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Abstract. We consider iterates of maps of an interval to itself and their stable
periodic orbits. When these maps depend on a parameter, one can observe
period doubling bifurcations as the parameter is varied. We investigate
rigorously those aspects of these bifurcations which are universal, i.e. inde-
pendent of the choice of a particular one-parameter family. We point out that
this universality extends to many other situations such as certain chaotic
regimes. We describe the ergodic properties of the maps for which the
parameter value equals the limit of the bifurcation points.

1. Introduction

Continuous mappings of intervals into themselves display some remarkable
properties when regarded as discrete dynamical systems. (For a survey, see May
[9] or Collet and Eckmann [14].) One much-studied example is the one-parameter
family

χ->1-μχ2 (1.1)

which maps [— 1,1] into itself for 0^/ i^2 . In this and similar examples, what is
interesting is not so much the behavior of any particular mapping rather, it is the
way this behavior changes with μ.

The example (1.1), and the more general one-parameter families μ->ψμ we will
study, have a simplifying qualitative feature: Each ψμ has a unique (differentiable)
maximum - at χ = 0 in the example - below which it is increasing and above which
it is decreasing. We will consider mappings ψ which satisfy

PI) ψ is a continuously differentiable mapping of [— 1,1] into itself.
Ρ2) ψ(0)=1; ψ is strictly increasing on [—1,0] and strictly decreasing on

[0,1].
Ρ3) ψ{-χ) = ψ{χ).
The space of all such mappings will be denoted by ̂ . (The condition that the

maximum of ψ occurs at zero and that ψ sends zero to one can frequently be
arranged, if necessary, by making an affine change of variables.) We have included
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condition Ρ3) mostly for convenience it simplifies matters and is satisfied by the
xp's we are able to analyze in detail.

One important property of such a transformation is having - or not having -
an attracting periodic orbit. (Existence of periodic orbits which are not attracting
is much less important, directly at least, in accounting for the behavior of typical
orbits.) The fact that [— 1,1] is ordered and connected gives rise to powerful and
general methods for proving the existence of periodic orbits - see, for example,
Stefan [13] - but these methods do not help very much with the existence of
attracting periodic orbits. Note, however, that if 0 is periodic for ipe0*, then, since
ι//(0) = 0, its orbit is necessarily attracting. We will say that ψ is superstable of
period ρ if 0 is periodic of (minimal) period ρ for ψ. If χρ0 is superstable of period ρ,
then any \pe& which is near enough to χρ0 in the C 1 topology will also have an
attracting periodic orbit of period p. Thus for example if

is a one-parameter family of elements of £Ρ with ψμο superstable of period ρ, there is
an open interval about μ0 in the parameter space such that each corresponding ψμ

has an attracting periodic orbit of period p.
The existence of superstable ip's can sometimes be proved by simple topologi-

cal arguments. For example, with our normalization, ψ is superstable of period 2 if
and only if φ(1) = 0. If we now consider a continuous one-parameter family ψμ

defined on some interval of μ'β, and if t/; (1) is sometimes positive and sometimes
negative, then there must be at least one μ for which ψμ is superstable of period 2.
We give in Sect. 3 an elaboration of this simple argument which shows that, if ψμ{1)
is near 1 for μ near the left end of the parameter interval and near — 1 near the
right end, there exists a sequence

μ 1 < μ 2 < μ 3 < . . .

such that ψμ. is superstable of period 2j. (See Guckenheimer [4] for an alternative
approach to the existence of the μ?δ.) It is clear that, if we allow arbitrary (non-
monotone) reparametrizations, we cannot hope to prove the existence of unique
μ?δ. Moreover, similar topological considerations guarantee that such a param-
etrized family has, for each large j , many values of μ where ψμ is superstable of
period 2j. Nevertheless, in examples like

χ->ί — μχ2

the first superstable values of μ appear to occur with periods

2,4,8,16,...

in that order. We will denote the corresponding values of μ by μ. and lim μ. by
J j-+oo J

βοο'

By investigating numerically a number of one-parameter families, Feigenbaum
[3] discovered a striking universality property: For large j , μΟ0~μ] is asymptotic
to

const X(5~J,
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where δ = 4.66920... is apparently the same whatever one-parameter family is
considered. (Note that, encouragingly, this property of the μ?δ is not changed by
making a differentiable change of parameter with derivative which does not vanish
at μ^.)

Having discovered the universality of δ experimentally, Feigenbaum went on
to propose an explanation for it which was inspired by the renormahzation group
approach to critical phenomena in statistical mechanics. The principal result of
this paper is to show that Feigenbaum's explanation is correct, at least in a certain
limiting regime to be explained below. We will next sketch our version of
Feigenbaum's theory, ignoring numerous technical details which will need to be
made precise later.

Consider a mapping \pe^ and define

a = α{ψ) =-ψ(1); b = b(\p) = ψ{α).

Assume

and assume also that

ψφ) = ψ2(α)<α.

ψ then maps

I —a, a] onto [b,l] and [b, 1] onto [ — a, ip(b)] C [ — a, a] ,

i.e. it exchanges the two non-intersecting intervals \_ — α,ά] and [b, 1]. Hence ψ^ψ
maps [ — a, a] into itself, and — ψ °ψ is again unimodal on [ — a, a] (see Fig. 1). If we

reverse orientation and scale up by a factor of-, i.e. if we make the linear change of

variables

then ψοψ on [ — a, a] is transformed to

{

on [—1,1]. It is easy to verify that, with our hypotheses, &~ψ again has properties
Pl)-P3) [but the condition α(^Ίρ)>0 or α(«^Ίρ) < b(5>) may fail]. We will refer to
the transformation 2Γ as the doubling transformation. The doubling transformation
is essentially just composition of ψ with itself, but combined with restriction of
ψ°ψ to a subdomain of the original domain and then a scaling (and reversal of
orientation) chosen to preserve the "normalization" φ(0)=1. This combined
operation, in contrast with composition alone, does not give rise to a more
complicated-looking transformation. The utility of ^Γ in studying superstable tp's
lies largely in the remark that, provided ψ satisfies the conditions given above for
.Τψ to be defined, ψ is superstable of period ρ if and only if ΖΓ\ρ is superstable of
period ρ/2 (and, in particular, ρ must be even).
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(ι//(χ)=1-14χ2)

Fig. 1

We now, following Feigenbaum, propose some geometrical hypotheses about
how 5" acts in the space 0> of transformations and show how these hypotheses
account for the universality of δ. The picture is as follows :

a) 2Γ has a fixed point φ.
b) The derivative of βΓ at the fixed point φ has a simple eigenvalue which is

larger than one (and which will turn out to be δ) the remainder of its spectrum is
contained in the open unit disk. ?Γ thus has a one-dimensional unstable manifold
Wu and a codimension-one stable manifold Ws at φ.

c) The unstable manifold Wu intersects transversally the codimension-one
surface Σ*. ^ f

19 Σ = {χ

(Note that Σ1 is exactly the set of tp's which are superstable of period 2.) See Fig. 2.
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Using this picture, we can account for the universality of δ as follows: Form
successive inverse images Σ2, Σ3, ... of Σχ under 3F':

Note that if ψεΣ3 then ^υ~1)ψΕΣι, so 3fj~l\p is superstable of period 2, so ψ is
superstable of period 2J. The successive ZVs come closer and closer to Ws in fact, a
straightforward argument (which we will give in detail later) shows that the
separation between Σ and Ws decreases exponentially like d~j for large j , where δ
is the large eigenvalue of the derivative of ΖΓ at φ.

Fig. 2

Now consider a one-parameter family μ-^>ψμ of transformations and regard it
as a curve in ^\ Suppose this curve crosses the stable manifold Ws at μ = μΟ0 with
non-zero transverse velocity. It is then clear that, at least for large j , there will be a
unique μ. near μ^ such that ψμ ΕΣ] (which implies that ψβ. is superstable of period
2j) and that

exists and is non-zero (see Fig. 3).

Fig. 3

Thus, Feigenbaum's hypotheses not only account for the universal rate at
which μ- approaches μ^ they also provide in principle an independent pre-
scription for computing <5. They have other consequences as well we will mention
here just two of them:

1. For all j , &~j~ 1ψμ is superstable of period 2. Because βΓ contracts in the Ws

direction, the ^~j~ 1χρμ converge as j-> οο to the point of intersection of Σί with Ws,
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which we will denote by φ$. Thus, φ$ is also universal; for any one-parameter
family as above, if we form

and scale properly, we get something near to φ% for large j . Similarly,
converges to φ.

2. Let Σχ denote the surface

{xp:xp3(l)=-xp(l)}

(i.e. the set of tp's such that —ψ(ί) is a fixed point for ψ2). Misiurewicz [11] has
shown that there is an open set of t/?'s on Σί which admit an absolutely continuous
invariant measure (and hence which have typical orbits which are not periodic).
We will see that Σί intersects Wu transversally, with point of intersection inside
this open set. (The intersection point will lie above Ws in Figs. 2 and 3.) Again
form successive inverse images of Σι under <Τ

Σ ! = $-"-"Σ^

these surfaces converge to Ws, again exponentially with rate δ, from the side
opposite to that of the ZVs. Again, for each large j , there will be a unique μ near μ^
with

and the μ/s converge to μ^ in the usual way:

exists and is non-zero. For large enough j , ^'j~1\pfi. will be near to the point of
intersection οϊΣί with Wu and hence will admit an absolutely continuous invariant
measure. From this it is easy to show that χρβ itself admits an absolutely
continuous invariant measure and hence also has orbits which are typically non-
periodic.

Thus μ^ is the limit of values of μ for which ψμ is chaotic. We warn the reader,
however, that not all t/ '̂s for μ just above μ^ are chaotic; for example, there is a
sequence μρ again converging to μ^ from above, with the same exponential rate,
such that

ψ- is superstable with period 3 2j'.

As indicated earlier, we are going to prove that Feigenbaum's hypotheses are
correct in certain cases. As Feigenbaum has noted, the universality of δ is
somewhat relative - its value depends on the function space in which the ip's are
assumed to lie. We will consider functions ψ of the form

Ψ(χ)=/(\χ\1+ε).

where the function / is smooth. Except for a result on the uniqueness of the fixed
point, we will in fact have to assume that / is analytic in a complex neighborhood
of [0,1]. We would of course like to deal with the case ε = 1, but the argument we
are going to give is a perturbative analysis valid only for sufficiently small positive
values of ε. Our results could be expressed in terms of convergent series expansions
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in ε and various iterated logarithms of ε which are analogues of the ε-expansions
occurring in the renormalization-group approach to the theory of critical pheno-
mena. Work in progress, using quite different techniques, indicates that at least
partial results can be obtained for ε = 1 [8], see also note added in proof.

As an indication that there is some simple behavior at ε = 0 about which we
could hope to carry out a perturbative analysis, consider the family of functions

for small positive a. A straightforward calculation shows that

i.e.

Thus, the curve α-+ψα is invariant under the action of &~, and the end point at
α = 0, although not in the domain of definition of &~, is a sort of virtual fixed point.
If we consider instead

ψ(χ)=1-(1+α)\χ\1 + ε

we no longer get such a simple closed-form expression for έΓψ but we do get

This suggests that, for small ε, there might be a fixed point near ψ, where a is to be
determined approximately by

i.e.

i.e.
a

s\oga~—a or ε~
-logfl)"

Observe that this, if correct, implies that ε <̂  a and hence suggests that it should be
possible to get a fixed point by adding to 1 — (1-f α)|χ|1 + ε a correction which is
small relative to a.

2. Statement of Results

We are going to consider functions \pe3P of the form

where / is the restriction to [0,1] of a function analytic in some domain in the
complex plane. Through most of our analysis, the domain Ω of analyticity will not
affect our results very much - although it presumably affects how small we have to
take ε in order to make our estimates work. There is one point in Sect. 7 where it is
necessary to impose some conditions on Ω these conditions are met if we take Ω
to be an open disk with center 1/2 and radius not too much larger than 1/2. Aside
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from this one argument, we can work with Ω any bounded connected open set in (C
containing [0,1]. We will mostly think of Ω as chosen once and for all and so will
frequently suppress it from our notation. We will write ξ>{Ω), or simply §, for the
real Banach space of functions bounded and analytic on Ω, and real on £2nIR,
equipped with the supremum norm. For ε>0, we denote by ^ £ ( C ^ ) the set of
functions ψ on [— 1,1] of the form

with/e§ and satisfying

/(0) = 1; | < 0 ο η [ 0 , 1 ] ;

We can identify έ?ε in an obvious way with an open subset of the Banach space

Theorem 2.1. For s sufficiently small, 3~ has a fixed point φ in £Ρε. If we write

then fE(t) extends to a function jointly analytic in (ε, t) for

6e{ze<C\[-oo,0]:|z|<e0}

and ίβΩ. We denote —φε(1) by λε; then

φε is an isolated fixed point for βΓ in 0>ε; it has negative Schwarzian derivative (see
Singer [12],), i.e.

Φ: ΆΦ:
Theorem 2.2. For s sufficiently small, φε is an isolated fixed point for <Τ in the space
of functions

with f twice continuously differ entiable on [0,1].

Note that, if ε>ε, then </>g(x) = / g(|x|1 + g) can also be written as g(\x\1+e) with g
continuously differ entiable on [0,1]. Thus, 3~ has at least a one-parameter family of
fixed points of the form g(\x\1+E) with g only once continuously differentiable.

Notational Convention: From now on the symbols φε and λε are permanently
reserved to denote the above objects. We will frequently suppress the subscript ε.

Theorem 2.3. The transformation 3~ is infinitely differentiable in a neighborhood of
φε in 0>ε. The derivative of 3Γ at φε has one simple eigenvalue δε>1 which approaches
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2 as ε approaches zero. The diameter of the smallest disk centered at zero containing
the rest of its spectrum goes to zero with ε.

Theorem 2.4. βΓ has a smooth stable manifold, Ws, of codimension one and a smooth
unstable manifold, Wu, of dimension one, at φε. For each a e [ — 1,1] there is a unique
point φ* on Wu with

φα*(1)=-α.

Wu crosses the surfaces Σγ and Σ1 (defined in Sect. 1) transversally. Each φ* has
negative Schwarzian derivative.

Theorem 2.5. Let μ^ψμ be a continuously differentiable parametrized curve in Θ>ζ

which crosses the stable manifold Ws with non-zero transverse velocity at μ = μΟ0.
There exist sequences μ. and μ. converging to μ^ from opposite sides such that

lim δΚμ^ -μ.) and lim δ^μ^ - μ.)

are both finite and non-zero, and such that ψ is super stable of period 2j and ψ^

admits an absolutely continuous invariant measure for each sufficiently large j .

Moreover, the ratio of lim δ\μΟ0 — μ^) to lim δ\μ^—μ^ is also universal, i.e. does

not depend on the particular parametrized family under consideration.

Remark. One instance of such a parametrized family is

for a fixed function ψ sufficiently near to φε. We can then in particular take

ιρμ(χ) = 1-μ\χ\1+ε.

[Actually, the first statement is not quite true. For if μ> 1, then χ-^ψ(μ-χ) need
not be in 0>Ζ(Ω\ but it is in ̂ ε ( μ - ( 1 + ε)Ω).]

Theorem 2.6. If ψΕ Ws, then ψ has an invariant Cantor set J.
1) There is a decreasing chain of closed subsets of\_— 1,1]

each of which contains 0, and each of which is mapped onto itself by ψ.
2) Each J{i) is a disjoint union of 2[ closed intervals. J{i+1) is constructed by

deleting an open subinterval from the middle of each of the intervals making up J(I).
3) ψ maps each of the intervals making up J{i) onto another one the induced

action on the set of intervals is a cyclic permutation of order 2\

We let J denote Q J(I). ψ maps J onto itself in a one-one fashion. Every orbit in J
ί

is dense in J. If, besides being on Ws, ψ has negative Schwarzian derivative -for which
it suffices that it be near φε - then we have:

4) For each k=l,2,... ψ has exactly one periodic orbit of period 2k~1. This
periodic orbit is repelling and does not belong to J{k) ψ has no periodic orbits other
than these.
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5) Every orbit ofxp either
a) lands after a finite number of steps exactly on one of the periodic orbits

enumerated in 4) or
or

b) converges to the Cantor set J in the sense that, for each k, it is eventually
contained in J ( k ).

There are only countably many orbits of type a).

Theorem 2.7. Again assume that xpe Ws, and let J(i\ J be as in Theorem 2.6. Let ν
denote the probability measure with support J which for each i assigns equal weight
to each of the 2ι intervals making up J ( l ).

1) ν is invariant under the action ofxp it is the only invariant probability measure
on J.

2) The abstract dynamical system (ν, χρ) is ergodic but not weak mixing.
3) If χ is any point of [—1,1] whose orbit converges to J, and iff is any

continuous function on [—1,1], then

v

l i m T f Σ /(V>n(*)) = f/<*v.
JV^coiV π = 0

In particular, if χρ is close enough to φε so that Theorem 2.6 holds, then this
equality holds for all but countably many x's. Similar results were obtained by
Misiurewicz [10]. The analysis leading to the Cantor set also gives an attractive
picture of how the bifurcation at μ^ looks. This is described in detail at the end of
Sect. 8.

The proofs will be organized as follows:
In Sect. 3 we develop the elementary theory of the doubling transformation ^~,

and prove for a fairly general class of one-parameter families {ιρμ} in 0> the
existence of an increasing sequence μ. of parameter values such that ψ is
superstable of period 2j.

Section 4 gives the proofs of Theorem 2.1 - except for the estimate (2.1) on the
precise form of the fixed point, which is deferred to Sect. 7 - and Theorem 2.3.
Theorem 2.2 is proved in Sect. 5.

Section 5 gives the precise definitions of global stable and unstable manifolds
that we use and proves a general theorem, sketched in the introduction, permitting
us to deduce Theorem 2.5 immediately from Theorem 2.4. Theorem 2.4 is proved
in Sect. 7, and Theorems 2.6 and 2.7 in Sect. 8.

3. The Doubling Transformation

In this section we develop the elementary theory of the doubling transformation
2Γ. Let \pe@>, and define

α = α(ψ)=-ψ(1).

If a > 0 we also define
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The

and

domain of ί

for xpe@{$~"

V Q){^T\ is

) we define

the set of

1)

2)

3)

(*»(*) =

all ψβ^ such that:

α > 0

b>a

ιρίΦΜα,

1

a

Remark. Although Ο){βΓ) is defined by three conditions, the boundary of
consists in fact of two surfaces :

α = 0
ψ{ψ{α)) = α.

This comes about because, in moving from @(&~) to a region where 2) fails we must
pass through a point where b = a, i.e. ψ(α) = α, and this implies ψ(ψ(α)) = α.
Normally, we would expect conditions 2) and 3) to fail simultaneously, but it is
easy to find situations in which 3) fails and 2) does not.

Proposition 3.1. Let \pe& satisfy α(ψ) = 0, and let (ιρη) be a sequence in 0* converging
to ψ in the C 1 topology and with α(ψη)>0 for all n. Then

1) \pneS)(!T) for sufficiently large η.
2) (^>W)(1)->1 as n-^oo.
In other words: Every point on the surface {α(ψ) = 0} is part of the boundary of

3)(ST\ and ^Γ sends ip's near this surface to functions near the constant function 1.

Proof It is easy to see that, if ψ2(α)<0, then ). We will show:

which implies both 1) [since it implies ιρ^(αη)<0 eventually] and 2) [since

In view of the facts that

we get

On the other hand,

so

»0; ψη~*ψ in C 1

Ψη(αη)-ΨΜ ) ( )

\ψ'η(χ)\^Μ uniformly in χ, η

<Μ
Ψη(αη)-ψη(0)

as claimed.
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It is on the other hand clear that if ψ satisfies ψ°ψ(α) = α and if ψη

ψη^ψ, then

Consider now a mapping μ->ψμ from an interval (μο,μο) into ^ , i.e., a one-
parameter family of elements of 0). We assume the mapping to be continuous in
the C 1 topology. We will say that such a one-parameter family is full if

ψμ(ϊ)-*1 as μ->μ0

and

^ ( 1 ) ~ > - 1 as μ->μ0

(e.g. ψμ(χ) = 1-μχ2;μ0 = 0;μ0 = 2).
We have already remarked that for any such one-parameter family there must

be at least one μ such that φμ(1) = 0, i.e. such that ψμ is superstable. There may be
many such μ'8 in any case, we denote by μχ the largest such. Proposition 1 shows
that, for μ slightly larger than μ1? ψμβ@(^). We will denote by μχ the smallest
μ>μχ such that \ρμ$@(£Γ). [Since 1)(ψμ) = ψμ(1)-+ — 1 as μ->μ0, whereas α(ψμ)
= —ψμ(1)->1, condition 2) in the definition of @(&~) must fail before μ reaches μ0.]
By our earlier remarks, ψ2

μι{^ιμ^αμι.

Proposition 3.2. // μ^ψμ is a full one-parameter family, then

μ->^Τψμ> μ1<μ<μί

is also a full one-parameter family.

Proof. By Proposition 1, &~ψμ(1)->1 as μ^μ1? and by the remark following
Proposition 1,

•^"νν(ΐΗ-ι a s

By induction, then, there exist two sequences

μ ο < μ 1 < μ 2 < ... < μ 2 < μ 1 < μ 0

such that, for μ]<μ<μρ ψμΕ@(^~ΐ) and

is a full one-parameter family. In particular these sequences are constructed in
such a way that

i.e. έΓ]~ίψμ. is superstable of period 2, i.e. ψμ is superstable of period 2j.

4. Existence and Elementary Properties of the Fixed Point

is in 9{3Γ) as defined in Sect. 3, and if φ(χ) = /( |χ | 1 + ε), then
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where

^(Ο=-^/(Κ/(«1+εΟ)Γ+ε); α=-/(ΐ)>ο.

The conditions for the definition of 3Γψ imply that

f(a1 + et)>0 for Ο ^ ί ^ Ι

a n d we can therefore d r o p the absolute value sign. If we define Ο)ε to be the set of
such functions ψ satisfying in addi t ion

then, if\pe@E, 3~\ρ is again in ^ ε . We are going to prove that ΖΓ has a fixed point in
Q)z for each sufficiently small positive ε.

It is convenient to introduce a new variable α related to ε by

— a
ε =

l+log(a)

Note that for each small positive α there corresponds exactly one small positive ε
and vice versa. Any ψΕ^ε can be written uniquely as

ψ(χ) = /(|χ| χ + ε) f(t) = 1 - 1 + ott(g(t) - 1),

with ge%{Q).
Working with g rather than ψ is simply a (linear) change of variables in function
space. lfipe@E, we will write the g corresponding to 3Γψ as T£g. The domain of 3Γ
is bounded on one side by the surface

which corresponds to

We are going to show that, for small ε, Τε is defined a n d well behaved on the open
unit ball in § a n d has a fixed point near zero.

T o formulate our results concisely, we need some special terminology. If 9C is a
n o r m e d space a n d ρ a positive number, we write r£Q for the open ball in SC with
center 0 a n d radius ρ. A m a p p i n g defined on ̂  will be said to be nearly bounded if
it is b o u n d e d on each 3CQ with ρ< 1. Similarly, functions will be said to converge
nearly uniformly if they converge uniformly on each '£ρ with ρ < 1.

Proposition 4.1. For ε > 0 sufficiently small, Τε is defined on ξ^^Ω). The mapping

is jointly infinitely differentiable. For fixed ε, derivatives of all orders of Τε with
respect to g are nearly bounded on 9>ν We can decompose Τε as
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where Το is a rank-one linear operator with range the constant functions:

and rE and its g-derivatives of all orders converge almost uniformly to zero with ε.

We emphasize that: Although ΤΕ is highly non-linear, its zeroth order part Το is
not only linear but very simple - dividing it by two gives a projection onto the
constant functions. Its simplicity makes possible a detailed analysis of the behavior
of Τε for small ε.

Before proving the proposition we note its principal corollary.

Corollary 4.2. 1. For each sufficiently small ε>0, there is exactly one solution gE

0)

for the fixed point problem

in § 1 / 2 (Here, \ may be replaced by any number less than one.)

is infinitely differentiable and g(

E

0) approaches zero with ε.
2. DTE{gE

0)) varies continuously with ε and approaches Το in operator norm as ε
approaches zero.

3. Let 0 < ρ < 1 . For sufficiently small ε, the only part of the spectrum of
DTe(g[0)) at a distance greater than ρ from 0 is a simple positive eigenvalue δε which
approaches two as ε approaches zero. The corresponding eigenspace converges to the
space of constant functions.

To prove 1., we write the fixed point problem as

or equivalently as

(I-To)g = rjig).

Since Τ0

2 = 2Τ0, we have (I — Τ0)
2 = Ι and so the above equation is equivalent to

g = (I-T0)rE(g).

Since rE and DrE converge to zero nearly uniformly with ε,

g-+(I-T0)r8(g)

is a contraction on § 1 / 2 for ε sufficiently small. The existence and uniqueness of g[0)

follows from the contraction mapping principle. The smoothness of the de-
pendence of g{0) on ε follows from the implicit function theorem in Banach space.
(See, for example, Dieudonne [2].) That gf] approaches 0 with ε follows
immediately from the nearly-uniform convergence of rE to zero.

Part 2 follows from the joint continuity of DTE{g) in g, ε and the continuity of
gE

0) in ε. Part 3 follows from 2 by standard perturbation theory (Kato [7]) and the
fact that the spectrum of Το reduces to {0,2} with 2 a simple eigenvalue whose
associated eigenspace is the constant functions.

The proof of the proposition is a relatively straightforward computation
supported by some general theorems. We will give the computation first; then
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sketch the justification that the remainder terms do indeed have the properties
claimed.

We first do a computation whose result we will need to use again later. We
have already seen that if

/ ( | χ | 1 + ε ) ; α=-ψ(1)

then the transformation ψ->£/~ψ translates to

We will next write
f(t) = l-th(t)

and determine how h transforms. We will need the following notation: If toeΩ, we
define a bounded linear operator AtQ on 9){Ω) by

iM ίΦίο
r — r 0

= / ' ( ί 0 ) t = to-

Now define ην η2 by

βα1+εή = 1-αίη1 [so η1 =aEh{a1+Et)\

(1-αίηι)
1 + * = 1-αίη2.

We now claim: Under the action of ^~, h transforms as

1ι->η2 χ{Η{1-αίη2) + {Δ1Η){1-αίη2)} . (4.1)

To verify this, write

= 1-Η(1-αίη2) + atr\2h{\ -αίη2).

Now use the following expression for the first Η(1 — αΐη2\

h(l - αΐη2) = h(\)- αίη2(ΔίΚ)(1 - αίη2)

and recall that α= -f(l) = h(l)-l, to get

-α + αίη2{(Δ xh)(\ - αίη2) + h(i - αίη2)}.

Thus

from which the formula (4,1) for the action of ΖΓ on h can be read off.
We must next insert the expression
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and extract the principal terms for small ε. In so doing, we generate a large number
of remainder terms, and it is convenient to have a systematic notation for the
spaces in which the remainder terms lie. Let $R denote the space of all mappings

r:(e,g)-+r(e9g)

defined o n a set of the form (0,ε 0 ) χξ^^Ω) with values in §(ί2). H e r e ε 0 is a strictly
positive n u m b e r which m a y vary with r. These m a p p i n g s are required to be jointly
infinitely differentiable in ε, g, a n d derivatives of all orders with respect to g are
required to be nearly b o u n d e d in ^ ( Ω ) for each ε a n d to converge to zero nearly
uniformly with ε. We will use 93 to denote the ana logous space of functions which,
together with their g derivatives, will merely be required to remain bounded as ε
a p p r o a c h e s zero a n d 5R0, 33 0 to denote the ana logous spaces of functions taking
values in 1R ra ther t h a n § . Recall, also, t h a t ε a n d α are related by

— α
ε ==

(l+loga)'

whenever α appears in one of our formulas it is to be regarded as a function of ε.
Since a = h(l) — l and we are writing h{t) = 1 — a(g(t) — 1) we have

and hence

Now a =exp[eloga]=expl-—ρ^- = e x p [ - a - e ] .

Thus

Also,

Thus

[We have used the fact that ε/α goes t o zero with ε to replace ώί by oi{s/x)b1 with
s/<xble9l0.~] N o w

SO

so
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Also

h{\ - αίη2) + (A ̂ Xl - αίη2) = 1 + α - ag(l - αΐη2) - u(A

Thus

- αίη2) + (zl1h)(l — aty2)} - (1 - α<?(0) + ar2)(l + oc(l - g { l ) - g'{l) + r3))

and hence by inspection

as desired.

Remark. These computations show that £Γ admits a fixed point φεΕ&ε with

0 ε( χ) = l _ (l + α(ε))|χ| 1+ε + correction,

where the correction vanishes more rapidly than α as ε goes to zero. They also
show that there is no other fixed point in a ball about φε whose radius is bounded
below by const α(ε). If we write

*β=-0β(1),
then

χε = α(ε) + Ο(α), or λε = - ε log ε + ο(ε log ε).

More detailed computations to be done in Sect. 7 show that in fact

χε= - slogs+ 0{ε)

and that

We turn now to the problem of justifying the above computations, i.e. of
showing that the remainder terms do indeed have the asserted properties. The
verifications are tedious and we will not do all of them, but we will work through
one in full detail. We wrote, in the course of the computation,

a1 + et{A0g){a1+et) = 0Lb2 with b2e%>. (4.2)

We now want to prove this. The proof is based on a number of principles which we

list here:

a) The mapping (e,g)-+g is in 33.
b) For any g o e § , t n e constant mapping (ε,#)->#0 is in 23.
c) If b0e%>0, the mapping (s,g)-+(thc constant function with value bo(s,g))

is in ©.
d) Let 93 l 9 . . . , 93η be open sets in § and let
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be bounded, infinitely differentiable, and have bounded derivatives. Further, let
bv ...,bne^B, with the range of bt contained in $• for each ε. Then

is in 33.
e) (Corollary of d.) If b 1 ? b2e93, then

{e,g)-*b1(e,g)'b2(e,g)

(pointwise product of analytic functions) is in 23. Similarly, ifbv b2 are in 23Ο, so is
their product.

f) If Ων Ω2 are bounded open sets in C, we write ξ>(ΩνΩ2) for the set of all
ftij with g(Q1)cQ2. [Hence, if Ω2 is the open unit disk, $(Ω,ί22) = δ1(Ω).]

ξ>(ΩνΩ2) is an open subset of ^(Ω^). Now let Ω20_Ω'2ζΩ2. Then composition
(β\ι92)^9ι°9\ *s a C00 function with bounded derivatives from
ξ>(ΩνΩ'2) χ§(Ω 2,ί2 3) into £(Ω 1 5Ω 3).

We omit the proofs of these statements. Note that a)-e) remain true if we
replace § by C2, but that f) depends upon the properties of analytic functions, and
fails in C2.

We are now ready to verify 2).
1. The mappings

(ε,0)-1-0(1), (1-0(1)) ε, α, e " a , e~e

are all in 33Ο. This is readily proved by direct verification. Note that the
^-derivatives of (1 — #(1))ε have singularities as g(l)->l it is for this reason (only)
that we have to work with functions with derivatives which are nearly bounded -
rather than bounded - on the unit ball of § .

We will from now on write, as a shorthand, statements like (1 — g(l))£e230

rather than the more logical

2. a = a ( l - 0 ( l ) ) e 8 o ; αε = £Γα£-ε(1-#(1))ε£<Β0; a 1 + £ e93 0 . [Use le).]
3. a1 + £ie33. [Use 2b), c), and e).] If e0 is small enough there exists a domain Ωχ

with Ω ^ Ω such that a1 + cteQ1 for all ε<ε 0 , ge9)v ΪΕΩ.
4. Aoge%. [Use a), d).]
5. Aog(a1+*t)e®. [Use 3., 4., ft d).]

6. ^a1+8A0g(a1 + H) = (l-g(i))aeA0g(a1+Bt)e®. [Use 1., 2., 5., c), e).]

This completes the proof of (4.1).
The arguments given so far show that the fixed point gf] varies smoothly with

ε. We next show that gf\t) is jointly analytic in ε, t. The logarithm appearing in the
relation between λε= —φε(1) and ε shows that there must be a singularity at ε = 0,
and we want to clarify the structure of that singularity. For this purpose it turns out
to be useful to consider a somewhat contrived generalized fixed point problem in
which the relation between ε and α is partly relaxed. Recall that 2Γ takes the form
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with α = — /(1) = α(1 — g(l)). We modify this transformation as follows: In the
innermost argument we replace αε by e~e~a(l — g(\))E. We then replace ε wherever
it appears by μ α and we regard μ, α as independent parameters. This gives a two-
parameter family of transformations whose action we can again express in terms of
g related to / as above. Expressed in terms of g. we will denote the transformations
by

Our original transformations Τε are recovered through

*Ρ(~\ζ= Τ ι
fcW a, —

1 +loga

The advantage of considering α, μ as independent variables is that Τα turns out to
be, heuristically, jointly analytic in α, μ at (0,0) the non-analyticity appears only in
the relation between μ and a.

We now, temporarily, drop the requirement of reality for real values of the
argument in the definition of the space §, and we consider the transformations Τα

for arbitrary small complex values of α, μ. Exactly the same computations as were
done in the proof of Proposition 4.1 go through, and we obtain

where ra and its derivatives of all orders with respect to g converge nearly
uniformly to zero as α, μ both go to zero. Hence, as before, the fixed point problem

9=TaJg)

can be rewritten as

and the right hand side is contractive on § 1 / 2 for sufficiently small |α|, |μ|. Thus,
there exist α0, μ ο > 0 such that for all α, μ with |α |<α 0 , |μ |<μ 0 , Τ α μ has a unique
fixed point g^ in § 1 / 2 Moreover, the computations which show that ra is small
for small α, μalso show that if α, μ-+gaμi$ a mapping from {(α,μ) : | α | < α 0 , |μ |<μ 0 }
into jr>1/2 such that gajf) is jointly analytic in α, μ, t then ratfl(gatfJ){t) is again jointly
analytic, and so the same is true for

From this it is easy to show - using the contraction mapping principle in an
appropriate space of jointly analytic functions - that g{^\{t) is jointly analytic in
α, μ, ί.

Since the parameter α was introduced artificially, it is desirable to express
directly the dependence of g{0) on ε. To do this we need the following lemma.

Lemma 4.3. There exists a function r(z1,z2), analytic on a neighborhood of zero in
(C2 and with r(0,0)=l such that for small positive ε

1 / 1 log(-loge)\

\loge loge /
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is the unique small positive solution of the equation

ε= ~ α . (4.3)
1+loga ν ;

Proof. Write α= — ε•logε•r and insert in (4.3). The result is

1 1 log(-loge) logr ^

logs logs loge

For fixed ε in (0,1) this equation has a unique solution r for ε small, the solution is
near 1. On the other hand, by the implicit function theorem, there is a uniquely
determined function r(zv ζ2) defined and analytic on a neighborhood of zero in (C2

and satisfying

l + z 1 + z 2 + z 1logr = r;

and r(0,0)= 1. This is thus our desired function r.
We can express the conclusion of the lemma more concisely by saying simply

that a/slogs is an analytic function of 1/loge and log( —logg)/loge. It follows
immediately that β/α is also an analytic function of 1/loge and log( — loge)/loge.
Thus we get:

1 losi lose)
Proposition 4.4. gf\t) is an analytic function of slogs,- , , and t. In

logs logs
particular, gf\t) is jointly analytic and bounded in ε, t for s in a small disk about zero
in (C and off the negative real axis and t in Ω.

5. Existence and Uniqueness in C2

Write

/(i)=l-(l+A)i + AV(i). (5.1)

We are looking for (ε, ί) such that

ν ( 0 + /(/(Α1 + ε01 + ε) = 0. (5.2)

We study the equation to be satisfied by the second derivative of /. If (5.2) holds,
then

f'(t)= - Α ε / ' ( / μ 1 + ε 0 1 + ε ) / ( ^ 1 + ε ί ) ε ( 1 + ε ) / ' ( ^ 1 + ε 0 , (5.3)

and

/"(ί) = - λ1 + 2 £ {/" (/(Ί 1 + ϊ ί ) 1 + ' ) / (Ί 1 + ' ί ) 2 £ (1 + ε)2/'(λ1+εή2

εί)2} (5.4)

Setting f = 1 in (5.3) we get

• {ΐ-(ΐ+ιμ1+ε+/ΐνμ1+ε)}ε(ΐ+ε)
λ2<?(λ1+ε)}, (5.5)
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or

20 = λ + ε + ε log A + λ2Ν0{ί, ε, λ), (5.6)

i.e.

fi = - 1 + | Q Α + λ2Ν^ε, λ) = Α^#,ε). (5.7)

We also rewrite (5.4):

Γ = 1Κλ(/, ε)Γ + ΜΑ(/, ε), (5.8)

where for ̂ eC°[0,1], and / defined as in (5.1),

(Ktf, ε)Α)(ί) = - λ2ε{Λ{/{λ1 + εΐ)1 + £)ηλ1+Βή2ε(ί + ε)2/'{λ1+εή

(5.9)
and

Μλ(ί,ε)(ή=~λ2ε-?η/(λ1 + εή1+ε)/(λ1+Η)ε-\ΐ+ε)η^+εί)\ (5.10)

Finally, we define 5£ by

r 1

)= \(ΐ-τ)Α(τ)άτ-ϊ\(\-τ)Α{τ)άτ. (5.11)

Instead of solving (5.2) directly, we rather discuss first the set of equations (for
fixed, small λ>0)

ε = Νλ(έ9ε), (5.12a)

and

{ = S£{1 - λΚλ(ί, ε)) ~' Μλ(/, ε). (5.12b)

We claim that the solutions (ε,/) of (5.12a, b) solve actually (5.2).

[Proof. (5.12a) implies (5.6) and (5.5), and hence (5.3) at ί = 1 . Equation (5.12b)
implies (5.4). Integrating, we find that (5.3) must hold up to an additive constant,
but this constant is zero since we have already seen that (5.3) holds at ί = 1 .
Integrating again, we find that (5.12) holds up to an additive constant, which
however must be zero, since, by (5.12b) and the definition of if, *f(0) = /(l) = 1.]

We now discuss the existence and uniqueness of solutions of (5.12). [This also
implies uniqueness of the solution of (5.2) since every solution of (5.2) solves
(5.12).] The appropriate function space is

(δ = {(/,ε), /eC 2 [0,1], /(0) = /(l) = 0, ee(C}

equipped with the norm

||(Λε)||β= sup [r(x) | - |e | l 0 g f + 1 ; (A is small).
xe[0, 1] £A
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Let (S-L be the unit ball in (£. (£ is a Banach space. In fact t = Se{f"\ and

\^const sup μ(ί)|. (All spaces C°, C 1 are on [0,1].)
i [ 0 , ]

We claim that for sufficiently small λ > 0,
a) Νλ is a contraction1 from (£1 to (C.
b) ΜΑ is a contraction from (£1 to C1.
c) For (*f,e)e(£l5 Κλ(έ,ε) is a bounded linear map from C° to C° and from C 1

to C1.
d) ForXl9X2e(£l9

\Κλ{Χγ)Λ-Κλ(Χ2)Λ\£0 gconst μ ^ -Χ 2 | | t t W c l .

e) if is bounded linear from C° to C2, and (JS?j«XO) = (jSfJ«)(1) = 0.
Note that from c), d) above it follows that

|(1 - λΚ^Χ,))- Ά - (1 - λΚλ(Χ2))~ H\c»

= λ|(1 - A K ^ J ) - Η ^ Λ Ρ ^ Ι ) - Κλ(Χ2))(1 - λΚλ(Χ2)Γ ^ | c 0

and hence we see that (5.12) has a unique solution. It remains to verify the claims
a)-e). This is tedious but straightforward. Each time we have to estimate

we use the formula

\A(u)-mm&\cAu-v\. (5.13)

This is responsible for the fact that the contractions in b) and d) lose a derivative.
We only comment on the otherwise trivial verifications:
a): Obvious from (5.5), (5.6), (5.7).
b): Obvious from (5.10). [Note that /(λ1+εή>± for small Λ^Ο.]
c): Obvious from (5.9) since no derivatives of A occur.
d): Obvious from (5.9) using (5.13).
e): By construction, (JS?4)(O) = (J?4)(1) = O, cf. (5.11). On the other hand, a

direct computation shows

I j^ i | C o s \4\co K^vO'lco ύ \4\Co I ( ^ ) V S \4\Co.

This proves existence and uniqueness in C2 and hence Theorem 2.2. The same
proof works on any interval [0, A] provided λ > 0 is sufficiently small, and Α>\.

6. Stable and Unstable Manifolds

In this section, we present a general argument deriving some analytic con-
sequences from a geometric situation. The geometric situation is as follows:

We consider a twice continuously differentiable mapping 6Γ defined on an
open set Τ) in a Banach space § and taking values in § . We do not assume that 2Γ

1 By contraction we mean a bounded, contractive map
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maps Τ) into itself, but we do assume that it has a fixed point φ. We further assume
that Ώ3^(φ), the derivative of βΓ at φ (which is a bounded linear operator on §) has
spectrum which, except for a single simple eigenvalue δ > 1, is entirely contained in
the open unit circle. It then follows from invariant manifold theory that βΓ admits
a stable manifold Ws of codimension one and an unstable manifold Wu of
dimension one. We will define these submanifolds precisely later; for present
purposes, it is good enough to think of Ws as an invariant surface and Wu an
invariant curve (the two of them crossing at the fixed point φ) with 2Γ acting in
a purely contractive way on Ws and in a purely expansive way on Wu.

We also give ourselves two further objects:
A submanifold Π χ of § of codimension one which intersects Wu transversally

at some point φ*^φ.
A continuously differentiable parameterized curve μ-+ψμ in § which crosses

the stable manifold Ws at μ = μ00 with non-zero transverse velocity.
Although the notation in this section will be chosen to suggest the application

of the results obtained here to the main topic of the paper, the reader should note
that these results depend only on a few explicit assumptions about the objects
under consideration. Symbols like &~, </>, Wu, etc. are used in a more general sense
here than in the remainder of the paper. Moreover, Π λ will be later on identified
with Σχ (see Fig. 3).

From this set-up we want to conclude:

a) There exists a sequence μη (perhaps defined only for large η), converging to

μ^, with &~η~ιψ ellv and such that lim δη(μη — μΟ0) exists and is non-zero.
η—> οο

b) The sequence ^Γη~^\ρ converges to φ*.
The significance of these conclusions has been discussed in the introduction.

(We would like to be able to make the more precise assertion that μη is the unique
value of μ near μ^ such that έΓη~ίψμΕΠί. Whether this is true or not depends on
relatively inaccessible global properties of £Γ but we can say, informally, that μη is
the unique such μ for which ^~ψμ,^~2ψμ, ...,$~η~2ψμ all lie between Ws and Πν)

The first step in our analysis will be to define precisely what we mean by stable
and unstable manifolds. This is not entirely routine since, in the application we
have in mind, the transformation ΖΓ is not invertible in fact, it is not even locally
one-one near φ.

If 23 is a sufficiently small open ball in § with center φ then

{xpeW'.^xpe® for j=l,2,3, . . . }

may be shown to be a smooth connected submanifold of 23 of codimension one.
We will call this set a local stable manifold for 23 at φ and denote it by W^°\ It
passes through φ and is tangent there to the stable eigenspace for Ό3Γ{φ\ i.e. the
spectral subspace for the part of the spectrum which is inside the unit disk. The set
W^0) is mapped into itself by ^ , and the sequence of sets ^jW^0) shrinks to {(/>}, i.e.
is eventually contained in any neighborhood of φ. The proofs of these facts, as well
as those to be cited in the next paragraph on local unstable manifolds, can be
found in the monograph of Hirsch et al. [6].

If we define (again for 23 a small open ball with center φ)
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then Ρ) %$j is a smooth connected one-dimensional submanifold of 93, passing
j

through φ and tangent there to the eigenspace of Ό3Γ(φ) corresponding to the
large eigenvalue δ. We call this set a local unstable manifold for 2Γ at φ and denote
it by W^\

We have:

and, for any xpe W^0) and any j = 1,2,3,..., there is a unique xp.e W^0) such that

moreover, the sequence (yij) converges to φ.
The globalization of the stable and unstable manifolds is complicated by the

non-invertibility of 2Γ. We will simply define what we mean by a stable or unstable
manifold without investigating the existence of a unique largest one. Thus we
define:

A stable manifold for ΖΓ is a smooth codimension-one submanifold Ws of the
domain of ?Γ such that :

a) ^WSCWS.
b) If xpeWs, then ]ϊηα&']ψ = φ. (Note that this implies that ^^eW^0) for

sufficiently large j.)
c) (Transversality.) For any χρ in Ws, the range oiD£T(xp) is not contained in the

tangent space to Ws at 3Γχρ.
An unstable manifold for <Γ is a smooth one-dimensional submanifold Wu of §

(not necessarily contained in the domain of ΖΓ) such that

a) ^ n D ( J ) ) D ^ . /
b) Ιϊψβ Wu, there is a sequence τ/̂  converging to φ such that xp = <?Tjxpj. This

00 \ \

implies that WUC \j 3 )

c) For any xpeW^T)^), the tangential derivative of 3Γ along Wu at ψ does
not vanish.

Since Ρ1^0) and Ρ^(0) are, respectively, stable and unstable manifolds, stable and
unstable manifolds do exist.

We now need some special terminology. Let Πρ j = l , 2 , 3 , . . . and W be
submanifolds of § of codimension one. We will say that the sequence Π] converges
to Wexponentially with rate δ (δ a real number larger than one) if, for each xpe W
there is a diffeomorphism from 3CX x(— 1,1), SC1 the open unit ball in some Banach
space S£, onto a neighborhood 93 of χρ (i.e. a set of local coordinates at χρ) such that

1. ψ is the image of (0,0).
2. Wn% is the image of ^ x{0}.
3. For each sufficiently large j , Π^^β is the image of the graph of a mapping

^ ( )
where

4. δ]Πί converges in the C 1 topology on 3C1 to a nowhere vanishing limit.
Intuitively, this means that the separation between IJj and W varies asymptoti-

cally (for large j) like δ~} multiplied by a differentiable function of position on W.
The following proposition is nearly obvious:
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Proposition 6.1. Let Ilj converge exponentially to Wwith rate <5, and let μ^>ψμbe a
continuously differentiable parametrized curve in § crossing W with non-zero
transverse velocity at μ = μΟ0. There is then a sequence μ -^μ^ (defined for
sufficiently large j) such that ψμ.ΕΠ]; the quantity δ\μ^ — μ3) converges asj-^co to
a finite non-zero limit.

Returning to the principal objective of this section, we see that the proof of a)
p. 233 now reduced to constructing appropriately localized preimages Ilj of Π1

under ^ Γ 7 ~ 1 and showing that they converge exponentially to Ws with rate δ.
The following theorem asserts that this is possible; it also asserts that b) holds.

Theorem 6.2. Let βΓ, φ, Ws, Wu, δ, Πν and φ* be as above. Then there exists a
sequence (IIj) of codimension-one submanifolds of$, converging exponentially to Ws

with rate δ, such that

Moreover, if\peWs and if 2Β is a sufficiently small neighborhood of ψ in §, then

^ ' - ^ η Ώ Β Η ί φ * } as ;->οο.

The first step in proving this theorem is to reduce it to a statement which is
local at φ. More precisely, we claim that the theorem as stated is true if we can find
an open neighborhood 35 of φ such that it is true for Ws and Wu replaced by Wsn%$
and Wun%$ respectively, with the added assumption that TIlC

(SS. Proof of this
claim is straight-forward, using (notably) the transversality conditions in the
definition of stable and unstable manifolds. We will sketch one part of the
argument, showing that there is no loss of generality in assuming that Π1€^Β.

As before, we let φ* denote the (first) point where Wu intersects Πν Since
φ*β\Υη, there is an integer k and a point (/)fe*e^un$ such that ^~1ί~'1φ% = φ*. By
our definition of Wu, the tangential derivative of ^k~x along Wu at φ% does not
vanish. From this (and the implicit function theorem) it follows that, for IT a
sufficiently small open ball about φ*,

is a smooth codimension-one submanifold of 33 intersecting Wu transversally at
φ*. The localized version of the theorem implies the existence of a sequence of
surfaces ITj converging exponentially to Wsn%$ with rate δ and with

We can thus take

n J + 1 = n ' J + l .

This establishes localizability in the expanding direction. A similarly straightfor-
ward argument, which we omit, establishes localizability in the contracting
direction.

Thus, we have only to prove the localized version of the theorem. We do this by
choosing special coordinates in which 2Γ and Πγ take particularly simple forms.
The result we need is the following:
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If φ* is close enough to φ, then there exists a C 1 diffoemorphism from a set of
the form 3£t x [ - l , l ] , ^ the unit ball in some Banach space, onto a neigh-
borhood 93 of φ such that

φ is the image of (0,0),
Wsn*B is the image of S£t x {0},
VTMn93 is the image of {0} χ (-1,1),
17^33 is the image of #Ί χ{1}.
If we regard xe f 1 ? ye [— 1,1] as coordinates for their image in 93, then in these

coordinates !Γ takes the form

where

\\M(x1,y)-M(x2,y)\\^\\xl-x2L

with α < 1 , and M(0,j/) = 0.
In terms of these coordinates we can take simply

IIj = image of ^ χ^""0*"1*}

and this sequence of surfaces converges exponentially to Wsn%$ with rate δ.
Moreover, in view of the contractivity of Μ(χ, y) in χ, the diameter oi3Tj~χ Π^ goes
to zero as j-»oo. Since this set always contains φ*, we have

^~1Π^{φ*} as j-+oo.

The proof of the theorem is thus reduced to proving the existence of the
indicated "normal coordinates" for 3Γ and Πν We will concentrate on showing the
existence of coordinates in which 2Γ has the desired form, since this result may be
of interest in other contexts we will then at the end sketch how the argument can
be modified to bring Π1 into normal form as well. The proof of the following
theorem is based on an analogous but more complicated result proved in Collet
and Eckmann [1].

Theorem 6.3. Let £Γ be a twice continuously differentiable mapping from an open set
X) in a Banach space into the Banach space. Let φ be a fixed point for £Γ. Assume
that ϋ$~(φ) has a single simple eigenvalue δ>1 and that the rest of its spectrum is in
the interior of the unit disk. Then there exists a C1 diffeomorphism of 3C1 x(— 1,1)
(9C^ denoting the open unit ball in some Banach space) onto a neighborhood 93 of φ -
i.e. a set of local coordinates at φ - such that

(0,0) represents φ,
#Ί x{0} represents
{0} x(-1,1) represents
?Γ takes the form (χ, y)-+(M(x,y),5y),

where

for (x9y)eXx x (-1,1) .

We emphasize
1. In these coordinates the action of 3Γ in the y direction has been made

exactly linear.
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2. We do not require - and it is generally not possible - that 3~ be linearized
smoothly in the χ direction as well.

The first step in the proof is to introduce coordinates which are approximately
right. We do this in a sequence of steps:

- Make a translation to put φ at the origin.
- Write the Banach space as the direct sum of the one-dimensional eigenspace

corresponding to the eigenvalue δ (y direction) and the complementary spectral
subspace (χ direction).

- Carry out an x-dependent translation in the y direction to bring the stable
manifold to the surface {y = 0}.

- Carry out a y-dependent translation in the χ direction to bring the unstable
manifold to the line segment χ = 0.

- Reparametrize the y coordinate in such a way that the action of 2Γ on the
unstable manifold becomes exactly multiplication by δ. The possibility of doing this
follows from a trivial case of the Sternberg Linearization Theorem. (See, for
example, Hartmann [5].)

Thus we can assume that:
1. The domain of ST is 9Cl x ( - l , l ) and F(x,y) = (M{x,y\8y + N(x,y)) where

Μ,Ν are continuously differentiable and M(09y) = 0; JV(x,0) = 0; N(0,y) = 0.
In the course of the argument, we will need to assume that the nonlinear terms

in £Γ are small. This can be accomplished by magnification, i.e. by replacing (χ, y)
with new coordinates χ' = λχ, y' = Xy with λ large (and restricting the domain to the
set | | χ ' | | ^ 1 , I / I ^ 1). This transformation leaves the linear terms unchanged but
shrinks the nonlinear terms by a factor of at least 1/λ. In this way (and possibly
also renorming the space 3C) we can arrange that, for some j3>0,

2 "~r
 Γ Γ,,;;;: ^ W<L ΐνκι

y

It will also be convenient to assume that 2Γ{χ, y) is defined and well behaved for all
y. To extend it, we choose a smooth cut-off function ρ(γ),

__)<ι.
with

g(y) = 1 for \y\ ^ —

g(y) = 0 for \y\ ^ 1

and modify 2Γ to the mapping

(χ, y)->(Q(y)M{x, y), δγ + g(y)N(x, y)), |y| < 1

The modified £Γ agrees with the original 3Γ on all (x,y) with
&~(x,y)eS£1 x[— 1,1] it maps i t x I R into itself and satisfies the inequalities (2.)
for all y. We will work, from now on, with this modified ST.
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To prove the theorem, it suffices to find a continuously differentiable function ζ
such that

ζο^ = δ ζ, z(0,y) = y.

The inverse function theorem then assures us that (χ, ζ) is a set of local coordinates
at (0,0) and 3Γ evidently has the desired form in these coordinates. To construct ζ,
we let yn(x, y) denote the y coordinate of ?Γη(χ, y\ and we put

It is immediate that zn(x,y) is continuously differentiable and that zn(09y) = 0. Also,

ζη°^ = δ-ζη+ί

so if

lim ζη = ζ
η-> οο

exists, we have immediately

as desired. Evidently, ζη(χ, 0) = 0, so the limit exists in this case. On the other hand,
if y φ 0, then, since

\yn\ is eventually larger than one. But because of the way <F is cut off, yn+1=Syn if
jy j^ l , and so zn+i(x9y) = zn(x9y). Hence, for all x,y

z(x,y)=1imzn(x,y)
η-*οο

exists, and the only problem is to prove that it is continuously differentiable. Note,
incidentally, that if y 4=0 and η is sufficiently large, ζ = ζη on a neighborhood of
(χ, y) and so ζ is continuously differentiable on that neighborhood; the only place
where differentiability could fail is for y = 0.

We will write

then a simple computation using

_ 1 σ~

and the expression (1.) for £Γ gives:

, , 1 , , 1

Defining a linear operator L by

>4
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we see that

so, if we can find a normed space containing Ν on which L is a contraction, we can
write

z-y=-\

We will use the norm

on the space of those continuously differentiable functions vanishing for χ = 0 for
which the norm is finite. (It is to guarantee that Ν belongs to this space that we
have to assume that 2Γ is twice continuously differentiable. We could make do
with less, but simple continuous differentiability does not seem to be enough.)

The proof that L is a contraction in this norm is straightforward; we will
describe explicitly only the most sensitive of the estimates,

Dy(Ls) (χ, y) = i (Dxs) (Μ{χ, y\ Sy + Ν(χ, y)) DyM(x, y)

+ l- (Dys) (Μ(χ, yl dy + JV(x, y)) (δ + DyN(x9 y)),

0 \\X\\ 0 X,y

Now DxDyM(x, y) comes from the nonlinear terms in 3Γ which can be made small
by magnification, so we can estimate this expression by an arbitrarily small
multiple of |||s|||. From

Μ(Ο,)0 = Ο; ||

it follows that

and thus

1 Dys{M(x, y\ 5y + ΑΓ(χ, y)) {δ + DyN(x, y))

δ W

Again, the last term can be made arbitrarily small by magnification. The final
result is, then, that we have an estimate

supi—y-— I ^ | | | s | | | x(a + something small).

The other two terms are estimated similarly.
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Hence, L is a contraction so the series

I Σ LJN

0 3 = 0

converges in this normed space the sum is ζ — y so ζ is continuously differentiable.

Remark. Similar estimates show that if α δν~χ < 1 then ζ is Cr (assuming that 2Γ is
C r + 1 ) .

On the other hand, no matter how smooth 2Γ is, it is usually not possible to

find a Cr solution to ζ °3Γ = δ ζ, ζ(0, y) = yif one of -, -y,..., — y can be written as

a product of points of the spectrum of DXM(0,0).
Finally, we have to show how to modify the above argument to bring a

codimension-one surface crossing the unstable manifold transversally away from
the fixed point simultaneously into the desired normal form, a flat horizontal
surface. We start as before, choosing coordinates in a neighborhood of φ in which
ΖΓ takes the form (1.) and (2.) holds. Let Π1 intersect the unstable manifold inside
this coordinate neighborhood then a part of Πί near the intersection point can be
represented in our coordinate system as the graph of a function Χ->Π1(Χ)Ε( — 1,1)
with Π1 defined in a neighborhood of 0. By magnifying in the χ dimension we can
assume that 771 is defined and non-zero on all of SCV

Now define a new y coordinate by

ν = y° l d

In terms of the new coordinates, (1.) still holds if (2.) doesn't then it can be made to
hold by a further magnification in the χ direction. We have thus arranged so that
(1.) and (2.) hold, and, in addition, Πί corresponds to the surface {y = 1}. We then
proceed to cut off and extend JV, Μ as indicated. Note that, because of the way we
have done the cutting off, the inverse image under 2Γ of any set in ^ x [ — 1,1] is
exactly the same as it was before the modification of 2Γ but, on the other hand,

From this last equation, it follows that

i.e. that Π1 corresponds to the surface {ζ=1}.
It still has to be shown that ζ is continuously differentiable. To prove that, one

needs to know that

sup \\DxDyM(x,y)\\, sup \\DyN(x,y)\\, sup \\DxN(x,y)\\
x,y x,y x,y

are all small. This would normally be arranged by magnifying sufficiently before
cutting off in the y direction. We note, however, that the magnification can just as
well be done after cutting off, and that this does not spoil the flatness of 771 in the ζ
coordinate.
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7. The Global Unstable Manifold

The preceding section shows that the universality of the rate of period doubling
can be understood if the unstable manifold for the fixed point φε crosses the
surface Σ1 = {ψ:ψ(1) = 0} transversally. In this section, we estimate the global
structure of the unstable manifold. In essence, we show that it remains close to the
line segment {ψ(χ)= 1 — (1 + α)|χ|1 + ε : — 1 <α< 1} throughout the full length of
this segment, provided that ε is small enough.

We need yet another realization of the action of 2Γ in convenient coordinates.
Recall that we showed that if we write

φ(χ) = /( |χ | 1 + ε ); f(t)=l-th(t);

then in terms of h, £Γ takes the form

(1-αίη2)}9 (7.1)

where the notation is as in Sect. 4. Deviating from the notation of that section, we
will write

h(t) = l + a + (t-l)g(t) (7.2)

and determine the form of 3Γ expressed in terms of the coordinates a(e(— 1,1)) and
g{e9)). Note that

g(t) = (A1h){t)

so it is easy, in principle, to read off this form from (7.1). We will need, however, to
look with some care at the expression for η2. Recall

A straightforward computation shows that

where s(z,s) (which can easily be written explicitly) is analytic for all ε and all
ζφ[1, οο). Hence

Also,

h(i -αίη2) + Λ1Η(1- αίη2) = 1+α-air\2g(\ -αίη2) + g(i -αίη2)

= 1 + a + (1 - a^2)g(l - αίη2).

Thus the transformed h becomes

(7.3)

We will write Α(ε, a, g) and G(s, α, g) for the α, g components of the representation of
(7.3) in the form (7.2). Thus, to get A(c,a,g) we have simply to insert t= 1 in (7.3)
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and then subtract 1. Doing this, and grouping terms in a straightforward way, we
find

where Α1=0 for g = 0 and where AVA2 are both "regular". The meaning of
"regular" has to be specified with a bit of care. The formulas are full of factors of αε

whose α-derivatives become infinite as a approaches zero. The idea is that these are
the only singularities for small ε, a, g. One way to formulate this is indicated in the
following proposition.

Proposition 7.1. We can write

A = a%l+a)2-l+A1(s,a,a\g) + sA2(s,a,a\g)
(7.4)

G = aG1(e, a, α\ g) + asG2(s, a, α\ g)

(Αγ and Α2 take values, in 1R; Gx and G2 in ξ>(Ω)) where AVA2,GVG2 are all
infinitely differentiable with bounded derivatives on

(0,ε0) x(0,ao) x(0,l)

(for sufficiently small so,ao,go) and where Αχ and G1 vanish identically for g = 0.

We have already indicated the proof for A. To get the formula for G, apply A1

to (7.3) using the "product rule"

group the contributions from differencing in the first and third factors to form
a-Gx and the contribution from the second factor to form a-c-G2. To extract the
indicated explicit factors of a, make repeated use of the "chain rule"

and observe that every t in (7.3) is accompanied by a multiplicative factor of a.

Corollary 7.2. There exist constants Βν Β2 such that

(0<a<ao, 0 < ε < ε ο , \\g\\<go). (7.5)

In particular, at the fixed point, a = λε and we write g[0) for the corresponding g.
Then

from which it follows at once that

for small ε. Since λε = 0( — ε loge) for small ε, this estimate gives exactly the estimate

announced in Sect. 2.



Universal Properties of Maps on an Interval

Corollary 7.3. If

H\JD •

and if

243

then

In other words, ,Τ can push a point out of the cylinder {(a,g) :0<a<av

\\g\\ ^ε}, [with α1 the smaller of α0, 1/{Β1 + J32)], only through the ends.
We have noted already that singularities appear when we differentiate αε for a

near zero. However, since

d ε C ε
-r-a — -a
da a

the singularities are not much in evidence in the first derivative for α^ε. Since the
fixed point occurs at λε$>ε, we don't have to worry about the singularities when
looking at first derivatives near and beyond the fixed point. Thus:

Corollary 7.4. There exist constants Β3, ΒΑ, Β5 such that

+ Β*α Τα

for any differentiable mapping a->ga provided

ε<α<α0; \\ga\\Sg0-

Proof. The Β3 term comes from the explicit ααε dependence in aG1 the Β4 term
from the explicit ααε dependence in aG2 the Β5 term from the g dependence of the
sum.

Corollary 7.5. Consider a curve given as the graph of a function a->ga, defined in a
subinterval of (ε, α0). Assume

dA{a, ga) >

da = '
(7.6)

Then the image of this curve under the action of 3~ is again representable as the
graph of a function

and

A(c, a, g)
da

(7.7)

We can apply this corollary in particular to a (possibly very small) local unstable
manifold. Such a manifold can be represented as the graph of a mapping defined
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on a small interval / about λε condition (7.6) is satisfied and we can assume

N=sup\\ga\\<s.
ael

Put

Μ= sup

Since the local unstable manifold is mapped onto itself by &~, we get

or, for small ε,

Consider now a manifold specified by

defined on a subinterval of (ε, a), and satisfying

da
(7.8)

From (7.4) it is easy to check that there exists a constant Β6 such that, under these
hypotheses,

da ~ 6

(and so ^ 1 for small ε); then from (7.7) the image curve satisfies

so if

we get again

α<α0; α{Β1+Β2)<1; 2αΒ5<1

Summarizing and simplifying the notation, we get:

Proposition 7.6. There exist constants ε1>0;α1>0,ΒΊ such that, ifO<s<e1, and if
we have a curve in ^ε specified by

defined on a subinterval of (ε, αχ) and satisfying

la
(7.9)
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then

^A{e,a,ga)^1.5, (7.10)

so the image curve also admits a representation as

and the bounds (7.9) hold with g replaced by g. A sufficiently small local unstable
manifold satisfies these hypotheses.

Now let ε < ε ΐ 9 a small local unstable manifold, and apply Τ to it repeatedly,
throwing away at each step the part of the image curve with a outside of (ε, αχ). In
view of (7.10), we obtain after a finite number of iterations a curve a^>g* defined
on all of (ε,^) contained in the unstable manifold and satisfying the inequalities
(7.9).

It remains to show that the unstable manifold in the form a->g* can be
extended to all ae(— 1,1). We will consider only the problem of extending it to
values of α^αχ the extension to ae(— 1,ε) is similar but easier.

If we write

it will suffice, by the general theory of Sect. 3, to show that g* can be extended to a
value of a such that

φ*{α) = α

(i.e. such that (</>*)4(0) is the fixed point of φ* in [0,1]) then one more iteration of
3Γ gives values of a running all the way to 1. By continuity, it will suffice to extend
it to a value of a such that

φ*{α)<α. (7.11)

As above, we will write φ* in the form

Φ 0 * Μ = / . * ( Μ 1 + ε ) ; / . * ( * ) = ι - *

Ignoring g and terms of order ε, we get

from this it is easy to see that (7.11) will hold provided α(2 + α)> 1, i.e. α> |/2— 1
and provided \\g\\ and ε are small enough.

Next we will argue that we can take α0 > y2— 1 in Proposition 7.1. To do this
we need, for the first time, to be careful about our choice of the domain Ω.
Examination of the proof of Proposition 7.1 shows that the only limitations on ε0,
α0, and g0 are that

2)

3)
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for 0<a<ao 0 < ε < ε ο \\g\\ <go. If these three conditions are satisfied with g = 0
and ε = 0, it follows by continuity (and compactness) that they will be satisfied for
all sufficiently small ε and g. Thus, α0 is limited by:

Γ)

2') (1 - α(1 + α)Ω) C Ω\( - οο, 0]

for 0 < α < α ο . It is easy to check that these conditions hold, for example, for

α0 = 1/2 > |/2 — 1 and for Ω the open disk with radius 3/4 and center 1/2.
We can thus assume that estimates (7.5), (7.7), and (7.10) hold for ε<α<1/2,

and that the unstable manifold has been extended to a curve of the form a-^g*
satisfying (7.9) and defined on (ε, ax) where α1 may be taken to be independent of ε.
Because of (7.10), a number of iterations of 2Γ which is bounded uniformly in ε for
small ε suffices to extend the unstable manifold to a curve of the above form
defined on (ε, 1/2). The bounds (7.9) are no longer necessarily propagated by
application of ?Γ, but each such application worsens them by only a finite amount
[because of (7.5), (7.7)]. In this way (and also extending similarly in the direction
α->0) we get:

Proposition 7.7. Let Ω be the open disk of radius 3/4 and center 1/2. There exist
constants Β8, Β9, and ε ο > 0 , such that for 0 < ε < ε ο , the unstable manifold for ^Γ in
0>Ε contains a curve

defined on ae[O, a] and satisfying:

An*

φ*(α) = ί
da

dA
Moreover if Α(α)= —{3Γφ*)(\\ then — > 1.5 on [0,α].

Remarks. The estimates developed in this section show that any ψ near φε and not
on the stable manifold will be driven out of Τ)(^~) by a finite number of iterations
of 2Γ. This justifies the restriction in Sect. 6 to a non-recurrent fixed point. It also
permits us to clarify the uniqueness of the μ/s. Consider the cylinder in ^ ε

corresponding to

For fixed small ε, and sufficiently small gv the stable manifold cuts across this
cylinder and thus divides it into two parts. We will refer to the part on the side of
a = 0 as "above" the unstable manifold and the other part as "below" it (see Fig. 4).
The surfaces Ej further divide the part of the cylinder above the stable manifold
into slabs. If ψ lies between Ij and Ej+1, then χρ ^^^χρ is defined and (φ7)(1)>0.
Thus, ψ. maps all of [— 1,1] into the interval [^(1), 1], which does not contain 0,
and hence t/;J(O) φ 0 for ρ = 1,2,... . But \ρ. differs from xp2J only by a scale factor, so
/ 2 J ( 0 ) 0 for all p. This implies that φρ(0)φ0, so ψ is not superstable. Thus: The
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only superstable ip's lying in the part of the cylinder above Ws are those on the
surfaces Σρ j = 1,2,... . If ψμ is a parametrized curve crossing Ws from above when
μ = μ00, at a point inside the cylinder, with non-zero vertical velocity, then for
sufficiently large j , the μ] are uniquely determined by the conditions

ψ is superstable of period 2j; μ]<μαο μ^ — μ] is small.

On the other hand, it is not hard to see that, for large), there are very many values
of μ, larger than but near to μ^, where ψμ is superstable with period 2j.

Fig. 4

In another direction: It is easy to verify (using the implicit function theorem)
that, for small ε, g there is a uniquely determined a = a(g) such that ψ correspond-
ing to (a,g) is superstable of period 3. Moreover g^a(g) is smooth and defines a
codimension-one surface crossing Wu transversally. Call this surface Σν and apply
the theory of the preceding section to show that ots successive inverse images

Fig. 5

Σ2, £ 3 , . . . (under ?Γ) converge to Ws exponentially with rate δ. If μ->ψμ is a
parametrized curve as before, there exists a sequence μ , converging down to μ^,
such that ψμ- elp i.e. ψμ is superstable of period 3 -2j~ . Moreover, just as before

converges to a finite non-zero limit. A warning, however: There is another

sequence, say μρ with \ρμ superstable of period 3-2J~1 and μ<7 _ 2 > fLj> Aj-ι ^ η
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fact, there are infinitely many more distinct, interleaved, sequences of periods
3-2'-1.

Similarly, the equation

ψ(α) = α [i.e. φ3(0)-ιρ4(0)]

defines a surface, say Σν of codimension one crossing Wu transversally. A general
result of Misiurewicz implies that any xpeZx sufficiently near to the unstable
manifold admits an absolutely continuous invariant measure. It is easy to see,
however, that if &Ίρ admits an absolutely continuous invariant measure, then so
does tp, so,applying the machinery described above, we see that, for each μ^ψμ as
above, there is a sequence μ. converging to μ^ such that each φ~ admits an
absolutely continuous invariant measure and such that

approaches a finite non-zero limit. Many other such examples could be con-
sidered, e.g., take for the initial surface the set of ip's such that ψ'(χο)= — 1, where
χ0 denotes the unique fixed point of ψ in [0,1]. The μ?δ in this case will correspond
to bifurcation points, where the orbit of period 2j~x becomes unstable and the
orbit of period 2j appears.

8. Attracting Cantor Sets

Let ψβΤ>(έ?~). As in Sect. 1, we write

α=-ψ(1); b = \p{a)\

and we will also write

and we will assume c^O. [This would follow automatically if \peT)(^~2).~] Since ψ
maps [—1,1] into [ — a, l],we may as well restrict its definition to the interval
[ — a, 1]. We have seen that ψ maps [ — a, a] onto [6,1] and it evidently maps
[έ>, 1] in a one-to-one fashion onto [ — a, c]. Thus, the set

is mapped onto itself by ψ. Note that this invariant set is constructed out of the
original interval [ — a, 1] by deleting an open subinterval (c, b) in the middle, i.e. as
in the first step of constructing a Cantor set. Note also that [ — α, c] is mapped
onto itself by \ρ°ψ and that &"\ρ is obtained from the restriction οϊ\ρ°\ρ to [ — a,c]
by a linear change of variable χ-> — ax. Observe, finally, also that if Κ C [ — a, c] is
mapped onto itself by ψ°ψ, then

is mapped onto itself by 3Γ\ρ.

If &~ψ is also in ΐ)(^~2Χ we can apply the same operation to 3Γψ and thus
obtain an invariant set for ψ by deleting an open subinterval from the middle of
each of [ —α,c] and [b, 1]. Continuing, if \pe Ws and hence ψΕΊ){^]) for all j , we
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can repeat this operation infinitely often and so obtain an invariant Cantor set for
χρ. In this section, we will analyze the construction of this Cantor set in more detail.
In particular, we determine the action οϊψ on the Cantor set, show that orbits οϊψ
which converge to the Cantor set have simple statistical properties, and show that
if χρ is near enough to the fixed point all but countably many orbits do indeed
converge to the Cantor set.

We deal first with some combinatorial aspects of the construction of the
Cantor set. For χρ as above we write

Observe that χρ maps J (/ } onto J2

l) and J 2

1 } back onto J(

x

1} also that the end-points
of J (/ } are ψ(0) and ψ3(0) while those of J2

1] are xp2(0) and φ4(0). The following
proposition is proved in a straightforward way by induction, using the remarks
already made.

Proposition 8.1. Let xpeT>(^~n) and assume {3~nxp){\)^. There then exists a
decreasing sequence of closed sets

...DJin)

with the following properties :
1. Each J ( i ) is mapped onto itself by χρ.
2. Each Jil) is a union of 2ι disjoint closed intervals which we can label J^\ ..., J2

l]
in such a way that ψ maps J^ onto 3^\ 1, where addition is understood modulo 2\ The
interval J2

l\ contains 0.
3. J{l+l) is constructed by removing an open subinterval from the middle of each

of the intervals J{-\ The resulting two intervals are labelled J{- + 1) and Jj+2*- The
interval to be removed and the labelling are determined as follows: ψ21 restricted to
J2

l] differs from xp^^xp only by a scale factor. Remove from J(

2i the interval
corresponding, under this scaling, to (ciip^bixpj). Call the remaining subinterval
which contains zero J^XV and the other J(

2\
+1]. (Note that χρ11 interchanges these

intervals.) Then put J^+1} = ψ ^ Λ ! * ] , j=l,2, ...,2ί+1 - i.

4. The end points of Jf are ψ\0) and xpj+2\O).

Corollary 8.2. If xpeWs (so χρβΊ)(^η) for all η) then χρ admits an invariant Cantor

set J= f]J{i)- This Cantor set is homeomorphic to {0,1 }Ν, with a correspondence
i

such that x*->(i1,i2, ...)ejf if and only if j = il +2i2 + 22i3+ ... +2j~1ij.

In this representation ψ\3 takes the following form

The orbit of each element of J is dense in J χρ is invertible on J. Heuristically, we
can think of the sequence [ivi2,...) as the binary representation of a (usually
infinite) integer

In terms of k, the action of χρ is simply fc->fc+ 1.
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Next we continue to assume that \peWs and we look at the ergodic theory of
the action of ψ on J. Let ν be the unique probability measure on J defined by

v(J f)-2" / for all ij

(i.e. ν assigns equal weight to each of the intervals making up J(l).) Since

the uniqueness of ν implies that it is invariant under the action of ψ; on the other
hand, this same equation shows that any φ-invariant probability measure
assigning measure zero to the complement of J must assign equal measure to each
Jf (i fixed but arbitrary, j = 0,1,2,..., 2ι — 1) and hence must coincide with ν.

Proposition 8.3. ν is the only ψ-invariant probability measure on J. If xe [ — 1,1] has
the property that ψη(χ) approaches J as η-> οο and if f is any continuous function on
[-1,1] then

The abstract dynamical system (ν, ψ) is ergodic but not weak mixing.

Proof. The first statement has already been proved. To prove the second, suppose
it is not true. By standard compactness arguments, there then exists a sequence Nj
going to οο with j such that

f i i m Z f i p ( x )

exists for all continuous functions / on [ — 1,1] but such that / Φ \fdv for some /.
But /-•/ is a positive linear functional on the space of continuous functions,
taking the value 1 on the constant function 1, and vanishing if / = 0 on J [since
xpn{x)-*J by assumption]. Thus, there is a probability measure ν on J such that

A standard argument shows that /°φ = /, so ν is tp-invariant, so ν = ν, contradict-
ing the fact that / Φ J/dv for some /.

The ergodicity of (ν, ψ) follows at once from the fact that ν is the unique
ip-invariant probability measure on J. On the other hand, the set

is invariant under ψ2 and has measure 1/2, so ψ2 is not ergodic, so ψ is not weak
mixing. One can also show that the spectrum is discrete.

We next show that, if ψ is sufficiently near to the fixed point (and on Ws), then
all but countably many orbits of ψ converge to J. In general, if ψΕ^ε9 it has a
unique fixed point in [0,1], which we will denote by χ0.

Lemma 8.4. For ε sufficiently small and ψ sufficiently close to the fixed point φ (but
ψ not necessarily on WJ, the orbit of every χ φ ±χ0 is eventually in J ( 1 ).

Proof. Note first that, since ψ(χο) = χο and ψ( — χο) = ψ(χο) = χο, the orbits of χ0

and — χ0 are extremely simple. Note also that, for any xe[— 1,1], xpn(x)e[ — a, 1]
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for all η ̂  1 and that

[ - a, 1] = J ( 1 ) u{x 0 } u(e, χ ο )υ(χ ο , b).

Now ψ maps (χ0, b) onto (c, χ 0 ) and (c, χ 0 ) onto an interval containing (χ0, b). Any
orbit must therefore either

land on χ0 after no more than one step
or

land in J ( 1 ) after no more than two steps (and remain there, by in variance)

or
land in (c,x0) after no more than two steps.

(These are not mutually exclusive.)
We have to show that, in the third case, χρη(χ) is eventually in J ( 1 ) . Now ψ°ψ

leaves χ0 fixed and maps (c,x0) onto a larger interval contained in ( — αο,χο). The
idea is that ψοψ pushes points further and further from χ 0 and we want to show
that every orbit for ψ°ψ starting in (c, χ 0 ) eventually reaches [ — α0, c]. If it reaches
[c, α], then one more iteration of ψ°ψ will put it in [ — α, c], so what have to show
is that it is impossible that

(ψ°ψ)η(χ)β(α,χ0) for all η.

Since ψοψ(χ0) = χ0, it will suffice to prove

on [ α , χ 0 ] .

The proof of this last statement is straightforward, using the fact that since

we can, by making ψ sufficiently close to φ, arrange that (for example)

ψ'(χ)^-(1+|Α ε )(1+ε) |χ | ε on [0,1]

and also that

α^λε/2; χ 0 2:1/3.

We will now iterate this arrangement to prove:

Proposition 8.4. If \peWs is near enough to φ, then
1) ψ has exactly one periodic orbit of each period 1,2,4,8,..., and no periodic

orbits of other periods. All these periodic orbits are repelling.
2) Every orbit of ψ which does not eventually fall exactly on one of the repelling

periodic orbits converges to the invariant Cantor set J.

Proof. The preceding lemma tells us that χ0 is a repelling fixed point for χρ and that
every orbit which does not eventually fall exactly on xQ is eventually in J ( 1 ) . J ( 1 )

consists of the two pieces J(

o

1} and J{^] which are exchanged by ψ, so to analyze
orbits which are eventually in J ( 1 ) it suffices to analyze orbits οϊψ°ψ in J(

o

1}, i.e., of
ψ in [— 1,1]. Since ψ is again in Ws and near φ, we can apply Lemma 3 to it. Thus,
ψ°ψ has a repelling fixed point in J ^ , which corresponds to a repelling orbit of
period 2 for φ, and every orbit for ψοψ in J^ which does not eventually land on
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the fixed point is eventually in J (

0

2 )uJ (

2

2 ). Expressed in terms οϊψ, every orbit which
does not land eventually on either the fixed point χ 0 or the orbit of period 2 just
described is eventually in J ( 2 ) .

Continuing in this way we find, for each η, a repelling periodic orbit of period
2"" 1 and show that every orbit which does not fall exactly on one of the
constructed orbits of periods 1,2,4, . . . ,2"~ 1 is eventually in J (n).

This proves everything in the proposition except for the non-existence of
periodic orbits other than the ones enumerated. From 2) any such orbit, if one
exists, must be in J. But for any η, J can be broken into 2" disjoint pieces

JnJf, 7 = 0,1,2, . . . ,2 Β -1,

which are permuted cyclically by ψ. It follows that periodic orbits in J would have
to have a period which is divisible by 2η for all η. This is impossible, so there are no
further periodic orbits.

Remarks. 1. We note that λζ appears as an asymptotic scaling parameter for the
Cantor set J. Specifically, JffnJ and J(Q+1)r\J asymptotically differ by a scale
factor of λε. This means the following: If we write

Αη = α{χρ) ...

then

As η->οο, ^~ηψ^φ, so, in a sense which is easy to make precise,
Thus,

A;\J^nJ) and A;^{J^1]nJ)

look essentially the same for large η. In other words, J(Q + 1)nJ looks almost the
same as JffnJ multiplied by a scale factor of Αη+1/Αη = α(^~ηψ). Again, since
$~η\ρ-+φ, this scale factor converges to α(φ) = λε. Observe, however, that this
scaling is different for other pieces of the Cantor set. For example, successive terms
in the decreasing sequence JnJ^D JnJ^D JnJ^D ... differ asymptotically by a
numerical factor of Αε

1+ε rather than λε, and the same is true for any of the
sequences Jr\J^p for fixed, non-zero j .

2. It is easy to see that, for ψ near φ, J(

0

2) is longer than Jf\ More generally for
any η, J(

o"
} is the longest of the 2" intervals making up J(n) and J{"] is the shortest.

The length of J(

o"
} is Αη(1 +α(έΓηψ)) which behaves asymptotically like const χ λ".

The conclusion that the longest interval in J(

o

n) has length bounded by const χ λη

ε

holds even for all ψ on Ws since 3Γηχρ still converges to φ.
3. Proposition 4 remains true even for ψ not near φ provided that ψ is near the

unstable manifold Wu, that ψβΊ)(&~)9 and that ^ ( 1 ) ^ 0 . This leads to the
following picture of the "bifurcation" which occurs on the stable manifold:

If ^ e l f f " ) , and if (&~ηψ)(1)^0, then ψ admits a finite decreasing chain

of invariant sets J{n) is a sort of approximate Cantor set it is a union of 2η disjoint
closed intervals permuted cyclically by χρ. If in addition ψ is not too far from φ,
then the space between successive pairs of these intervals contains exactly one
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periodic point of ψ. These periodic points have periods 1,2,4, .. .,2"~ 1 there is
exactly one cycle of each of these periods, and they are all repelling. There are
countably many orbits which fall onto one of these repelling orbits after finitely
many steps all others converge to J(n). If we collapse each of the intervals making
up J{n) to a point, all such tp's look the same - they have an attracting periodic
orbit of period 2η together with the simplest set of repelling periodic orbits between
them required by simple considerations of connectedness. Each such ψ can thus be
thought of as a sort of semi-direct product of the simplest possible ψ which is
superstable of period 2" with the transformation ϊΓηψ scaled down and made to
act on J(

o

n). These ^"tp's can of course be very different - e.g., may on the one hand
be superstable of period 2 or on the other hand admit an absolutely continuous
invariant measure - but the differences act on a small spatial scale and will
therefore not be very noticeable for large η. In the limit n-+cc the approximate
Cantor set becomes a true Cantor set which remains attracting and which can
crudely be thought of as a single attracting periodic orbit of period 2°° at the same
time, the spatial scale of the difference between tp's goes to zero and so the
difference disappears entirely.

Even if ψ is not near enough to Wu for Lemma 4 to apply, it will still be true
that $~ηψ is near enough for η larger than some η0. Thus, although we cannot be
sure that the gaps between the intervals in J ("o) are free of extraneous recurrent
behavior for ψ, each gap produced in passing from J{no) to J{n\ η > η0 will indeed
contain exactly one repelling periodic point. Furthermore, any extraneous re-
current behavior has to be fairly tame. It is not hard to see that any orbit which
never enters J(no) must be asymptotically periodic with period 1,2,4,..., or 2η°.

Note, a) In Lemma 8.4 and Proposition 8.5 the condition that ψ be near to φ can
be replaced by the condition that ψ have negative Schwarzian derivative.

b) The computational proof of Lemma 8.4 can be replaced by a simple
conceptual proof using the negativity of the Schwarzian derivative.
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