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A Time Dependent Born-Oppenheimer Approximation

George A. Hagedorn*
The Rockefeller University, New York, NY 10021, USA**

Abstract. We consider the dynamics of a quantum mechanical system which
consists of some particles with large masses and some particles with small
masses. As we increase the large masses to infinity we obtain the following
results: The particles of smaller mass move adiabatically and determine
an effective potential in which the heavier particles move semiclassically.
Our methods can be applied to diatomic molecules with Coulomb forces.

1. Introduction

In 1927 Born and Oppenheimer [2] studied the bound state energies of molecular
quantum systems. These systems were characterized by having two types of
particles: the nuclei with large masses on the order of M, and the electrons with
smaller masses on the order of m. The authors argued that the energy levels had
an asymptotic expansion in the parameter (m/M)1/4, and gave physical inter-
pretations for the non-zero terms up to fourth order.

Although the Born-Oppenheimer approximation has been very useful for
understanding molecules, there has been little mathematical work concerning
its validity. However, two announcements [3, 4] of rigorous results by Aventini,
Combes, Duclos, Grossman and Seiler have been published.

Rather than study the bound state energies of such systems, we will study
the evolution of certain states as the large mass M tends to infinity. In order
to obtain a non-trivial limit, we will take the velocities of the heavier particles
to be on the order of M~1 / 2 and study the motion for times on the order of M1/2.
Our results show that as we take M to infinity, the lighter particles move adiabati-
cally and determine an effective potential in which the heavier particles move
semiclassically.

This time dependent approximation is widely used in the chemical physics
literature, where it is usually attributed to Born and Oppenheimer [2]. However,
no time dependent problems are considered in [2], and we believe the idea for
the approximation was originally suggested by London in [14]. For a review of
the subject as of 1935, see [6].
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The paper is organized as follows. In Sect. 2 we establish notation, make
several remarks, and precisely state our theorem. A heuristic discussion of the
proof of this theorem is given in Sect. 3. The details of the proof appear in Sect. 4.

2. Description of the Results

The main purpose of this section is to state our theorem, but it is necessary for
us to begin with a several definitions, remarks and formulas.

We consider a system of n particles moving in m dimensions. The mass of the
7'th particle is β~2Mj for 1 ̂ j <. fc and m. for k + 1 ̂ y ^ n. The position of the
jth particle is x., and Δ. denotes the Laplacian with respect of x.. The Hamiltonian
for this system is given by

H(β) = - £ (2M.)- 1β2Aj - £ (2m)- 1ΔJ + £ V..(x. - Xj) on ̂  = L2(ffT")
j=l j=k+l ί<j

For all i and j we assume F.J.eLp(Rm) + L°°([RW) for some p > m/2 if m ̂  3, p > 1
if m = 2, and p = 1 if m = 1, so that H(β) is self-adjoint. For 1 ̂  z <j ̂  fc we assume
V.j is twice continuously differentiable with second derivative uniformly Lipshitz
on compact subsets of Um. For 1 g / <; fc <y ^ rc we take Vtj to be real analytic.

Remarks

1. We will be interested in the β -> 0 limit of the dynamics generated byH(β).
2. The conditions we have placed on JΛ for I ^i <j ^k are stronger than

necessary. Our arguments can easily be modified to allow these potentials to be
repulsive Coulomb potentials.

3. The analyticity condition on V { . for 1 ̂  i rg fc <j ^ n is also stronger than
necessary. With simple alterations, our methods can accommodate cases in which
these potentials are twice continuously differentiable with second derivatives
uniformly Lipshitz on compact sets.

4. Our methods can also be extended to accommodate diatomic molecules
and ions (in which all the potentials are Coulombic). Combes and Seiler [5]
have shown that the electron energies of these systems are analytic functions
of the nuclear separation for nonzero separation, and that the corresponding
electron wave functions are C2 functions of the separation. This is sufficient
information for the extension of our proof to diatomic Coulomb systems. However,
we presently do not know how to handle molecules or ions which contain more
that two nuclei.

For convenience we set R = (x15 x 2 , . . . ,xfc) and r = (xk+ί,xk+2,...,xn). We
denote the gradient of a function / with respect to jR by/(1)(jR), and let

<92/
denote its Euclidean norm. The symbol f(2\R) denotes the Hessian-——-—(#),

and || f(2\R) \\ denotes its norm as an operator on C(/c"1)m.
The Hamiltonian H(β) can be written as

H(β) = X(β] + h + W. where
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X(β)=- Σ

h=- Σ (2m.Γ^.
j=k+l

For convenience we assume M1 — M2 = . . . = Mk = 1.
The operator h(β) on Jf = L2([R"m) is decomposed by the direct integral de-

composition jf = J ΘL2(R(n~ fc)m,dr)djR. In other words, for each KeR Λ m there
Kkm

is an operator A(K) on L2([R("~k)m,dr) such that the action of A on the function
f(R,r)eJP is given by [hf](R,r) = [h(R)f(R, )](r). The operators A(/0 on the
fibers are

A(Λ)=- Σ (2MjΓ^.+ ΣVtμ,xt+1,xll + 2,...,xa).
j = k+ί k<j

i<j

We assume the existence of an open set U ̂  Ukm such that h(R) has a non-
degenerate isolated eigenvalue E(R) whenever RE U. We let P(R) denote the
spectral projection for h(R) corresponding to E(R). Note that since we have not
removed the center of mass motion of the system, we can always extend U to
be of the form U = [Rm x U in a suitable coordinate system.

For R E U we let φ(R, r) be the normalized eigenfunction of h(R) corresponding
to E(R). By our hypotheses on the potentials we can choose φ(R, r} to be real
and continuous in R. This determines φ(R, r) up to a ± sign, which we arbitrarily
choose.

For Rφ U we define E(R) = 0 and φ(R, r} = 0.
As mentioned in the introduction, our goal is to study the small β behavior

of certain solutions of i -— = H(β)ψ for times s on the order of β~ 1 and with the
OS

initial velocities of the heavy particles on the order of β. For convenience we

replace s by t = βs and study iβ — = H(β)ψ for t in a fixed interval [0, T] and

with fixed initial heavy particle velocities (with respect to ί).
In the t variables the /?-»() limit looks formally like the h -> 0 limit for the

heavy particles. So, we will make use of some semiclassical techniques. In parti-
cular, we will use the tools developed in [7, 8, 9] (see also [10, 11] ) to study the
motion of the heavy particles in certain Gaussian states ψa(A9 B, β, a, η, R). They
are defined as follows:

Definition. Let A and B be complex km x km matrices which satisfy the following
conditions:

A and B are invertible; (2.1)

BA ~ 1 is symmetric ( [real symmetric] + ί [real symmetric] ) (2.2)
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Re BA -1 = ±[(BA~1) + (BA~1)*'] is strictly positive definite; (2.3)

(Re BA~ 1 )~ 1 = AA*. (2.4)

For all aeUkm, ηeUkm, αe[0, 1], and β > 0, we define

ιAαμ, 5, j8, a, η, R) = (2π)-fcm/4 jg-*mα/2 (det A)~ 1/2

The choice of the square root in this definition will depend on the context and
will always be specified.

Remarks

1. If A and B satisfy conditions (2.1)-(2.4), then these conditions are also satis-
fied when A and B are interchanged. This is due to the fact that conditions (2.1) and
(2.4) are equivalent to A*B + B*A = 2I (see the proof of Lemma 2.1 of [8]).
This condition is clearly invariant under interchange of A and B.

2. Whenever we write ψΛ(A9B,β9a9η9R)9 we tacitly assume conditions (2.1)-
(2.4) are satisfied. Consequently, we will always be dealing with normalized heavy
particle states.

3. The state ψΛ(A, B, β, a, η, R) is concentrated near the position a. Its position
uncertainty is given by the matrix βa(AA*)1/2. The velocity is concentrated near
η, with velocity width matrix βί~a(BB*)l/2/2. Note that due to our scaling of
masses and time, the velocity operator is — ίβVR .

As well as being a semiclassical limit for the heavy particles, the β —> 0 limit
is an adiabatic limit for the lighter particles. However, the situation is complicated
by the coupling between the heavy particle motion and the light particle motion.
At t = 0 we take the state of the full system to be

^(0),B(0),j8,a(0),i/(0),W(R,r),

where a(0)eU. The adiabatic approximation predicts that the state of the lighter
particles at some later time t ^= 0 will approximately be

e~ith(RVβφ(R9r) = e-ίtE™βφ(R9r).

It is reasonable to expect the rapidly oscillating factor e~
ltE(R)lβ to affect the heavy

particle motion so that the heavy particle state at time ί is approximately equal to

), R).

The semiclassical approximation [7, 8, 9] shows that for small /?, this heavy
particle state approximately equals

e^lβ\l/Λ(A(t)9B(t)9β9a(t)9η(t)9R)9

where S(ί), A(t\ B(t\ a(t\ and η(t) satisfy the following system of ordinary differen-
tial equations:

(ί) = f(ί), (2-5)
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d4(t) = - £(1)(α(ί)) - W ( 1 )(α(r)), (2.6)
at

^(ί) = [>?W]2/2 - £(α(ί)) - W(a(t}}, (2.7)
αί

Λ Λ - , (2.8)

Our theorem shows that the heuristic picture we have just presented is more
or less correct. So, we will require some information about solutions to (2.6)-(2.9).
Given a0eU and ηQeUkm, standard techniques [1] show the existence of T > 0
such that there is a unique solution \_a(t),η(t\S(t)] to (2.5)-(2.7) on {ί:ίe[0, T]}
which satisfies α(0) = aQ , η(0) = η0 , S(0) = 0, and α(ί)e [/. Furthermore, given A0 and
BQ , there exists a unique solution [Λ(r), β(ί)] to (2.8)-(2.9) on { t: re[0, T] } such that
A(0) = AQ and J3(0) = B0 . A(t) and B(t) satisfy conditions (2.1)-(2.4) if these condi-
tions are satisfied by A0 and BQ (see Lemma 2.1 of [8]). Our hypothesis also

. , . , . . da(t) dη(t) dη(t)
guarantee the existence of the partial derivatives „ ^N, ^ , N , ^ / N , 0 ^0 and

δίz(O) δ^(0) δα(0)
the following relations are valid [8, Sect. 2] :

Under the circumstances described above we can draw the following
conclusions.

Theorem 2.1. Lef H(j8), E(R), φ(R9 r\ T, βίc. be as above. Then given αe(l/3, 1/2],
ex/si C and b > 0 swc/z ί/zαί 0 < jβ ̂  b implies

, j8, α(0), η(0), Λ)φ(Λ, r)

B(t\ β, a(t\ η(t\ R)φ(R, r} \\ ̂  Cβ^~ 1 (2.12)

Corollary 2.2. Theorem 2.1 remains true if (2.12) is replaced by

- eiS(t^ιlJa(A(t\ B(t\ β, a(t\ η(t\ R)φ(a(t\ r) \\

^Cβ^-1 (2.13)

Remarks

1. Both the theorem and the corollary show that as β —> 0, the lighter particles
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move adiabatically and determine an effective potential in which the heavier
particles move semiclassically.

2. Inequalities (2.12) and (2.13) imply one another (except that the C's may
be different). This follows from the fact that given any A,B,aeU, and η, there
exists c > 0 so that

|| ψΛ(A9 B9 β, a, η, R)lφ(R, r) - φ(a9 r)] || ̂  cβ*Λ~l.

This inequality may be established by mimicking the proof of Lemma 4.1 below.
3. The vectors involved in (2.13) are normalized. Unless Rkm\U has Lebesgue

measure zero, the vectors in (2.12) are not normalized since φ(R, r) = 0 for RφU.
Also, (2.13) is more reminiscent of the Born-Oppenheimer approximation since
the variables R and r have been completely separated.

4. Theorem 2.1 and Corollary 2.2 both trivially extend to accommodate
identical particles, but one should keep in mind the non-degeneracy of the energy
E(R)ϊor ReU.

3. Main Ideas of the Proof

In this section we present a heuristic discussion of the proof of Theorem 2.1
since the detailed proof involves several technical lemmas which obscure the
principal ideas. Part A of the section contains an outline of the proof under the
assumption that a certain lighter particle vector φ^R, βη, }eL2(U(n~k}m,dr) can
be chosen. Part B indicates how that choice can be made.

A. Outline of the Proof

Theorem 2.1 shows that up to a possible phase factor, the lighter particles can
approximately be found in the state φ(R,r) at any time fe[0, Γ] if they were
in that state at ί = 0. This result is a zeroth order adiabatic approximation, and a
first order approximation is required for our proof. For this reason we must
introduce a vector φ^R.βη. ).

The vector φ1 will be chosen to have the following properties:

^Clslβ3"-1 (3.1)

for all η in any given compact set and all sufficiently small s

Hφ^βη^-φ^βη'^I^^Cβlη-η'l (3.2)

for all η and η' in any given compact set containing η = 0; and

). (3.3)

Assuming the existence of φl (see Part B), we begin our proof by using
(3.2) and (3.3) to approximate

, β(0), β, α(0), η(0\ R)φ(R, r) by

, β(0), β, α(0), >f(0), RW^R, βη(Q), r). (3.4)
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Next we observe that e~
ίs[h + W]/β = e~isW/βe~ish/β since h commutes with

multiplication by functions of R. So, the Trotter Product Formula [16] allows
us to approximate

e-itH™p\l/Λ(A(Q)9 5(0), β, α(0), η(Q)9 K^φ^R, βη(Q\ r) by

(e- ίtX(β)/βNe ~ itW/βNe - ίth/βNϊN

- ψΛ(A(0), 5(0), β, a(0), η(0\ R)φ1(R, βη(Q), r)

for sufficiently large N.
We now concentrate on the action of the first of the N factors in the product.

Inequality (3.1) shows that up to an error on the order of tβ3a~1/N,

e-itx(β)iβNe-itwiβNe-ithiβNψj>A^ β(0)? β fl(0)? ^0); R)φl(R9 βη(0\ r)

can be approximated by

e - ίtX(β)/βNe - it(W(R) + E(R)]/βN

• ψΛ(A(0), 5(0), β, α(0), η(0)9 R)φ^R + tη(0)/N, βη(0), r).

In this expression we replace W(R) + E(R) by its second order Taylor expansion

Z(R,α(0)} = W(α(0}} + E(α(0)) + < W(l\α(0}} +£(1)(α(0)), (R - α(

By a simple estimate from [8],this substitution causes us to make another error
of order tβ3α~1/N. Now we can explicitly compute

e - ιtX(β)/βNe - itZ(R,α(Q))jβN

ΨΛ(A(0)9 5(0), β, α(0), ^(0), R)φ^R + ί^(0)/JV, βη(0)9 r)
_ e- ίtX(β)/βNe - ίt[W(α(0)) + E(α(0))]/βN

- ψΛ(A(0), BN(l\ β, α(0), ̂ (1), R)φ,(R + tη(0)/N, βη(0\ r), (3.5)

where

and

BN(ί) = 5(0) + 2iβ2*-1[W(2\α(0))

Finally, a careful analysis of the action oϊe~ltX(β}/βN shows that we can approxi-
mate the right hand side of (3.5) up to an error of order tβ3α~ 1/N by

^(1)/VMv(l)> BN(ί)9 β, αN(ί)9 ηN(ί)9 R)φ,(R9 βηN(l\ r),

where

and
SN(1) = [f/N(l)]2f/2N - W(α(0))t/N - E(α(0))t/N.

We now repeat this approximation procedure for each of the remaining
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N — 1 factors from the Trotter product. This shows that we may approximate

Ne - ίtW/βNe - ith/βNγ

)9 B(0), β, α(0), f/(0), R)φ1(R9 βη(0), r)

by

e^WtyJίAnW, BN(S), β, a^\ ηN(£\ R)φ^(R9 βηN(S), r),

where

~ Σ [W(1\aN(j - 1)) + £(1KO' - l))]ί/N, (3.6)
7 = 1

+ Σ η N ( j ) t / N , (3.7)

^(/) = ,4(0) + Σ iβi-2*BN(j)t/2N, (3.8)
7 = 1

BN(0 - B(0) + Σ 2z/p- ̂ ^^KO' - 1)) + £(2KO' - 1))!K(/ - l)ί/^ (3 9)
7=1

SN(0 - Σ { KO')]2/2 - W(aN(J - 1)) - E(aN(j - ί))}t/N. (3.10)
j = ι

Each step of the iteration costs us an error which is on the order of tβ3a~ 1 / N .
After the JVth iteration we use (3.2) and (3.3) to replace

(AN(N)9 BN(N\ β, aN(N\ ηN(N\ Kϊφ^R, βηN(N\ r)

by

eίS»Wlβψa(AN(Nl BN(N), β, aN(N), ηN(N), R)φ(R9 r).

The errors we have made are on the order of β^~l + JV[ίβ3α~VN] + β3a~l ^
CjS3""1 for ίe[0, T] and arbitrarily large N. As we take AT to infinity, aN(N\
ηN(N), SN(N\ AN(N\ and BN(N) approach the solutions to (2.5)-(2.9). From this
we obtain the theorem.

Remark. The strategy of the proof is to get an understanding of the short time
behavior, and then to use an iteration to understand long times. We can do this
because each iteration has an error on the order of tβ3a~ 1/N. If one tries to mimic
our proof with φ in place of φ1, the short time errors will be on the order of
Minlί/TV,/?3""1}, but not tβ^~l/N (see the example in Part B below). For this
reason we make use of φί in the proof.

B. The Choice of φ^

There are two approaches which one may use for determining a suitable vector

ΦίfrβnΛ
In the first method (which we shall not use), one makes the ansatz that the
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required φt can be written as

Φι(β9 R9 η, r) = φ(R, r) + β$[i}(R, η, r) + β2Φ[2](R, η, r) + . . .

One then substitutes this expression into the equation

e-wv/βφ^ R, η9 r} = e~
itEWI^tf9 R + sη, η, r) + 0(ί)

for small ί, and keeps terms up to order β. By taking time derivatives at t = 0,
one finds that Φ f l ] must satisfy (h(R)- E(R))Φ[1}(R9η9r) = η VRφ(R9r). This
equation for Φ[ί} is easily solved by inverting the restriction of h(R) — E(R) to
the Hubert space Ran(l - P(R)).

The second approach (which we will adopt) is motivated by Kato's proof
of the adiabatic theorem [12, 15]. If all of the vectors φ(β, R, ) were independent
of R, then we would have e'^h(R)lftφ(R9 r) = e~ itE(R}l β φ(R' , r) for any R', and (3.1)
would trivially be satisfied with φ1 = φ. This situation is very similar to the one
dealt with by Kato's adiabatic theorem [12, 15]. The only difference is that in
Kato's theorem, the Hamiltonians and eigenvectors depend on time rather than
some other variable.

By mimicking a construction of Kato [12; 13, Sect. II-4; 18, p. 23], we begin
our search for φί by choosing a unitary operator U(R,η,s) such that
U(R, η, s)φ(R9 r) = φ(R 4- sη, r). This operator satisfies the differential equation

ί — U(R9 η, s) = A(R + sη, η)U(R9 η, s), where A(R, η) is the bounded self-adjoint
as

operator A(R9 η) = i[η-P(ί\R)9 P(R)~] ([,] denotes the commutator).
Standard techniques show that U(R,η,s) is well approximated by e~

lsA(R>η)

for small s if R and η lie in fixed compact sets. So, up to a small error we can approxi-
mate φ(R + sη9 r) by e~ίsA(R'η}φ(R, r) for small s. Furthermore, e~

ίsh(R}/β is approxi-
mately equal to e-^(^n)e-iSκ(R,βn)iβ for small s if we define

η) = h(R)-βA(R9η).

By ordinary perturbation theory, K(R, βη) has a unique isolated eigenvalue
JE1(jR, βη) near E(R) for η in a compact set and all small β. We choose φ^R, βη, r)
to be the corresponding eigenfunction. It is determined up to a phase factor
which we fix in Sect. 4.

Conditions (3.2) and (3.3) are easy to verify for this φ^R.βη.r). Condition
(3.1) is harder to check. Since φ(R + sη, r) approximately equals e~ίsA(R'η}φ(R,r)
and φ^(R9βη9r) is near to φ(R9r) in L2(U(n~k)m

9dr) for small β9 we will be able
to prove || ̂ (jR + sη, β η , ' ) - e~ίsA(R^φ^(R, βη9 )\\ is bounded by a constant
multiple of β \ s \ for small s and β. We will also show that E^R, βη) - E(R)\ is
dominated by a constant times β2 for R and η in compact sets. From these
facts we will see that e~lsh(R)lβφ1(R,βη7r) approximately equals

mately equals e~ίsE(R}!βφ^(R + sη9 βη, r). This argument will establish (3.1).
We conclude this section with an instructive example of Kato's adiabatic

theorem which illustrates some of the above ideas. The Hubert space for this

example is C2, and we study solutions to the equation iβ — ψ(β, t) = H(t)\l/(β9 1) for
at
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small β. We take H(t) to be the matrix

cos2 ί cos ί sin ί

cos ί sin t sιnz t

which is the orthogonal projection onto the state

[cos ί~|

sin f J'

Kato's theorem [12,15] shows that if

then

As with our theorem, this is a zeroth order approximation.
As we mentioned earlier, there are two methods of obtaining a first order

approximation. The first method involves assuming there is a solution of the
form

ψl(β, t) = β-*" + Mutt) + β\21(t) +..
\LM I 1 1J

One then derives equations which must be satisfied by the ψ^ and keeps terms
up to the desired order. The second method is the method we use for finding
φ^R, βη, r\ and for our very simple two dimensional example, it yields the exact
solution.

The Hamiltonian H(t) is equal to e~ltAH(Q)eltA, where A is the commutator

~v.,,~v.,, . . . ., and e ίtA = \ . . This A is of
dt J LI OJ [_smί cosίj

course the analog of A(R,η) for the molecular problem. The analog of K(R,βη) is

K(β) = H(Q)-βA = \ _ Q the analog of E^R.βη) is the eigenvalue

Ξ + f( l + 4/?2)1/2 - 1 + /?2 - ^4 + ... and the analog of ^(K, j8>/, r) is the corres-
ponding eigenfunction ψ^β) of K(β).

The exact solution to our simple system is ψ(β, t) = e~itAe~itK(β}/βψ(β,Q). So,
we can easily verify (3.11) as follows:

*,']•
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One may also check that for small times ί, the error in (3.11) is not 0(tβ) by explicit
calculation.

4. Proof of Theorem 2.1

In this section we present the details of the argument which was discussed in
Sect. 3. Lemmas 4.1-4.7 establish technical results with which we prove Proposi-
tion 4.8. This proposition contains the crucial estimate which we use to prove
Theorem 2.1.

The lemmas contain many constants, and we warn the reader that constants
appearing in one lemma may implicitly depend on constants which occur in
earlier lemmas.

Definition. For 0 :g t ̂  T we have a(t)e U. Since U is open and a(t) is continuous,
we can choose open U1 and U2 such that their closures Uί and U2 are compact,
U\^U2,U2^U, and α(f)e Uί for 0 ̂  t ̂  T. We choose U1 and U2 permanently.

Definition. Since ί/1 is a compact subset of the open set [/2, there exists d > 0
such that aeΌί and R — a\ ̂  2d imply ReU2. We choose a function F:[0, oo)->
[0, 1] such that

1 if 0 ̂  3; ̂  d

Definition. Suppose Re U and ηe Ukm. Since P(R) is analytic for ReU, the operator

η P(l\R) is bounded and depends smoothly on η and ft. We define A(R, η) =
i[η P(1\R), P(K)], where [,] denotes the commutator. A(R, η) is bounded and
self-adjoint. For each RεU, and ξeUkm we define K(R,ξ) = h(R)-A(R,ξ) on
L2([R("~/c)m). K(R, ξ) is self-adjoint on the domain of h(R).

Given C0, there exists b > 0 such that b ̂  d3 (d is chosen in the definition
of F), and 0 ̂  β ̂  b, I £ I ̂  bC0, β e 02 imply that K(£, ξ) has an isolated non-
degenerate eigenvalue E^R.ξ) such that limE^R, ξ) = E(R). Both E^R, ξ) and

the associated projection P^jR, ζ) are analytic functions of each of their variables.
We now come to our first lemma which is a localized version of Lemma 2.3

of [8].

Lemma 4.1. Suppose ^ < α ̂  \. Define λ = 3α — 1 and set

0 otherwise.

For ReUkm, and a£U2 define

Z(R, a) = Y(a) + < 7(1)(α), (R - α)> + f <(Λ - α),

For eαc/z Γ>0 ί/zβre exfsίs Cx 5uc/z ίftαt j8e[0, fe], αet7 1 9

II / Λ ~ isY(R)/β n~ isZ(R,a)/β\ ιr( I r> „ I \./ / / ^ Έ) R „ ** D\ II <^ /^ I o I /M
|έ? ^ •"»- — g j / ^ ^ l / x — β jy/ ^/l, £>, p, β, Ay, ι\ M ^C-..|5|P

and
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Proof. The second result is trivial, so we only prove the first.
Since Y(2\R) is uniformly Lipshitz in .R for ReU2, there exists c such that

aeϋi and R — a\^ 2d imply

\Y(R)-Z(R9a)\^c R-a\

So, for jf?e[0, έ>] and aeU19 we have

i R _ a i )W B fr ̂  ̂  R) i i ̂

-̂ ^

by explicit computation. Π

Lemma 4.2. G/i eπ ε > 0 and C0, £/zer£ exists σl > 0 swc/z ί/iαί

) || ̂  ε s |/9T

whenever \s\ < σ 1 ? REU^, |^ g C0

Proα/ There exists 7 > 0 such that s ^ 7, jR e ί/1 , and | ̂  | g C0 imply R + sηeU2.
For 5 ^7, fleϊ/lsand|j7| ^ C0 there exists [12; 13, Sect. Π-4; 18, p. 23] a unique

unitary operator valued solution U(R,η,s) to the equation i — U(R,η,s) =
as

A(R + 577, η)U(R9η,s) which satisfies the initial condition U(R,η,s) = I. The
importance of this solution stems from the relation P(R + sη)U(R, η, s) =
U(R,η,s)P(R)9 which is proved in [12; 13, Sect. Π-4; 18, p. 23].

This relation implies U(R, η, s)φ(R, r) = eίθ(R>η>s)φ(R + sη, r) for some real
differentiate function θ(R,η,s) which satisfies θ(R,η,Q) = Q. Since —iA(R,η,s)
is a real bounded operator, U(R, η, s) is also a real operator. So, Θ(R, η,s) = Q
for all s.

If we define Q(R9η9Q) = Q and Q(R,η, s) = s'1 [U(R,η,s) - e~isA(R^~\ for
s ^ 0, then Q(R,η,s) is continuous in .R, η, and s. It is therefore uniformly conti-
nuous when restricted to the compact set { ( R , η , s ) \ R E U 1 , \ η \ E C Q 9 and s ^y}.
This implies the lemma. Π

Using the construction of [13, Sect. II-4, Remark 4.4] we can construct an
analytic operator valued function U^R.ξ) such that U^R.ξ) is unitary for
\ξ\ ^foC0, and jRet/ 2 ;C7 1 (Λ 0 ,0) = / for some RQεU2; and P l ( R , ξ ) U 1 ( R , ξ ) =

[/!(*, ξ)/Ί(K0>°) We define Φι(R>1>r) by Φ1(R,η, )=Ul(R9 )φ(R0,Q9 ). One
can easily prove φ^R.O, r) = φ(R, r) and that φ^R, ξ,m) is normalized for ReU2,

Lemma 4.3. Given C0 > 0, there exist C2 and C3 such that j8e[0, b'],REUί , and
\η ^ C0 imply
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and

\Eί(R,βη)-E(R)\^C3B
2.

Proof. This follows from regular perturbation theory and a compactness argu-

ment. Since P(R) is a projection, P(R + sη)< — P(R + sη) >P(R + sη) = 0. Thus
as

sη\ A(R + sη. η)φ(R + sη)y = 0, (4.1)

and the first order contribution to E^R, βη) — E(R) vanishes. Π

Lemma 4.4. Given C0 > 0, there exists C4 such that βe[0, έ>], βet/^ | / ? | ^ C0,
and η' rg C0 imply

Proof. This lemma follows from the uniform boundedness of Vςφ^R, ξ) on the
compact set {(jR, ξ):R e U1, | ξ \ g bC0}. Π

Lemma 4.5. Given ε > 0 and C0, ffere exzsί C 5 ,C 6 , and σ2e(0, σj

H^^Λ +sη,βη)-e~isA(R>η}φ1(R,βη)\\ ^ {C5β + ε/9T}\s +C6β\s\2.

Proof. Due to our choices of Uί ana U2, there exists σ2e(0, σj such that
| s | ^σ 2 , and |^ |^C 0 imply R+sηeU2. So, by Lemma 4.2, 5 |^σ 2 , ReUl,
η I ̂  C0, and ^e [0, ί>] imply

II //> f/? _L en /?M^| _ p-isA(R,η)fL / ]

^e|s |/9Γ /, 0)}

(4.2)

However, due to the boundedness of /4(Λ, >;) for j R e l / j , and |ί? ^C0, there
exists C such that

Thus, the right hand side of (4.2) is bounded by

|| </>,(K + s;?, j8f/) - φt(R + sη, 0) - φt(R,βη) + φ^R, 0) ||

+ s\\\A(R,η)\\ \\φι(R,βη)- φ^R^H

+ C'6\s\2\\φl(R,βη)-φl(R,0)\\

+ ε\s\/9T.

By Lemma 4.3 and the uniform boundedness of A(R, η), this is bounded by

|| φ^R + sη, βη) - φAR + sη, 0) -φ^R, βη) + φ^R, 0) ||

for some C"5 .
From this it is clearly sufficient for us to prove

Hφ^R + sη, βη) - φ^R + sη, 0) - φ^R, βη) + φ^R, 0) || ̂  C"5β\s\



14 G. A. Hagedorn

for some C"5. However, by compactness there exists C'$ such that R+sηeU2

i i d
and \ξ\ ̂  bC0 imply ^-V^^jR + sη, ξ) g C^. So, by the fundamental theorem

of calculus,

|| φ^R + sη, βη) -φ^R+ sη, 0) - ^^jR, βη) + φ^R, 0) ||

i ^ f S ,

o o

D

Lemma 4.6. For /Je[0, ί>], aeϋl9 and \η\^C0 we define f ( β , a , η , R , r ) =
F(\R — a^φ^R, βη,r). Let Σλ be a compact set of pairs of matrices (A, B) which
satisfy conditions (2.1) — (2.4). Given ε > 0 there exist σ3e(0, σ2], C7, and C8 such
that Q^oi^^ΛAtB^Σ^βe&b^aeϋ^ \η\ ^ C0, and \s\ ^ σ3 fmp/y

-/08, a, i,, , B, ft β, 0, R) \\L2(dRdr}

/ Since αe ί/1 plays no essential role, we assume for convenience that Oe Ό l

and a = 0. Next we apply a unitary dilation to replace R by the variable q — β~"R.
In this representation the conclusion we must prove can be stated as follows:
For some σ3e(0, σ2], C7, and C8, the following inequality holds for Orgα^,
(A, B)eΣl, j8e[0, fc], αe f/ 1 , and s g

> 1? o, 0, ^)

, ft 1, 0, 0,
2"). (4.3)

To provejhis we first note that {f(β, a,η,βaq,r)ψa(A,B, 1,0,0, R):(A, B)e Σί9

j8e[0, b], α e f / 1 9 and |^|^C 0} is a compact subset of the Banach space
j* - {g(R, r) : || ̂  || L2(drίίg) + || ̂ ^ \\L2(drdq} < °o }. Standard argument [16, pp. 29_5-
296] now show that there exists σ3e(0, σ2] such that ^e[0, b], (^4, 5)eΣ1 , αe ί/1 ,
|^/ |^C 0 , and ί ^σ36

1~2 α imply

|| ^ίM/2/(ft α, /?, ̂ , r)^αμ, B, 1, 0, 0, q) -/(ft α, η, β>q, r)ψa(A, B, 1, 0, 0, q)

- ±itΔf(β, α, η, pq, rWΛ(A, B, 1, 0, 0, q) \\ L2(drdq} ^ β 1 1 |/(187V ~ 2α)

and

Aα(Λ 5, 1, 0, 0, q) - ψa(A, 5, 1, 0, 0, q) - ±itAψΛ(A9 B, 1, 0, 0, q) \\L

, B, I, 0, 0, q) \\

(dq}

The left hand side of (4.3) is bounded by

, a, ̂  β«q,
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,̂
4- s\β^^\\ {Δqm a, η, fq, r)}ψa(A, B, 1, 0, 0, q)\\L2(drdq}/2. (4.4)

For (A9B)GΣί9βe[09b']9aeUi9\η\^C09 and s |^σ 3 , the sum of the first two
terms of (4.4) is bounded by εβί~2cί\s\/(9Tbi-2a). The third is bounded by

H JS1 ~" II { II Va/(ft α, i/, Λ, r) ||L2(dr)} ||L.(lfΛ) || V^αU, B, 1, 0, 0, q) \\L2(dq) . The fourth
is bounded by β\s\\\{\\ΔRf(β9a9η9R9r)\\L2(dr)}\\L*(dRy These bounds imply
the lemma. Q

Remarks

1 . Lemma 4.6 is false if we replace \j/Λ(A, B, j8, α, 0, R) by ι/fα(A, 5, jB, α, fy, Λ) with

some 77 ^ 0. Under the unitary scaling used in the proof, ψΛ(A9 B, β, 0, η9 R) trans-
forms into ψΛ(A9B9 1909β*-lη9q). The presence of the factor e

ίβ"~ί<η'g> destroys
our compactness argument and causes the bound on the third term of (4.4) to
behave like a constant times \s rather than C8\s\βl~a.

2. In spite of the above remark, we can still use Lemma 4.6 to estimate

e-i*xw/βf(β9a9η9R9r)ιl/Λ(A9B9β9a,η9R). The following computation illustrates
the required ideas :

5, α, η9 R, r)\l/Λ(A, B, β, α, η9 R)

= eisβA/2el<11>R>/βf(β, α, η9 R, r)\l/Λ(A9 B, β9 α, 0, R)

5, α, η, R, r)e~isX(β}/βψ^(A, B, β9 α, 0, R) + errors}

=/(/?, a9η9R— sή9 r)e~^X(^^^^(A, B, β9 a, η, R) + errors. (4.5)

By Lemma 4.6 and the unitarity of e~sn'v, the errors satisfy the bounds in the
conclusion to Lemma 4.6.

Lemma 4.7. For each ε > 0, /?e(0, fe], αwd C0 > 0, ί/zm? exwίs σ4e(0, σ3]
ίftαί j R e ί / ^ l ^ l g C0,and \s\ ^σ4 imply

(4.6)

Proof. The operators h(R) and K(R9 βη) all have the same domain 2.
Furthermore, for some constant c, all of the norms l/l^ =c | | / | | + \\h(R)f\\9

and I)) /1||2 - c)) /1| + j) K(R, βη)f \\ are all equivalent on Q) for R e f?1 and j 171 ̂  C0.
In the topology determined by these norms, {φ^(R9βη):ReU29\η\^CQ} is a
compact subset of 2.

The derivative at s = 0 of {e'
ίsh^β - e~^(R,η}e-isK(R,βη)/βjφ^ ^ is zem

So, for each choice of R and f/ we can find a σ4e(0, σ3] such that (4.6) holds for
s I <£ σ4. The uniformity in R and 77 follows from the compactness noted above,

the continuity in R ana η of A(R9 η\ and the continuity of h(K) and K(R9 βη) in
jR and η as operators from their common domain into L2([R("~fe)m). Π

Proposition 4.8. (Consolidation of Lemmas 4.1-4.7) Suppose j<α^ | and λ =
3α — 1. Let Σ be any compact set of pairs of matrices (A, B) which satisfy conditions
(2.1W2.4). Given C~ > C'Λ > 0. there exists C such that for each ε > 0 and each
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fixed ]8e(0, b] fΛere exists σ5 > 0 SMC/I ίhαί (4, B)eΣ, aeU19 η\ ̂  C'0, αrcd
imp/y

_ αD^CR, ft?)
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s\ ^σ*

^A9 B β9 flj ̂- e^WtyJίA^), B,(sl ft fll(s), ̂ (s),

A ^(s), B ̂ s), a ̂ (s), η ̂ s), and S'1(s) are gίi en by the following formulas :

η1(s) = η-s[E(i\a)+W(1\a)']9

(4.7)

Proof. Let C9 - sup{]E(1)(a) + P^(1)(a)| :aeί/2}. If s| ^ (C0 - C;

0)/C9, then
^1(5)! ̂  C0 for any a e L/ 2. Since Z1 is compact, there exists Γ > 0 such that (A,B)eΣ,

0e[0, fe], and s| ̂  (C0 - C;

0)/C9 imply || A^s) \\ = \\ A + iβ^^sBβ - s2{E(2\a] +

We now fix /?e(0, b]. Then there exists a compact set Σ1 of pairs of matrices
which satisfy conditions (2.1)-(2.4), such that (^(s), 51(s))eΣ1 for all choices
of(A9B)eΣ,aeU19\η\ ^ C0, and |s| ̂  (C0 - Q/C9.

These choices of α, 1, C0 , ε, and Σ t now determine the constants σ4 ̂  σ3 ̂  σ2 ̂
σ1 ^(C0 — CQ)/C9 and C 1 ,C 2 , . . . ,C R which occur in Lemmas 4.1-4.7.

By Lemma 4.7, aet7 1 ? |^| g C0, and 5 ^ σ4 imply

e-W^A, B, ft α, ^,

- \I/Λ(A, B, ft α, ιj,

- a\)φ,(R9 βη)

(4.8)

Under the same conditions on a, η, and s, Lemma 4.5 and the definition of
\(R, βη) show that

Λ(A, B, β, a, η, R)F(\R - a\ ,(R, βη)

sη, βη)\\

Next, using
we have

+ C6β\s2.

_ e - ί s£(R)// J |< | s |

(4.9)

and Lemma 4.3,

, B, β, a, η, R)F( \R - a^φ^R + sη, βη)

, B, β, a, η, R)F(\R - a^R + sη, βη) \\

(4.10)

We now let Z(R, a) denote the second order Taylor expansion of W(R) + E(R)
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about the point a. By Lemma 4.1, ae Ό ̂  , (A, B)eΣ and s| ^ σ4 imply

17

JίA, B, β, a, η, R)F(\R -abφJR + sη, βη)

fyJίA, B, β, a, η, R)F( R -a^φ^R + sη,

(4.11)

At this point we explicitly compute

y-isZ(R,a)lβ. 'φa(A, B, β,a,η,R)F(\R-a\)φ1(R+sη,βη)
/βφa(A, B^s), β, a, η^s), R)F(\R -a^φ^R + sη, βη). (4.12)

Since αet7 1 ? [^(s)! rg C0, (A, B1(s))eZ1, and s g σ4, we can mimic the compu-
tation (4.5) and apply Lemma 4.6 to obtain

- a

— eiSι(s)/β,ι

Since φ^R.βη) is uniformly Lipshitz for RεU2 and

sη, βη)

(4.13)

is bounded by
C9 s , there exists C10 such that
This and Lemma 4.4 now imply

^(A^s), B^slβ, flt(s), ηι(s),R)F(\R - a,

;s)/Vα(AW> BM A «!<•*)> njύ Wl* - «ι
+ C4)8Cς

+ 5^ - sη^s), βη) - φ^R, βη)\\ g

+ sη - sηi(s), βη)

JKβηWί
(4.14)

By using the unitarity of e "W"* and e isW'β, we can now combine (4.8)-(4. 14)

to obtain the following result: (A,B)eΣ,ae01, \η\ g C'0, and s| ^ σ4 imply

C5β + ε/9T + C6β\s

s\ + C4C9β}\s .

(c/9T

+ C

C3β + C CΊβ -a +s'9T

10

4 ΠThis implies the lemma since we can choose σ5 ^ Min {^8A, σ

Proof of Theorem 2.1. We will use the Trotter Product Formula and Proposition

4.8 in tandem, and as a consequence we must consider the discrete time analogs
(3.6)-(3.10) of the solution to equations (2.5)-(2.9). We choose b > 0 as in the
discussion at the beginning of this section and fixre[0, T] and βe(0, £>]. Then
by taking ΛΓ sufficiently large we can make

-A,

- BN(f) || + I S((tlN) - SN(
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arbitrarily small for t = 1,2, . . . , Λ Γ (see [1]). This has two consequences. First,
we can choose C0 > C'0,Γ, Nί , and a compact set Σ of pairs of matrices satisfying
(2.1)-(2.4) such that_the following conditions hold for all N^Nt and S = Q9

1,2,.. .,N: aN(t)eU^\n(s)\^C'Q for Q^s^t\\ηN(^\^CQ\\\A(s)\\^Γ for
O ^ s ^ ί ; 1^00 1| ^Γ\(A(s\B(s))eΣ for O ^ s g ί ; and (^OO^OOJeΣ1. The
second consequence is that by the dominated convergence theorem, there exists
N2 ^ N1 such that N ̂  N2 implies

BN(N), β, aN(N), ηN(N), )

B(t\ β, a(t\ η(t\-)\\ ^ ε/3, (4.15)

where ε > 0 is arbitrary but fixed.
The Trotter Product Formula [16] shows the existence of JV3 ^ N2 such that

N ^ N3 implies

II Γe-itH(β)/β _ (e-itX(β)/βNe-ίtW/βNe-ith/βNϊNΊ

), β, α(0), η(0), R)F( I R - o(0) | ̂ (K, j8ί/(0)) || < ε/3 . (4. 16)

With C0 , CQ , Γ, Σ1, and β as above, we choose σ5 so that the conclusion of
Proposition 4.8 holds for s\ ̂  σ5. Given σ 5 ? we next choose 7V4 ^ N3 so that
ΛΓ ̂  ΛΓ4 implies T/N ^ σ5 . Then for N^N4,Q<,j^N- 1, and S=j+l we
have

aN(Jl ηN(j\ R)F(\R - aN(j)\W ι(R> ̂

(4.17)

So, by using the triangle inequality, (4.15), (4.16), and (4.17) for all values of;,
we have

, 5(0), β, o(0), tfO), JR)F(|Λ - 0

β, o(ί), ιj(ί), Λ)F(| Λ - o(ί)| )Φ1(K, βη(t)) \\

where ε>0 is arbitrary. By Lemma 4.3 we can replace both φ^R.βη^)) and
φ^R, βη(t)) in the last expression by φ(R) at the expense of increasing C. By
increasing C further, Lemma 4.1 shows that we may also replace both F( \ R — α(0) | )
and F(| R - a(t)\) by 1. This implies the theorem. Π
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