 ̂ ρ0^

j ... J \Iy(zl9 ...,z,(y))| Π dzρ^λ^C(l + nc) (5.8)

for C independent of n, A, λ.
B) Let ye^. Then (5.8) holds also with Iy replaced by

I y ( z ί 9 ...,zr(y}) Π
leH(γ)

for some ε>0.



Rigorous Block Spins 51

To prove Lemma 5.2 we shall need estimates for the falloff of the hard and soft
lines :

(5.9)
Ί + |z-zΊj'

-'«*-*V (5.10)

(5.9) and (5.10) are proved in Propositions A.7 and A.8. Proposition 5.2B follows
now easily. We replace every soft line (5.5) by 3~d"C, every hard line (5.4) by

C V 3~ d m *pγnΓ 'Vl~mιp\7 7 \ Ίc 2^ -> exp|_ — j ε jz u — zl + \p_\

and every vertex by Cλ obtaining

\Iv\^Cλr™3dnrM-dnS-ll2dnEΣ Π 3-dm'έΓ3n~w'e z '--z '+K (5.11)
(mz) ϊeH(y)

where 5 is the number of soft lines, E that of external ones. By taking smaller ε we
can extract the extra convergence claimed in Proposition 5B. Since (recall D C Λ n )

Λn

and H(γ) is connected one easily gets from (5.11)

j ... j \i(Zl,...,z^\ Π dzβgαW"-'taS-1/2'teJΪΣ i.
Λn Λn ρ*ρo (mz)

But .E = £αρ^2 and ^ 1 =/ιc which imply the claim.
(mi)

Remark. Notice that for y with E^4 we get much better bound Cλr(ί +nc)3~dn.
The worst behaving terms are the marginal ones producing gaussian corrections to
the measure.

In Proposition 5 A we cannot use the exponential falloff which made 5B easy.
However, ye^2

 are vacuum graphs and thus one particle irreducible. We proceed
as follows. First replace hard lines by

n- 1

y 3~m z d^~ ε 3 n"w ' ' z z-~ z z + ' ,
mz = 0

soft ones by (5.9) and vertices by λC. Fix ml for each hard line and proceed with the
following three steps :

1. Use the bounds

f ^z

f^~dm

e-^n~mε/z-z'\P^-dm'e~^n'm'ε\z'~z''

Q — an /^o

"--' -f" f i ~ l + |z-zΊd- f i '

T — d« o — an

- ___ - _ <3~dn

' -=

to get rid of two leg vertices vρ, ρ φ ρ0, obtaining a new graph with only four leg
vertices and lines decaying slightly slower.
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2. For four leg vertices without self contractions (these may arise in the first
step) we use Schwartz inequality

4 / 2 \ l / 2 / 4 \ l / 2

\dz Π |Lβ(2-z.)|g Jdz Π 14^-zJI2 ί<fe Π Iiβ(*-z
α = l \ α = l / \ α = 3

together with the estimates

_ n + m~
C3-,im'e-3 - »v|z-Z'Ί

-D-Al \ 21 1/2

-'

1/2

= -1 + lz-z"

We can represent this pictorically by

(5.12)

We pair zα in (5.12) so, that the graph remains connected. This is always possible
for a connected vacuum graph.

3. For four leg vertices with self contractions, i.e. 30 , the loop is easily bound,
giving C or 3~ndC depending on whether it is hard or soft. The resulting two leg
vertex is treated as in 1.

After these operations we end up with oo or o depending on whether ρ0 is a
βo QO

two or four leg vertex. Now apply 3 again and the result is the estimate

Il), (5.13)
(mi) J

where x is the number of soft lines disposed of in step 3. We started with at least
two soft lines and at least one of them enters step 3. Hence xg: 1 and (5.13) gives
the claim since £ 1 = nc. Π

(mi)

6. Probability Estimates

We will prove in this chapter the probability estimates for the fluctuation integral
stated in Lemmas 3.2 and 4.5. The proofs are simple adaptations of the super-
stability estimates of Ruelle [6]. Our situation is, however, slightly different from
that of [6] this chapter will hence be self-contained.

Note that the characteristic functions χ^ in (3.8) are a special case of χ- in (4.10),
namely XB = XP=Q> We can now treat Lemmas 3.2 and 4.5 on the same footing by
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considering

\ ^^y / p,t

where

ΰE(ξn) = tVE(3-d/2Fιpn^ + PC)- l/2(ξ\Γ;lξn) (6.2)

and in the case of Lemma 4.5 E = An = An\(3Dn+1uRn) whereas for Lemma 3.2
E = Λn and in both cases the Fιpn+ 1 occuring in (6.2) satisfies || Fi//1 + 1 ||LOO(£) ̂  £. Now
(3.20) and (4.21) of the lemmas follow from

Proposition 6.1. A) Let E = An or An. Then for b large, λ small S±(Q,E)^e-cS\
B) Let b and bf be large enough and λ be small Then

sup e-εd(y'A^S±(py,Λ
n)^e-c^.

p,ί,y:p y ΦO

We shall perform a translation in the integral (6.1) so that all the characteristic
functions are centered at the origin i.e. ξ-^ξ + Bp. Denoting (we suppress n)

UE(ξ) = UE(ξ + Bp) - UE(Bp) - (ξ, UE) , (6.3)

where

= Bpδξ
we obtain

In (6.5), to coincide with the notation of [6], we have defined

μ(dξA) = Y[ XB(ζχ)eξχU*dξx (6.6)
xεA

and ξ in UE(ξ) is restricted to be equal ± B at y. Denote also by ξA the configuration
with ξx put to zero for xeAc. We will need the following properties of UE:

Lemma 6.2. Let U denote UE with E either of the sets in Proposition 6.1 and let λ be
sufficiently small
A) There exist constants Ai,A2>0 such that

~A2 Σ ζχ = u(ξB)^ ~Aι Σ ζl (6 7)
xeB xeB

for all BC An. _
B) Let A,BcAn and define

W(ξA9 ξB) = U(ξAuB) - U(ξA) - U(ξB). (6.8)

Then for some C, ε>0

\W(ξA,ξJ\ZC Σ e'^-^(ξl + ξl). (6.9)
xeA, yeB

Remark. (6.7) and (6.9) are the standard conditions for superstability and regularity
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[6]. For the other cases however we must slightly modify the arguments in [6] due
to the fact that for some x UE in the single spin measure (6.6) can be very large.

Proof. The change of variables ξ-+ξ-\-Bp induces

Ff,-> Pζz + Fζ; = Fζz + V(^QBp)z.

Now V^n involves only ζz for zeRc

n (in case of VAn, p = 0 and so ζ' = ty. Thus for

and as previously we get for b' large || Vζ'\\ ^ 1. Absorbing Vζf to V\p it thus suffices to
prove the lemma for

JE

(6.10)
K , -

L11U I ) C, II QQ -̂  U. J. lit/ llt/t pαi L Wl L7 , — -L/Z^Lj, J

A) and B) since A>Γ~1^A>0 and has exponential falloff (see Proposition A. 3). It
is easy to infer from Proposition 2.5 that U+l/2(ξ,Γ~1ξ} is a sum of terms

when || Ftp || LOO(£) ̂  B + 1 and || ξ \\ „ ̂  B. The "free" part of UE, - l/2(ξ, Γ ' lξ), satisfies

λ Σ J(xl9...,x8)lξxt, (6.11)

where for n^λ~* with δ small enough \Jeεd(Xί'-'Xs}\^λCBc. Since \ξx\ ^B and 5^2
because of the subtraction in (6.10), we can bound (6.11) by

λCBc £_ e-**~*ξxξ,. (6.12)
x, yeAn

Thus (6.10) is regular and for λ small enough does not change the superstability
when added to - l/2(ξ, Γ ~ x ξ). Π

Let us now prove Proposition 6. IB : From (6.5) we get using (6.6) and (6.8)

-B

aW(ξy, ξΛn\y) ~ W(ξ'y, ξΛn\y) h (fi 1 1\
'β ^ςΛ^y) 'ςy'ςΛny'\ξy=±B I6'13)

Since H ξ H ^ ^B, we can use Lemma 6.2A and B to estimate

eϋ(ξy) + W(ξy, ξΛn\y) ~ W(ξy, ξΛn\y) < ρCB2 /^ ^\

Thus by (6.13), (6.7), and (6.14)

S^JΪ")^*^5"^^^ (6.15)
We write ufn using (6.4) and (6.2) as

(6.16)
l = Bp

As in the proof of Lemma 6.2 || Vζ \ξ=βp\\ is small since zeRc

n and the second term in
(6.16) can be bounded by one (say). Hence, to obtain the claim we have to prove

sup e~&d(y>λn}[\ + \B(Γ~lp)v\~]ecS2^e~c52. (6.17)
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Using the exponential falloff of Γ~1 we get

V e-εd(x,Λn)\p \e~ε\x-y\p\

:p*ΦO X /

(6.18)

choosing b' large enough (6.17) follows from (6.18). Q

Proof of Proposition 6ΛA. Following [6] we insert a partition of unity in the integral
of (6.5). For this purpose, let Q<ψ0<ψί < ._.. <ιpp and_let V 0 C V ί C _ . . . CVp = Λnbε
cubes in Άn centered at y such that ψ0\ V0\ = B2, ψp_ 1 ̂  B2 and ψp > B2. Consider the
sets

Rq=ίζ'' Σ &^Ψq\Vq\> Σ ζχ<Ψq + k\Vq + k\>k>0\ ' (6'19)

{Rq}q<p-! forms a partition of unity since \ξy\ = B and || ξ \\ m ̂  B. Thus (we denote Vq

by q for brevity)

p-l

y Z"1 f eWβ) + W
9 = 1 Λ q - l

+ Z"1 f e^p-iί + ̂ ^p-^ + ̂ ^p-i ^p-i)^^-1'^^-^"^^-1'^^-^ )

^p - 1

Σε^Z-1 j eWiKdgJe^'^^ ^Mdξpw)
«=1 Σq

+ ε'(p)Z~1 J eϋ(4'-l)Mdξ;_1)Jel'«»v'-l)+wr(ί'-1 4*v«'- l)Mί/ξMl,_1), (6.20)

where Σq is {^:|^|^1} and

ε(q)= j e~Aί^ξq^μ(dξq)(§ eu(ξq}μ(dξq)]~1 sup

(6.21)

sup ^l^p-i.SpW). (6.22)

We denoted by ̂  the set {£:||<y ̂ 1 and ||ξς + k | l i<t/; β + fcFβ + k}. It will be shown
below that for b sufficiently large we can choose {ψq, Vq} such that

e-cs\ (6.23)

e~c5\ (6.24)

and thus from (6.5) and (6.20)

S±(^E)^e±^e-c~B2. (6.25)

Let first E = Λn. As in the previous proof we only need to consider the contribution
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and by the exponential falloff of Γ~ ί for V large \B(Γ' lp\\ ^ 1. So

which is the claim. In case of E = Λn, p = 0 and only VΛn in (6.2) contributes to
Again, for λ small \Uy\ ^ 1 and

completing the proof. Finally let us prove (6.23) and (6.24). Note that by (6.6) and
(6.7)

1

^C'^'Π f e^dί > C'Fg'
xeg - 1

1

J
-i

since J eaξdξ> 1. Hence from (6.21) and (6.22)

-c"'-'K'-1 sup e2\W(^^\μ(dξq), (6.26)
ξeAqURq

llβ-Cv'-lK*-1 sup
ξeAp-ivRp-i

By (6.9) and ||ξ||00^Jδ we also get

V,,.^ (6.28)

and

xeq

= Wι + W2 + ψ3, (629)

Let us now choose ψ 's and K's. We set φ = ( 0̂ -

and p as the largest integer_such that q0+p— 1^5. Also, g0_=5~"1/2 and
r0 = l/2(β)1/d and thus ψ0\V0\ = B2 as required. r1 will be chosen in a S independent
way below. Let ξeRq_1 (the other case ξeAq_ί is similar). Noting that

for fc^ 1 we estimate the Wt in (6.29):

q\e-^, (6.30)

k = l

~m > ' l ( p~9~ 1 ). (6.32)
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Denoting £ ξ2

x by Eq + k we get (q ̂  p - 2)
xeg + fc

"If Σ e-^-^'ξ1 e-^-^E^-E^.,)
k=l yeq + k\q + k-ΐ k= 1

<p -F 4- V *-β» ι*F <w IT/ I V
= ̂ q+l ^q^ L β £q + k+ L=Ψq-l\y

q-l\ L

q\-ψq_ί\Vq_1\). (6.33)

From the definitions of ιpq and Vq we obtain

(6.35)
Inserting (6.34) and (6.35) to (6.30)-(6.33) we deduce for q^p-2:

+ C(r0 + qriγ-1B2e-εrί(p-q-l} . (6.36)

The second term in (6.36) is bounded easily by (recall that

Recalling that q0 = B1/2 and r0-l/2(5)1/d (6.36) and (6.37) inserted to (6.26) give
for r1 large enough

. (6-38)

Similarly, from (6.28)

and thus

ε'^e-^-l^-ΊίM^p-i). (6.39)

Now

Jμ^.J^CBl'VΊ sup expOBuf-IIF^J].
xeg- 1

Now recall that by the choice of p, max |x — y\ ̂  CB. On the other hand, for any u,
xep — 1

\y — u\^b'B2log(l + \pu\). Thus as before, for V large enough \u^n\ is small for all
xep— 1 and

q^p. (6.40)

(6.38M6.40) imply now (6.23) and (6.24).
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In above we have assumed, that the boxes F0,..., F p _ 1 are entirely inside An.
The case when it does not happen is even simpler and necessary modifications are
left to the reader. Π

Finally, we wish to prove (3.21) and (4.22) of the lemmas. To this end notice
that

-ί<ψ
B xeΛn

= exp|- f dβ £ :
B xeΛn

where 17 0 is superstable and regular. Similarly,

ί Π *,,«>K=f Π *Py(WU Π

= ί Π ^(βyWy Z-1! Π δ(ξ"y-βy)eu°Y[dξ"y
y:py*0 y:py*

By [6] we can find C>0 and δ such that

y y y .
y

yeY _yeY

;, (6.41)

(6.42)

and the same holds if the domain of integration over ξ"'s is restricted to an interval.
Now (3.21) and (4.22) follow easily from (6.41) and (6.42). Π

Appendix

We shall prove in this Appendix the various properties of the covariances Gm and
Γm and the operators j/m and Vstfm needed in the text.

Let us start with Gm. A straightforward computation using (2.1), (1.7), and
(2.26) yields

J- Σ
I / I 1 ^
l y ιml OΦpe2π3 m ~ zvZ£

t \ 3W /.

Φ(x-y) y π

' M^ Il-Wμl < 3m/2 -j sin

-i i
— V G (v]είp^x~v^

Mlo^"mVF;"

2

?μ + 2πMμ

2 3m

(A.I)

d-l

where we recall that μ(p) = 2 ^ (1 — cospμ) [(A.I) is easiest to derive by first
μ = 0

computing it in infinite volume and then periodizing]. We will consider Gm(p) as
defined on the periodic box [ — π, π]d. Notice that it is non-vanishing and finite
except for p = Q. This shows invertibility of Gm on the subspace (I — E)JRAm (i.e. on
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sequences with vanishing means) and allows us to define G~ 1 as the inverse of Gm

on this subspace :

(G~\y=~ Σ G>ΓV*<*-». (A.2)

We gather in the following Lemma some properties of Gm needed later.

Lemma A.I. The functions Gm have the following properties:

a) Gm+l(P)=
q : q μ = 0 , ± l

1 1

(A.3)

b) Gm /zαs a unique continuation to a meromorphic function of complex p0for any
Ξ(PI? ...,pd_1)e[ — π,π]d-1 wiί/i ίwo simple poles at the p^s satisfying

(A.4)

c) There exists an ε>0, independent on m, swc/i that for |Imp0 |^ε and all

(A.5)

where C1 >0.

Proof, (a) follows from translating the infinite volume version of the first equality
of (2.26) to momentum space, (b) follows by inspection from (A.I), the zeros of μ
providing the poles, (c). Consider the function

μ(p}

μ 3 μ

f(p) is analytic in p0 for (Re/?0,p)e[ — π, π]d.

Let now llmpo^ch'1^). Then for MΦO,

and

sm-f-

2 3m

. , Rep 2 Imp2 - - 2 ^

2 3m 2-3"
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Thus,

|^C for

and hence by Cauchy's formula

df
^C for |Imp0 |^l/2ch 1/2. (A.6)

Since f(p) is strictly positive for p real (A.6) implies that \f(p)\ > C1 >0 for |Imp0|
small enough. Π

We can now turn to study the decay properties of the various kernels. We start
with

Proposition A.2. There exist C and ε such that for all m and A

:l*~^. (A.7)

Proof. By Lemma A.I (b) and (c) Gm(p)~l is analytic in p0 for |Imp0 |<ε and
bounded uniformly in m, Repe[ — π, π]d and A. Thus

which establishes exponential falloff of this kernel in zero direction, by symmetry
in all coordinate directions and by \x — y|p^Cmax|xμ— yμ\p in all directions. But

and (A.7) follows. Π
Let us next consider the fluctuation covariances Γm. Their main properties are

gathered in

Proposition A.3. A) Γ~ 1 can be written as

Γ-^Q^G-IQ, (A.S)
where Q is given by (2.14).

B) Γ~ 1 and Γm are strictly positive and satisfy

. (A.9)
IV m/jcyl J

Proof. First note that #Γ:IR ϊm-χIR'im and Qτ :]R/1 »->]Ra'» are given by

fR^ϊ =ί^ if xe^m _
1 Uχ m if xe/tm\/lm1 m m (A.10)
(Qτφ)x = φx-φy.

y being the point in Am\Άm nearest to xεAm. Thus by the definition of Γm (2.28)
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As in the argument following (2.17) we can dispose of QR in (A. 11) thus producing
together with (A. 10)

QTG-1QΓm=Qτ(I-E)Rτ-Qτ(I-E)CτGτ

m+ίCGmRτ.

Now, it is obvious from (A. 10) that

QTRT = I and QTE = QTCT = 0.

Thus

proving (A) since Γm is self adjoint.
(B) The claims for Γ"1 follow immediately from (A), the positivity of G"1

( A.7). Also, we get that Γ ~ 1 is bounded from above and hence Γm > 0. We are thus
left with establishing ( A.9) for Γm. It is enough to prove the falloff for the operator

Explicit computation gives the momentum space representation of Γ

***-,)_£'' Σ .
p r : r μ =0,±l

•Π'
~ί^rryoίP(χ~y)e

ygi

(A. 12)

where '̂ Σ" denotes the sum over
P \P I

Consider the functions

2πr

32Gm+1(3p)

Lemma A.4. Γm(p, y) are analytic in p0 and uniformly bounded on

{(p0,p)eCxR' |-1:|Imp0 |<ε,|p/ |^π}.
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Proof. Again, given p and y, Γm(p, y) is meromorphic in p0. To bound it uniformly
we write

G» /1,0^^2 1

32Gm+1(3p)
32Gm+1(3p)-G,

2

2πr
G>)^(p+^ ji+2cos,K

1+2cot*+ —;ι -^
32Gm+1(3p) " ^ " - >e (Λ 14)

By (A.3)

so that

^ - 2πr
Σ GmU+—

->

Gm(p)Gm(p+^)

l+2cos

r Φ O

Π
l+2cos

2πr

By Lemma A.I

(A.15)

is uniformly bounded for rΦθ (poles of the

numerator never coincide and get canceled by the zeros of the denominator). Π
From (A.13) we note that Γm(p,y) = Gm(p) for Oφ3pe2πZd since

Gm+1(3p)~1=Q. Also f m(0, y) = 0 from (A. 15) because 1 + 2 cos^=— =0. So we can

write

(Γ) =\*mSχ i

and the exponential falloff follows from Lemma A.4 as before. Π
Now we pass to the study of the operators sίm and V^m. By explicit

computation

i A i
\/Lm\

VΔJ
r72πiMz

-1

y— j-

I71ml O Φ p

(A.16)
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,)** =κ Σ

-1

Lemma A.5. &?m(p, z) and Vμ s/m(p, z) are analytic in p0 and uniformly bounded when
\lmp0\<ε, Iftl^π.

Proof. For fixed p and z ̂ , and Vμsί are meromorphic in p0, so it is enough to
establish uniform bounds. Proceeding as in Lemma A.I:

Gm(p)
<C

and similarly for Vμjtfm. Π
Again, Lemma A. 5 leads to

Proposition A.6. There exist C, ε>0 such that the kernel

satisfies

(A 18)

Note that in jtf'm we also sum over the zero mode p = 0 whereas in j/m this term
is excluded. However, j/m and jtf'm coincide when acting on φm and Qξm, both
living in (I — E)ΊR.Λm. Propositions A.3 and A.6 give

Proposition A.7. There exist C and ε such that

Proof. We have by (2.32)

and (A.20) is obvious by virtue of (A.9) and (A. 19). Π
The last result concerns the decay of (Vιp™V\p™y Gγn.

Proposition A.8. There exist C and ε such that

(A.20)
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Proof. By iteration of (2.37) we obtain

(A_22)

Hence, because of (A.20), (A.22) follows from the easy estimate
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