Communications in
Commun. Math. Ph¥3. 76, 1-Z611980, Mathemaftlcal
Physics

© by Springer-Verlag 1980

Nonlinear Dynamics of the Infinite Classical Heisenberg
Model: Existence Proof and Classical Limit of the
Corresponding Quantum Time Evolution

Pierre A. Vuillermot*'
School of Mathematics, Georgia Institute of Technology, Atlanta, 30332 USA

Abstract. For any initial spin configuration we prove the existence, unicity
and regularity properties of the solution of Hamilton’s equations for the
infinite classical Heisenberg model with stable interactions, along with the
essential selfadjointness of the associated Liouville operator. We also prove
new properties of SU (2)-coherent states which, together with the concept of
Trotter approximations for one-parameter (semi-) groups, are used to show
that this dynamics is nothing but the classical limit of the time evolution
generated by the infinite quantum (suitably normalized) Heisenberg Hamilto-
nian. The classical limit emerges when the spin magnitude S goes to infinity
while Plank’s constant # goes to zero, their product S# remaining fixed. The
main results are stated in the form of intertwining relations between the
classical and the quantum unitary group.

Introduction

Rigorous results about the time evolution of systems with infinitely many degrees
of freedom are rather scarce, although the last few years have revealed new contri-
butions in the field by various authors, among whom Lanford, Lebowitz and
Lieb [1] who considered a lattice system of anharmonic oscillators of arbitrary
dimension, and more recently Dobrushin and Fritz [2] who considered one- and
two dimensional continuous systems with singular interactions. We consider
here the classical Heisenberg model with stable interactions. In section 1 we
prove the existence, unicity and regularity properties of the solution of Hamilton’s
equations for any initial spin configuration, and essential selfadjointness of the
corresponding Liouville operator. We then derive in section 2 new properties
of SU (2)-coherent states which, along with the concept of Trotter approxi-
mations for one-parameter contraction (semi-) groups, are used to prove con-
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vergence of the time evolution generated by the infinite quantum suitably
normalized Heisenberg Hamiltonian towards that of the classical model described
in section 1. This classical limit emerges when the spin magnitude S goes to
infinity while Plank’s constant # goes to zero, their product Sk remaining fixed.
Parts of these results have been announced in [4].

I. Hamiltonian Dynamics of the Infinite Classical Heisenberg Model with
Stable Interactions

We identify the v-dimensional lattice with Z* and, with each site reZ’, we asso-
ciate a unit-vector s,€ 7 = R? where #'? and R? stand for the two-dimensional
unit-sphere and the three-dimensional Euclidean space respectively. Write A
for any finite region of Z°, |A | for its cardinality, and consider the classical Heisen-
berg model defined from the Hamilton function

hA=1 Y jr—r)s,s, (I.1)

2 r,r'ed
with real couplings j(r) satisfying the stability condition
M (j) = Y i< + = (1.2)

reZv

and j( —r)=j(r) as well as j(0)=0. Consider the topological product .21l =
[1%? equipped with the symplectic probability measure du, = (4n)""[] x
red reA
d(cos 0 )d¢, where each ¢ €[0.2n) and each 0,€[0, n]. This corresponds to the
phase space structure on 2! with 4,) 0= [cose },.4 as generalized coordi-
nates, and {p,},_, = {¢,},., as generalized momenta. Consider now the complex
Hilbert space # , = % iA(yZIAI C) and define the Liouville operator

o h, o
12{04’ d(cos 0)) 50056_%} (1.3)

red

on the domain Z(L,)=%"(#>";C)=%"'" (once continuously differentiable
complex-valued functions on .%211!) where it is symmetric. Define then the Poisson
bracket of two %'/’-functions by

- of 69  df dg
[fgl= rez/l{ad)r d(cos0) d(cost) 5¢,} (1.4)

We have in particular
[S:‘ SI)‘"]A = (Sr.r'sz (IS)

r

and cyclically in x, y and z, for each r, ¥ € A. These relations are formally identical
to the usual SU(2)-commutation relations of the spin operators in quantum
mechanics, and will play an important role in section 2. Expressions (I.3) and
(I.4) can be rewritten in terms of the vectors s,’s. Namely,

(1.6)
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and

[fgla= S5 50 x5 1)

red as

as an elementary calculation shows. Thus

L, f=ilh,f1, (1.8)
for each feZ(L,) and in particular for f=s},s?,s2 for some « we get the flow
equations in vector form

L (s)=is, x Zj(oc —r)s, =18, , (1.8")

red
on %2 where the dot stands for the derivative with respect to time. Equations

(1.8") describe a Larmor precession of s _in the effective “magnetic field”
Y. jle—r)s, due to the Heisenberg interaction (I.1). Finally, we shall denote by

red
A , the local algebra of observables of all the continuous complex-valued functions
on .2, namely A, = ¢(¥ 1 ;C).

The thermodynamic limit will be performed along an increasing sequence
of boxes {4} converging to Z" in the sense of inclusion: whenever n <n’
wehave 4, = A, and for any finite A there exists an integer N(A) such that N(A4) < n
implies /1 < A,. We shall write simply % for U, , # for # , and so on. We

identify the conflguratlon space of the infinite system with 227 = =[] ¥

reZ”
compact in the product topology. The equations of motion defining the Hamil-

tonian flow are simply given by the infinite-volume version of (1.8"), namely

§,=s,%x ) jla—r)s, (1.9)
reZv

for each aeZ*, which makes sense by virtue of the stability condition (1.2). The

algebra of observables U is defined as W = (212", C). Observe that A is nothing

but the quasi-local algebra generated by the 2 ’s by Stone—Weierstrass theorem

[5]. Finally we identify the Hilbert space # of the infinite system with # =

£t (271, C), where u,, denotes the infinite product measure d,, = [] (4m)~ ' x

reZ™

d(cos 0 )d¢,. Observe that #, can be interpreted as the GNS-space associated
with the C*-algebra 2 and the state u ., while # can be interpreted as the GNS-
space associated with the C*-algebra 2 and the state y,, (see [6] for a definition
of these concepts). Now observe that for any A’ = A and fe%!), relation (1.6)
gives

. of
La f—lag S1 651 x 0s,
=iy s, {Z](a—r)s}x—f (1.10)
aeAd’ reAd S

Choosing then A" = A, for some n and f € 6", we define the Liouville operator
Q
L,. of the infinite system on the dense domain (L,.) = [ ) €\ in # by its action

n=1
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on local ¥'V-functions, namely

Lof=iYs, {z,(a_, } jsf (L1

aed, reZ”

This expression again makes sense by virtue of (1.2), and defines a symmetric
operator on #. Now write s, = {s,},_, eR*“! for a spin configuration in 4,

and s,, for a spin configuration of the infinite system. Our first result is concerned
with the existence, the unicity and the regularity properties of the solution of
(1.9), which are proved in the following

Theorem 1.1. For each neN and each initial spin configuration s,.(0)=
(54,(0);85.,4,(0)) there exists a unique global solution s, (t;s, (0)) of the system of
equations given by (1.8') for aeA, and by 8, =0 for aeZ*/A,. The maps, (-;")
from R x &2l into #2141 is moreover jointly €% in (t;s , (0)) and the limit

S, zv (385(0)) = lim s, (58, (0)) (1.12)

n—awo
exists for all te R, uniformly on bounded t-intervals, namely

5,438, (0) —s, ,.(1:5,,(0)] = (L13)

lim  sup

70 <1< + w0

for each weZ’ and each t,eR". The expression (1.12) represents moreover the
unique global solution of (1.9).

Proof. Starting from (L.8') we get (with L, =L )
liL,(s,) = iL,(z,) |
=|s, x Y joa—rs,—1,% Y jlo—ry,|

redy redn
=|s, x Y jle—r)s,—1)+(s,— 1) x ) jle—r)y,]|
reAsn redn
< X lie=nlls, =z +|s,—7,| X [iz =1
redn redn
S2M (s, — 74| (L.14)

with [[s, = X [ls,

red,
Lipschitz vectc;rfield on &2l Local existence, unicity and the regularity proper-
ties of the finite-volume solution then follow from standard arguments (see for
instance [7]), in particular from a contraction mapping argument applied to
the map

, using (I.2) and elementary inequalities. L _is thereby a

t
(ML), (t:5,.(0)) = 5,(0) + [ du(iL£) (1) (L15)
0
defined on a suitable complete metric space of %2/"l-yalued functions around
(0;s, (0)), whose fixed point
(Ms,), =5, , (L16)

is precisely solution of (I.8"). Extension to a global unique solution s(t;s 4,(0))
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for each « and each reR is then immediate in this case, since &2/l is compact,
and the regularity properties follow from the fact that L is a %~ -vectorfield on
2141 Fixing now once and for all the initial condition s,.(0) = (s, (0);s; ., (0))
and observing that (I1.16) reads

t
S, (138, (0))=5,0)+ [dus,(u) x ) jlx—r)s(u) (L17)
0 redy
we get
t
s, 1(:8,(0)—s, , (t:5, (0))= fdus(u) x Y jlo—r)s,(u) (L.18)
0 red,/Am
for m <n,namely A4, < 4 , and consequently
8,35, 0) =s,(t:5, O =t ) |jle—r)| (1.19)
redn/Am
The sequence (s (t;s, (0))}~_, is then Cauchy for each ¢ >0 by virtue of

(1.2), which proves ex1stence of (I.12) for each o and t€R (the extension to t <0
is trivial). Now for each ¢ >0 and [t —t | <&M '(j) we have again from (I.17)
the estimate

I8, 4,(t:8,,(0) =s, , (t's, (O) | S M|t —t|<e (1.20)

The family {s, , (t;s,(0))},_, is thus equicontinuous, and the uniform

convergence (I.13) then follows from Ascoli’s first theorem [8]. To show that
(L.12) is solution of (1.9), we first observe that the sequence { Z Jl—r)s )}

n=1

is also equicontinuous (same argument as that leading to (I.20)), which proves
its uniform convergence to Y j(o — r)s(u); this function is thus continuous on

reZv
S or equivalently an element of the quasi-local algebra 9. On the other
hand we have

[s,u) > 3 jler=rs, | < M.(j) (1.21)
red,

uniformly in n. Taking then the limit when n— o« on both sides of (1.17),

a #'([0:1]:du)-dominated convergence argument shows that (1.12) is a solution of

(£55,,(0) =5,(0) +jdus (u) x 2 Jlor—=r)s(w) (1.22)
relv

or equlvalently of (1.9), and unicity follows again from a contraction mapping
argument. This proves the theorem.

Having got a complete description of the flow generated by (I.1) on %2
we now face the problem of determining a well defined time evolution for all
the quasi-local observables. This will be done in several steps. Observe first that
one may consider #', < # , for n <n’ and # < # for each n. Introduce then
the sequence {P,}”_, or orthogonal projections from .# onto .#, namely

1Zv|
bl

P )s,) = U g (S0 ) f84,587a,) (1.23)

F27Y Anl
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We have the following

Proposition 1.2. The sequence {# P, }* | is a Trotter approximation for A,
and the sequence {L,}*_, of the finite-volume Liouville operators converges strongly
(in the sense of Trotter) to L,,.

Proof. The first statement above means that

Pl <™ (1.24)
uniformly in n and

im [P, /L, =1 /], (1.25)
for each fe #, where ||-|| in (1.24) is the usual operator norm. The second one

is equivalent to

lim [P L, f—LPf]|

=0 (1.26)

for each feZ(L,.) (see for instance [9]-[11] for further details). The proof of
(1.24) with M = 1 is obvious from the definition (1.23) since y;, , is a probability
measure. To prove (1.25) observe that # < # implies P, <P for n < n’ in the
sense of quadratic forms since P, P, =P =P P, which gives (P, — P )=
P . — P, = 0. There exists therefore a bounded symmetric operator P on # such
that

lim |P f—Pf],=0 (L.27)

n—oc

for each fe #'. Now for fe ( ] #, we have P, f'= ffrom some n since y;. 4 is a pro-

n=1 oG
bability measure on #21#"/*| and so P = 1 (identity operator) on | ] # . Conse-

n=1
@K

quently we have P =1 everywhere on # since U A, is dense in . Relation
n=1
(I.27) then reads
lim |P f—f],=0 (1.28)

for each fe#, which implies (1.25). To prove (1.26) we take f€%'" for some n,
choose m > n and rewrite (I.11) as

0
Lpf)sp) =i Y s 4 Y ja—rs, + Y jla—rs]}x a (1.29)
aed, reAm eV Am é’sz
. ) of
=L, +i Y s, Y jla—rs x> (1.30)
aed, reZ¥|Apm asa

Using then (1.23) and observing that L P =1L fwe get

. . of
B LS~ LR )6, =1 L5, [ dinlsn) T J—ris) x5
" xedy, 2|2 reZV] Am M

(L31)
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For the absolute value of (1.31) we then get the estimate

d .
(P f =L P s, IS XS5 3 i)
acdp o Il reZv|Ap,
= YK, X =0 (1.32)
aeAn reZV|Am
where ||| denotes the usual euclidean norm in R* as in theorem (I.1). The K ’s
of
are bounds on s uniform in s, since each one of the components of ési is
continuous by assuinption on f. Consequently we have for the ¥?-norm |- Ha#m
of (1.31) the estimate
1P L~ LP 3, = T dug 50 )[R Le /= L,P, 16, )P
mLy T g2
<{ Z K, Z lj(a_,,-)l}l (1.33)
aed,, reZV[Am

which implies (1.26) because of (1.2). This proves the proposition.
We next consider the problem of the selfadjoint extensions of L (and L,,).
Observe first that (I.1) reads in polar coordinates

—h, =35 ) jr—r){sin0 sin0, cos(p, — $,)+ cos 0, cos 0, (L.34)
r,redn

and is consequently invariant under the reflection ¢, — — ¢,. The conjugation
J,on # defined by

(J,f)cosO,...,cos 0|M OB d)lAnl)
=f(c0501,,..,cos(91/1"|;~<j>1,.‘.——d)Mul) (1.35)

and leaving (L) invariant then satisfies the commutation relation [J,,L ]_ =0
on Z(L,)). L, has therefore equal deficiency indices by a Von Neumann’s theorem
[12] and thereby at least one self-adjoint extension [13]. This is obviously a
version of the usual “time-reversal” argument [12] since we have defined the
generalized momenta by p, = ¢, for each r. The fact that L (and L,,) actually
has a unique selfadjoint extension (essential selfadjointness) is described in the
following

Theorem 1.3. L is essentially selfadjoint on Z(L,) for each n, and L, is essentially
selfadjoint on Z(L,.). Furthermore for any initial spin configuration s,,(0)=
(54,0055, (0)) on S and each teR we have the strongly continuous unitary
groups

(U, (005, (0) =fs,, (t35,,.(0)) = (exp[iLF] £ s, (0)) (1.36)
on A, and similarly
(U(0) f)(82(0)) = f(5,.(35,,(0))) = (exp [iL3.t] £ )(5,.(0)) (L37)

on H, where L* = L** and L}, = L%F denote respectively the unique selfadjoint
extensions of L, and L,,. Moreover, the sequence of unitaries {U (t)}_ converges
strongly (in the sense of Trotter) to U(t) uniformly on every bounded t-interval,
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namely
lim sup [PU@OS=U0P,f|,, =0 (L38)

n=w0 |t|Sto<+x

for each fe # and each t,eR".

Proof. The flow s, (t;s, (0)) described in theorem (1.1) generates a strongly
continuous unitary group on # , through the first relation in (1.36) and Liouville’s
theorem. Essential selfadjointness of L, and the fact that U (t) is actually generated
by L¥ then follow from an adaptation of known arguments [12]: First, fe Z(L)
implies U (1) f € 2(L,) by the regularity property of theorem L.1, as well as

e~ 0165, = L), (139)

by definition of L , pointwise on .%¥ 249l now f €Z(L,) has a uniformly bounded
derivative on 21"l and S,.4,(t:8, (0)) has the same property in any compact
t-interval around the origin (see for instance the argument leading to (1.20)).
We then have

- 14U,
lim Tf L f

t—0

=0 (1.40)
by a dominated convergence argument. All this implies L* = L** and then the
second equality in (1.36), as a consequence of a theorem by Nelson [ 14]. Essential
selfadjointness of L,, and (1.37) can be proved similarly. Finally (1.38) follows
from (1.26) and Trotter’s stability theorem [9]-[11]. This completes the proof.

Observe that the flow s, (¢;s, (0)) generates also a strongly continuous

one-parameter group of automorphisms «,(t) of the C*-algebra U through the
definition

(o, (1) )(8,4,(0)) = [ (s 4 (135, (0))) (L41)

Similarly for the infinite system with the definition

(01200) f)(5.(0)) = f(8,.(£:8,.(0))) (L42)

Thus, what theorem (1.3) describes are simply the unitary implementations
of these groups of automorphisms in the corresponding GNS-spaces # and #
corresponding to the states y, and pg., respectively. We shall follow exactly
the same pattern for the time evolution of the quantum model we describe in the
next section.

II. Dynamics of the Quantum Heisenberg Model with Stable Interactions:
Rephrasing Old Results

Consider now the quantum Heisenberg Hamiltonian

1 Z P (IL1)

rrEA,1
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acting on A (S)= ® CS*D_ with couplings satisfying the same conditions

as in section [, in partlculdr the stability condition (1.2), and where S =1, 1, 3 2,....
The local algebra of observables 2 (S) is identified with the space of the linear
(bounded) operators on # AS) equlpped with the uniform norm, and is generated

by the Pauli matrices obeymg the SU (2)-commutation relations

[Sy.Sh]_=1i9,,S: (IL.2)
and their cyclic permutations. The finite-volume time evolution is defined by

a,(t;S)A = exp[itH (S)JA exp[ — it H,(S))] (I1.3)
for each local A, and with Ae 2 (S) for m < n, the limit

o, (13S)A = lim a,(t:S)A (I1.3")

exists for all re R as a well defined element of the quasilocal algebra (S) generated
by the 2 (Sy's ([15]. [16]): it defines eventually a strongly continuous group of
automorphlsms on A(S). Obviously « (r;S) is the exact quantum mechanical

counterpart of o (t) in (1.41), and o, (r ;S) that of «,.(¢) in (1.42). Consider now the
central state

P, o) =S+ 1) WiTr () (11.4)

on A (S), where Tr, stands for trace on H JS), and equip the vector space of
all the linear (bounded) operators on # AS) w1th the Hilbert- Schmidt sesquilinear
form

(A,B), s = p,s(AB¥) (11.5)

We shall write o (S) for the corresponding Hilbert space, which is nothing
but the GNS-space of 2 (S) associated to the state (I1.4). Elementary considerations

show indeed that the one-parameter family o (1:S) is unitarily implemented in
A ,(S) by

U (1;S) = exp[it ad H (S)] (IL6)

with ad H (S)(A) = [H,(S), A]_, which is obviously selfadjoint with respect to
(IL.5); moreover, we have

U (¢S (AU, (¢;S) =T (o, (t;S)A) (IL.7)
and
U, (S0, =, (11.8)

with the morphisms I7 (A)B = AB and the cyclic vector w, = 1, (identity operator).
One has a similar construction for the infinite system. Consider indeed Ae.# (S)
and n' > n; we then have from (11.4) the consistency relation

PusA®T, )=p, (A) (11.9)

and consequently the inductive limit-state pg = lim p, ¢ exists on (S) (see for
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instance [17]). We shall identify the Hilbert space #(S) of the infinite system
with the GNS-space of (S) associated with the state pg. The state pg being clearly
time-translation invariant since the p, J's are, the one-parameter family o,.(t;S)
can also be unitarily implemented in #(S) through

U, )I(A)UZM ¢ 5S) = (ot S)A) (11.10)
and
U, (S0 =0 (I.11)

with II(A)'B= AB and w =1 (identity on #(S)) by Segal’s theorem (see for
instance [6]). We shall denote by ad, H(S) its self-adjoint generator. Now observe
that we have again 5 (S) < s (S)for n < n' and also, up to some natural identi-
fications, J#, (S) A (S) for each n. Considering then the family of orthogonal
projections P (S) from A (S) onto # (S), one can play a similar game as in pro-
position (I.2) to prove that {# (S), P (S)}, is a Trotter approximation sequence
for #(S). Omitting the details we end up w1th the following.

Theorem IL 1. The sequence of unitaries {U (t;S)=exp[itad H(S)]}* , with
selfadjoint generator ad H (S) converges strongly, in the sense of Trotter, to the
unitary group

U,.(t;S) = exp[ir ad, H(S)] (I1.12)

with selfadjoint generator ad H,.(S), defined by (11.10) and (I1.11). Moreover, the
convergence is locally uniform on R, namely

lim sup | P(SU,(t:S)A — U, (t3S)P(S)A ]|, 5 =0 (IL13)

n—oc (tl <10

for each Ae #(S) and each t j,eR™.

Comparison of theorems (I.3) and (I1.1) now shows that the Hilbert space
A (8), the generator ad H (S) and the group U, (t;S) are the natural counterparts
of their classical analogues #, the generator L* and the unitary group U, (t;S).
A similar remark obviously holds for the infinite system. The precise connection
between them will be examined now. This will be done in several steps with the
help of the SU (2)-coherent state formalism, and with new Trotter approximations
of a far less intuitive nature than those considered so far.

III. SU(2)-Coherent States and the Trotter Approximation of Classical
Observables by the Quantum Ones

For each reZ® define the SU(2)-coherent state

!Qr> = expl:%[ {Sl" elt/), - ipr }‘ S > (IIIl)

where |S,) is the spin-up state SZ|S, > =S|S,> in C***V and S =S} +iS}.
Write |Q, > = ® |Q,) and define the map T, from #, onto # (S) for each

red,
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n by

T,of =28+ 14 Fodug (5,005,012, ><Q, | (11L.2)

F2 ARl

Having

Pust]2,,0<Q, )= 02S + 1)1, |Q, > (IIL.3)
and

< 28
K, e, 11 {su s, + 1} (I11.4)
" aedy, 2

from [18]. writing || |, s for the Hilbert-Schmidt norm defined above we get

[T, s/ |2s=0S+ 1) ™I Tr, [(T, o/ UT, /)] (111.5)

Lo 125
=S+ du (s,)du, (8, f 6,070 TT {Sf—*—}

F2UA x F21A,| 1eAy, 2

(111.6)

i SRS
Applying then Schwarz inequality to f®f and (2S + 1) ] {S—’ SE+ } on

aed,

the product space &2l x #2141l we get

| Tusf s =l

since

(111.7)

@S+ D du, (s, )de, (S, )ﬂ{s s “} ~1 (11L8)

S22l x 7 21151 aed,

as an elementary calculation shows. Consequently we have

Il 7,5l =1 (111.9)

uniformly in n and S for the corresponding operator norm. Observe now that by
virtue of [ 18] we have the particular representation

Uiy, =S+ p i | dpy, (84,4,

‘(/2(1/1"' |- IAnl)

for the identity operator on #, , (S), whenever n'>n. We get therefore the
consistency relation

Ts(f®1,,4)=T,sf®1,, 4, (I1L.11)

for each fe #, where 1, , stands for the identity function in #°,, , . One can

Q4 a0 Qs 0, (IIL10)

then define unambiguously T on U A, by Tg=T ¢oneach c%”n, and we have

n=1

[ T/ sy = I TosS sy S 1S s = 11 1 (1IL.12)
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for each f € | | #, by (IIL7), implying

Il =1 (I1L.13)

uniformly in S. An extension by continuity then defines T as a bounded operator

from # into #(S) since | ) #, is dense in #. The preceding construction now
n=1
allows us to prove the following

Theorem II1.2. For each n the sequence {A (S), T, " sis=, is a Trotter approxi-

mation for # , and similarly the sequence { A (S), Tg|&_ | is a Trotter approximation
for A .

Proof. The first statement means that

IT,sll =M, (LIL14)
uniformly in S and that

lim | T, s/ |l o= /. (LIL15)

S—x

for each fe#,. The relations defining the second statement are similar. Relation
(I11.14) has been proved already with M, = 1 for each n (relation IIL9). To prove
(IT1.15) we choose f € U, and define

1
Fds,)=QS+ D | du, (5,76, )H{s S, F } (I11.16)
F24n1 aeAn
We have
1T g = | i (5,)f(5,)Fs(s,) (LL17)
F2Aul

from (111.6) and Fubini’s theorem. With se.#? fixed consider now the family
of one-site measures

Lo S
dvy(s;s) = (2S + 1){S > ; 1}2 dus) (I1L18)

and denote by d_ the Dirac measure at s. One has convergence of the vg’s toward
J, in the vague topology of measures when S — 0, namely

lim | dv(s:s)g(s) = g(s) (I11.19)
S— o g2

for each one-site continuous g. To prove this statement, we choose an orthogonal
system of coordinates whose z-axis coincides with s. Expression (I11.19) is then
equivalent to

T S PR A L
lim = (49" 1 ds {m—} g(d'357) = gs) (111.20)
S—w T 2

with s = (0;0;1). With the change of variable t* = S(s”” — 1), the left-hand side
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of (I11.20) can be rewritten as

os_}_lzn 28 ,'lz
g de¢’ jdt {2S+1} g<¢,§+1>

2S + 12" 2 28 1
[ d¢g/ 5 dr’ { } g<¢’;§+1>x[_2540] (r*) (111.21)
[¢]
where 7, .0, Stands for the characteristic function of [ — 2S;0]. Writing now
. 2S +1 28 ) e
Sl == {25“} g<¢ ;§+1>x[~25:m(tz) (111.22)
for the integrand above, we have
lim f(¢":6%) = 2m) ™ ' exp[*]g(¢' ;1) (111.23)
S— w0

for any fixed ¢', pointwise everywhere in ¢t* on ( — o ;0] by continuity of g. Further-
more we get from (I11.22) the estimate (uniform in S)

| @) < 2m)~ g, exp[£] (I11.24)

where || g || denotes the uniform norm of g on %2, Since exp[t*]e Z((— % :0];dt),
a ZY(— o ;0];dt)-dominated convergence argument then allows one to conclude
that

lim j A’ it°) = (2m) " g(¢' ;1) j dt* exp[t*]
S—ow0 — o
= (2n) " 'g(¢";1) (IIL.25)

for each ¢'. Consequently we have

2n 0 2n
lim §d¢' [ defye'st?)=Qn)~ " [ dd'g(¢’s1) (I11.26)
0

S=wx 0 -

by a similar argument on [0, 27). Now we have

© +1
gl¢' s =3 > C,Prs?)explim¢] (I11.27)
1=0 m=—1
(uniformly on #2), where the P}’s are the associated Legendre polynomials.
Consequently g(¢';1) does not depend on ¢’ since P/(1) =9, , which, according
to (I11.26), proves that

lim fdd) jdtfsqs %) = g(:1) (I11.28)

S—w 0

for all ¢p€[0, 2n) or equivalently (I11.20) since s = (0;0; 1) = (sin 6 cos ¢;sin Osin ¢;
cos 0) implies 6 = 0 while ¢ remains arbitrary in [0, 27). The sequence of product
measures

s/ 1 28
[T dvgs, :s]) = (28 + D4 ﬂ{a 2 h } di, (s,) (111.29)

aeA, aeAy,
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then converges in the vague topology to d, , which means that
1

“in

lim Fy(s, )=f(s, ) (111.30)

S—>w0

pointwise everywhere on .21l according to (I11.16). Consequently we have

lim f(s, )Fy(s,)=1/(5,)]* (I11.31)

S—w

Writing now H f H for the uniform norm of f on ¥/ we get the estimate

| f(s4, o|F
é Il S5 (I11.32)
uniformly in S according to (1I1.16) and the identity
40 , s,;’s,+ 1%
(2S + 1)tn jduAn(sA") I1 5 =1 (I11.33)
aed,

Since %2l is compact, a dominated convergence argument again then allows
us to conclude that

hm | du, (s,)f(s, )F(s, )= [ du,(s,)]f(s,)]? (I11.34)

S— 0 g2l4,] F24,)

which is precisely (II1.15) for fe (see I11.17). The general case with fe#
follows from a density argument and the uniformity of (I11.9) in S. One can prove
that

Slin; H Tsf H.}{’(S) = ” f “x (IIL35)

by similar arguments. This completes the proof.
In what follows, we shall denote by |(S)) the coherent state associated to a
spin S. We now prove the following

Proposition II1. 3. For each S > % we have the one-site relations

(S)Q(S)> (Q(S)]S7[AS)>

= 2SCQS)|Q(S)> (2(S — Y| S — >cos§)cos£-S[<Q(S 1(S)y 2
=SCQS)|Q(S)> (S - hlas - )>cosgcos%
2
<Q(S)|Q > 5521 (I11.36)

and the complex conjugate expressions

()] AS) < QAS)|S7| 2(S))

= 2S¢Q(8)|QS)> {AS — 1| S——))cosgcos T _sicas)|©) P
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i

=S{Q(S)|AS)»<AS —H|Q(S —%))cosgcos%

+ %( Q(S) [ Q(S) <f> (ITL.37)
Relations of the same kind hold for
CQS)]AS) Y CAS)|S™|Q(S))
Proof. We prove (I11.36). We have
|Q(S)y = Mif SC;(0;¢)| M) (111.38)
with N
C(0:¢) = (Mzi S>1/z<cosg>sw<sm g)S-Mexp[i(S —M)¢] (I11.39)
and S*|M) = M[M> from [18]. Consequently
(9)]Q(S)> = Z Ch_s(0:4)C3,_(0:9) (I11.40)

and

(Q(8)|S7|S)y = Z MCS,_(0:0)C,,_((0:0)— SC(S)|R(S)> (11141

=0
Now we have

28

S MG _(0:¢)CS_(050)

M=0
d 0 0 A . O\
= d;<cos 5 €0S 5 exp [x]+ in 5 sin —-exp lilp — ¢ )]) (x=0) (11142)

from (111.39) and the binomial expansion; thus
(Q(S)|$7]S)»

o & 0. 0 _ S\ gy
=2S(cos§cosi+smzsmiexp[z(qb—d))]) c0s 5 COS
—S(QS)]|QS))
0
=2S{Q(S ——[Q(S——}cos(—)cos———S<Q(S)|Q (I111.43)

which proves the first relation in (III.36). The fact that (111.43) is equal to

’ 1 1 0.9
S<Q(S—3)|Q(S——2)>coszcos 5 264)

(I11.44)
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follows from an elementary computation: expression (111.44) is indeed equal to

’

SCQ(S - s - i))(cosgcos (; - singsin g expLil¢ — qb’)])
=SS - Hlas - 1)),

0 0 0 0 0 0
(200320055—<cos§cos 7 +sm§sm expli(¢ — qb)]))

which is (I11.43). This proves the proposition.
Combination of the preceding results now leads to the following

Proposition I11. 4. For each one-site continuous function f and y = x, y, z we have
25 +

lim T j du(s") f(8) CQS)|AS) Y CAS)|ST|Q(S) ) = sf(s) (111.45)

S— o

and for each one-site €V-function g we have

lim (2S + 1) jd,us)g(s ({QS)|Q(8)>(Q(S)]S7]QS)>

S—
~<Q(S jQ(S CAS) S| QS
= —i[s%, g](s) (111.46)
Proof. We prove the proposition for 7 = z, the rest is similar. Write
F(s:s) = <cos (—2) cos % + sin g sin % e"""”") cos g cos % (11L.47)
Using the first relation in (111.37) we then have
2 1
B 5L ) 1)< 219),009) < 0957219
0 0
:(ZS+1 fdu(s') £(s)){2<Q(S)]|S)» (S 2)IQ(S~5)>cosgcos§
- |<Q(S)IQ’(S>>|2}
= (2S + 1) [du(s)2f (8)F(s:8)| CAS = D] QS =]
— (28 + 1)fdu(s) f ()] < QAS) | (8) |
Since both fand F are continuous we then have from theorem (II1.2)
2S + 1
lim = duts) f5)C Q1) AS)> < QAS) 57| 218D
S—x
= lim (2S + 2)[du(s)2f (s')F(s:8") | < QS)| Q2(S) ) |* — [ (s)
S— o -
=(2F(s;8) — 1) f(s) = s7f(s) (111.48)
since

fdu(s)2f (s )Fis:s)| < QS)|Q(S) |?

= [duls)2f (s)F(s:s ){ 2“} =08 Y (I11.49)



Classical and Quantum Time Evolution 17
for Slarge. This proves (I11.45). Now from (IT1.36) and (I11.37) we get

SCAS)|Q(S) < (S-S ——%))cosgcos%

— SCQ(S)|QS)) CAS — H|Q(S %)>cosgcos%
. D :
= = 1K) 2(8)) 5 <O AY + <O A =,

(S)|2(9))}
(111.50)

@

Consequently we have by proposition I11.3 the relations
(2S + 1) fdu(s)g(s) { CQS)|Q(S) > (S)|S*| AS) >
= (Q(9)|8)) <A)|S*|Q1(S)) } 0 0
=(2S + 1)fdu(sg(s') {2S CQAS)| (S) > < Q'(S — 1) QS — 1) > cos 5008

—2SCQ(S)|QS) y< S - )|Q(S %)}cos%cos%}

= —i(2S + Dfdu(s)g(s) {{AS)|Q(S)> ;% Q(S)|as)>

(S)|2(S))} (111.51)

,\

5¢

Now integration by parts in the last expression shows that (1I11.51) can still
be written as

+ (Q(S)|Q(S)

2128 + Dfdu(s) = (8)[CAS)[2(S)) [

¢
d

+i(28 + 1)fdu(sg(s') {<2(S)|QAS)> 675’<

+(QS)| Q’(S)>a%, (2(S)|AS))} (I11.52)

Q(8)[2(S)>

since the boundary terms vanish. Combination of (I11.51) and (111.52) consequently
shows that

lim (2S + 1) [du(s")g(s') { CQAS) | Q(S) Y < Q(S)| S*]S) »

S— o

— {Q(9)]AS) ) CAS)[S*[Q(S) > }

o S
— lim i(2S+1)fd,us)A¢( ){5 s “}

Naded 2

_l%( ) (I11.53)

according to theorem (I11.2) (relation (IT1.19)). This proves (I111.46) by our defini-
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tion (1.4) of the Poisson Bracket. This achieves the proof. 5
Now consider |€2,.(S)> = ® |2,S)> which is well defined on #(S)=

reZ™
® C%* Ysince [] (Q,(9)]2(S)> = 1. We have the following

red™ rel™

Theorem II1.3. Consider the normalised quantum Heisenberg model
—H,(8)=(28) 'L jr=rS,S, (IT1.54)

r.or'edy,

where the couplings obey the various conditions given above. Then the sequence
{ad H,(S)}¢~,,, converges to L, in the sense of Trotter pointwise everywhere on
S0 in other words for each f € Z(L,) and each spin configuration s,, = (S, 1Sz 4 )
we have

lim !(QA"(S)Iad H, (ST (S)f—T/(SL,f [QAH(S)>] =0 (IIL.55)

S— w0
Similarly, for the infinite system we have

lim |< Q,.(8)|ad, H(S)T(S)f — T(S)L,. f|2,.(S)>| =0 (I11.56)
S— o

forall fe%(L,.).

Proof. We prove (I11.55) (relation (I11.56) can be obtained by taking the infinite
volume limit of (II1.55)). Since

(Q, S| TSL,f]2,5)>

=S+ )l dug (s, (L, f)Gs,) I} {f’—szﬁ}zs (111.57)
F214,1 redn
we get
shf?c (2, )| T,SIL,[]2,(8) =(L,f)s,) (I11.58)
from theorem (II1.2) (relations (I11.16) and (I11.30)). We now prove that
Slirg (2,,8)]ad HST,S)f]2, (8)> =(L, f)(s,) (IL.59)

for all feZ(L,). We have

(Q,(S)|ad H, (ST ()12, (S)>

—QSH DY | diy (5,) 15512, (92,842, (S HMS)| 2, (5)

y P2,
—{Q, (9)]2, (S)><Q, SIHP|Q, (S))} (ITL.60)
from the definitions, with
H,(S) = Y. HYYS) (I1L.61)

YEXP,2
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and
HO(S)= —(2S)"! Y jor —r)SSY. (I1L.617)

r,o'edy,

Now consider the z-part of (I11.60) in which we substitute (I11.61"); we get

s 1 28
(2S)”1(2S + 1)l Y jr—r) | du, (8,)16),) I1 {3 S; T }

rr'edn F214, JjeAn/{r,r'} 2
{LQUS)|Q,8)><2,(S)[S;[2,(8)> C2,(9)[2,(8) ) 2,(5)[S;. | 2,.(S)>
—{Q,9)[2/(S)> <2US)[S:]2,(8)) {2,.(8)]2,.(8) > < 2.(S)|S:2,(5) } &)

(IT1.

upon using the properties of the coherent states stated above. Now choose f of
the form

f=®f (11L63)

redy,

where each f, denotes a one-site ¥V-function and apply the identity A B, — C,D, =
A(B, —D,)+ D, (A, — C) to the expression in the bracket of (I11.62); we then get

(Q,(S)|ad H(S)T,(S)f]2, (S)
@S+ D2 Y -y ditg S ) ® ) (Sp )

ror'edn F213,1-2) aeAy {rr'y
<! 1 28

1 {S'SPL } .

jednfir,r'} 2

.{ZS“L I deu (s,)£:(s.) < QUS)| 2,(5) > < 2,(S)|S?| 2S) »
: ; di (5,) f,A8,) [ < 2A8)[2,(8)) < 2,(S)[S5 |2,.(8))
~<Q(S)[Q’ )><Q.(8)|S:[2,(5)>]

ZSS“ jdu (S)£,(8,) < 2.(8)|2,(9) > < 2,(5)| S| 2.(8) >
: sz,l,(s, f(sr [<2(9)[2,(8)><2,(S)[S;[2(S)>

~(Q,8)|2U8)><US)] S:lQ,(sm} (I1L.64)

Applying then proposition (II1.4) and theorem (II1.2) (combination of (IIL.16)
and (I11.34)) to (111.64) we get

lim < Q, (S)|ad H (S)T,(S) f19,(8)) = ih$, f16s,) (T11.65)
S—
with h®? = — Z jr —7")sZs%,, which is the z-part of (IIL59) according to (L.8)

for functions of the form (II1.63). The extension of each fe%(L,) follows from
similar arguments. The proof is similar for y = x, y according to proposition
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(I1L4). This proves (I11.59) which, combined with (II1.58), gives (I11.55). Similarly,
an infinite volume argument gives (I11.56). This completes the proof.
Along the same lines, we now prove the following

Proposition 1IL.5. Under the same conditions as in the preceding theorem, we have

lim (ad H (S)T,(S)£; T,(S)g),s) = (L, 1 9) ., (I11.66)

S—w
for each feZ(L) and each ge A . Similarly for the infinite system we get
lim (ad, HS)T(S) £, T(S)g) 5, = (Lzn /2 9) (I1L.67)

$- 0
for each fe 2(L,,) and for each ge A .
Proof. We prove (I111.66); by density, it is sufficient to prove it for e, . Since
ad H (S)T(S)f
=S+ DM | dp (8, )18, ){H,(8)] 2, (9))<Q, (S)] - 2,(8)>

S,
(2, (S)|HLS)} (IT1.68)
and
T(S)g =S+ DA [ duy (s,)905,)]2, (8)><Q, (S)] (111.69)

S
by definition, we get

(ad H,(S)T,(S)f, T,,(8)9) 5 = (2S + 1)~ " Tr, (ad H,(S)T,,(S)/)(T,,(S)g)*

= [ du,(s,)Gs(s,)g(s, ) (I11.70)
P21 Al
with
Gg(s,y,)
=S+ D) du, (7, ) (8, ){ <2, (S)]2,,(8)> <2, (SIH,S)]2, (S)>
F2 AR
—{Q, (9)]2,(8)><2, (S)H,(S)|2, (5} (1IL71)
upon using Fubini’s theorem. Consequently we have
Gy(s,,) =< Q4 (S)|ad H(S)T,(S)f |2, (5)> (IIL72)
from (HI.68) and (1I1.71), so that
lim Gys, )=(L,f)(s,,) (I11.73)
S— oo

pointwise everywhere on %214l by theorem (I11.3) (relation I11.59). We then have
| Gg|, =0(1) for large S so that there exists a constant K independent of S
satisfying the estimate

|G =Kl (111.74)

An
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for each g . Moreover we get

lim Gy(s,,)g(5,,) = (L)(54,)965,,) (I1L.75)
from (II1.73) so that the relation

lim [ dp, (5,)Gss,,)9(5,)

S— o ga1a,|

= du(s,)(Lg)s,)g(s,) (I11.76)

F21A4,]

follows from a dominated convergence argument. Relation (I11.76) is precisely
(I1L.66) according to (II1.70). An infinite volume argument gives (111.67). This
completes the proof.

Similarly, one can prove the following result, whose proof will be omitted.

Proposition 1. 6. Under the same conditions as in the preceding statements we

have

Slin; lad H.(S)T,(S)f || sy = I Lo || (I11.77)
for each fe2(L,) and similarly

lim [|ad HOTS)S s = [Lavf e (II1.78)

for each feZ(L,.).
Now we have the following

Theorem I11.4. Under the same conditions as in the preceding statements, we have

lim |ad H,(S)T,(S)f = T,SL,f | 4,5 =0 (ILIL79)

S—
Jorallfe Z(L), and similarly for the infinite system
lim | ad, H(S)T(S)f — T(S)L,.f Hms) =0 (IT1.80)

S— w0
forall fe2(L,,).
Proof. Consider (II1.79). We have
lad H(S)T(S) /= T,SL,f %
=|ad H(S)T(S)f |2 s — (@dH (ST, (S)f, T(S)L f)

H n(S)
~(T,(S)L, f:ad H(S)T,(S) )y s + | TLOSL, f[1 2 (L1L.81)
Now when S — o, the first term converges to | L,/ |2 according to pro-
position (I11.6), the second and the third one to — HL i 2 according to

proposition (IIL5) (relation II1.66) in which we choose g =L, f, and the fourth
one to |L,f |2, again by theorem (III.2) (relation (IIL15). Relation (I11.80) can
be proved similarly. This completes the proof.

We now extend the infinitesimal results of this section to global ones.
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IV. Intertwining Relations Between the Quantum and the Classical
Unitary Group

We still write U (¢;S) and U(z;S) for the unitary groups generated by ad H,(S)
and ad, H(S) respectively, where H (S) now refers to the normalised model
(I11.54). We first establish the following.

Proposition IV.1. For each fe€#, define g* = (A — L*)™'f with 2> 0. Then we
have

[ dte™*(U(6:8)T.(S)f — T,(S)U (1)}
0

= [dte”*U,(t;S){ad H (S)T,(S)g* — T(S)IL *¢*} (IV.1)
0
for each t >0 and each S. A similar relation holds for the infinite system, namely

Tdt e~ {UE:S)T(S) f - TOUO )
0

= Tdte“ #U(;S){ad,, H(S)T(S)g* — T(S)L*g*} (Iv.2)
0

for all fe #, with g* = (A — L*)™ f in this case.
Proof. We prove (IV.1). We have

g=@A-LH = Ofdte”“Un(t)f (Iv.3)
0

which is the Laplace transform formula for the resolvant ([19]). Define the
quantized observables

Fy=T/(S)f (IV.4)

G{" = T(S)g* (Iv.5)
together with

F{=(A—ad H/S))G{ (IV.6)

Then we have the identity
Jdte™*{U (t;9)T(S)f ~ T(S)U, ()1}
0
= {dte*U (t;S)(Fg — F&) + [dte”*{U (t;9)Fs — T(S)U, (1) f} (IV.7)
0 0
Now we have

Tdte (U (¢ SF: — TS)U,0)f}
0

—(A—ad H(S)) 'Fi— T,(S)g* =0 (IV.8)
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from (IV.5) and (IV.6), and
F¢{=T,(S)f— (A—ad H/(S))T,(S)g*
= T,(S)(A — L)g* — (2 — ad H,(S))T,(S)g*
=ad H (S)T,(S)9* — T,(S)L¥g* (Iv.9)
Substitution of (IV.8) and (IV.9) into (IV.7) gives (IV.1).

The proof of (IV.2) is similar. Proposition (IV.1) is thus complete. Combination
of proposition (IV.1) and theorem (I11.4) now leads to the following

Proposition IV.2. We have

li dte™*{U (t;9)T, T

SLII;)Q j te”*{U (;8)T(S)f— T,(SU(t)f } s =0 (IV.10)
for each f e and

li OOd “MU(E;S)T(S) f— T(S)U

lim (j) te”"{U(t;S)T(S)f— T(SU@) f} v =0 (IV.11)

for the infinite system, with f € # .

Proof. From proposition (IV.1) we get the estimates

T dte=*(U (£:9)T,(8)f - T,S)U,0)f}
0

Hn(S)

< Ofdte- ||U(t:8){ad Hn(S)Tn(S)g" — T (S)L¥*g%)

s H%,«S)
<) 1 || ad H (S)T(S)g — T(S)L*g 4 ||# ) (Iv.12)

which implies (IV.10) by theorem (III.4) (relation (I11.84)). This completes the
proof.
Combination of the preceding results now allows one to prove the following

Theorem IV. 1. Consider the normalised quantum Heisenberg model (111.64).
Then we have

lim sup | U,(6:8)T,(S)f ~ TSU(0)f | 5 =0 (Iv.13)

S—aw |t|Sto
for each fe # and each t,eR™. Similarly for the inﬁnite system we have
lim sup | UES)T(S)S — TOUOS [ s = (IV.14)

S—ow |t|Zt0
for each fe .
Proof. Consider (IV.13), the proof of (IV.14) is similar. We have

[UE:9T,8)f = TU0 S || s,
ST | s+ [ TOU S |

(IV.15)

# n(S) H'n(S) =
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upon using (I11.12) and the unitarity property. Thus with
75(t) = U (¢:8)T(S)f = T,(S)U, (1) f (Iv.16)
we see that | 44(1)| ,, s, is uniformly bounded in S and ¢, so that

0 <liminf sup [ 4g1) |, s < limsup sup [[40) |, s < + © (Iv.17)

S-w  |t|Zto S—w lt]=to

Moreover we have for t,f'eR*
7ig(t) = 4g(t) = {U (£:S) = U, (t:S)}T(S) f = T(S){U(t) = U, ()} f
=jdch,,(§;S)adH (ST(S)f—T, S)jd&fU (OLXf (IV.18)

and consequently the estimate

[ 4g(0) = 44(t)]| —[{ad HO)T,S)/ | 1,5 + | L | (IV.19)

where we have used (I11.12) and the unitarity property once again. Now by theorem
(111.4) we have |ad H (S)T(S) f liﬂ"(s) = O(1) for large S, so that there exists a
constant K mdependem of S with

[ 4g(t) = 4(E) ]| 5) S K|t = 1] (1V.20)

Hn

Thus for each ¢ >0 we have | 4g(t) — %t <¢ whenever |t —1'|<0 =§.

The sequence {/¢}s , of # (S)-valued functions is thereby equicontinuous on
R (the extension of our considerations to negative times is trivial since we are
dealing with unitary groups instead of general contraction semi-groups). Now
for any linear bounded functional kg on # (S) with norm uniformly bounded
in S, we have

| i5(4g(0)] = C L A0 s, (1V.21)
for some C independent of S, and

|ieg(4g(t)) — k(A1) < C || 44(t) — (IV.22)

és(t/) “ Hn(S)

for each t,¢'€R, so that the sequence of real-valued functions {ky(#(t)) }$_ ,,, 1S
in turn, uniformly bounded in S and ¢ and equicontinuous. Moreover we have
by linearity

[ dte™ "ky(#t)) “ (1) (Iv.23)
0 H n(S)
so that
lim | dte” *xy(44(1)) =0 (IV.24)
S—wx 0
by (IV.10) (or (IV.11). Consequently we have
lim sup kg(%44(1)) =0 (IvV.25)

S—a |t] <10
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by the uniqueness of the Laplace transform and Ascoli’s first theorem ([8]-[20]).
Now one can choose a sequence of such linear functionals kg such that

lim sup rg(4(t)) = lim sup sup | %(1) | (IV.26)
S—o [t|Zto S—owc  [t|<to
Combination of (IV.26), (IV.25) and (IV.17) then leads to

lim sup [ 440, 0 (IV.27)

S—o |t|Zt0
which is precisely (IV.13) according to the definition (IV.16). This completes
the proof.

The following statements can still be obtained by polarization (theorem IV.2)
and by another Laplace transform argument (Theorem IV.3). The proofs are
omitted.

Theorem 1V. 2. Under the same conditions as in the preceding theorem, we have

lim (U,(t:8)T,(S)£. T,(8)9),06 = (U0 9) . (1V.28)

S—x

for each f,ge H

S =

and similarly

n’

gim (UE:S)TOS) 1, T(S)g) sy = (U) £ 9) (Iv.29)
Sfor ea:hﬁ geH.
Theorem IV.3. Under the same conditions as in the preceding theorems, one has

lim sup [€2, (S)| U (6:8)T,(8) = T8I0 |2,,(5)] =0 (1V.30)
for all toelleO+ and all fe A . Similarly for the infinite system, one has

lim sup [<2..(S)|UEGS)TE) /= TOUOS |2:(5))] =0 (1V.31)
for all}e ;fo

Remarks and Open Problems. The preceding theorems exhibit the connection
between the quantum unitary group U(¢;S) and the classical one U(t); the latter
one is the Trotter limit of the former one when S — 5. Although we chose a
unit system in which # = 1 throughout, one can readily convince oneself that the
correct limiting procedure to deal with otherwise is S — <0, h — 0 with S# fixed.
Observe now that the quantization operator T (S) in (II1.2) and its infinite volume
version (II1.12) are, group-theoretically speaking, intertwining operators between
the quantum and the classical unitary group (see for instance (IV.13) and (IV.14)).
More precisely, our theorems show that the two unitary representations U(z;S)
and U(t) of the additive real line become equivalent in the limit S — oc.

An interesting open problem is the extension of our results, for instance in
the spirit of [217], to D-dimensional classical and quantum spin systems with
D = 4. In that case, the flow equations (1.8') (or (1.9)) should be replaced by

s, =[s,.H,] (IV.32)

with D x D antisymmetric matrices s and H, where [, ] denotes the usual matrix
commutator, in other words the Lie bracket corresponding to SO(D). For D =3
indeed, (IV.32) would reduce to (I1.8') with the effective magnetic field H, =
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Y jle —r)s, since R*, equipped with the vector product, becomes a Lie algebra

1isomorphic to that of SO(3) (the Lie algebra of all 3 x 3-antisymmetric matrices).

Observe furthermore that our theorem (IV.2) can be used to compare classical
and quantum time-time correlation functions in statistical mechanics; if we
choose for instance

g=2,'exp[—h]fz,= | du,lsy)exp[—hys,)] (IV.33)
L2l

in (IV.28), we get
(U, (0)f.9) 5, =< f(t) £ (0)) 4n (IV.34)

where { ), stands for thermal average.

Let us finally mention that we have not been able so far to prove sharper
statements than those in theorem (IV.1) about the classical limit, for instance
intertwining relations such as (IV.13) and (IV.14) where the normalised Hilbert—
Schmidt norm would be replaced by the uniform operator norm. Along the same

lines, it would be interesting to see whether the sequence {A(S), T(S)” | is a

Trotter approximation for 2, where both A(S) and U are considered as C*-
algebras for their respective uniform norm.

Acknowledgements. The author would like to thank Professor E. H. Lieb for discussions, Professor
B.Simon for communicating to him his results in [21] prior publication, the U.S. Department of
Energy and the Swiss National Science Foundation for financial support under contracts EG-77-C-03-
1538 and 820-436-76. He also thanks Mrs. Sharon Wilson for the very expert typing of the manuscript.

References

. Lanford, O.E., Lebowitz, J. L., Lieb, E. H.: J. Stat. Phys. 16, 453—461 (1977)

. Dobrushin, R. L., Fritz, J.: Commun. Math. Phys. 55, 275-292 (1977)

. Dobrushin, R. L., Fritz, J.: Commun. Math. Phys. 57, 67-81 (1977)

. Vuillermot, P. A.: Lett. Nuovo Cimento 24, 333-338 (1979)

Lang, S.: Analysis II, London, Amsterdam, Paris: Addison Wesley (1968)

. Ruelle, D.: Statistical mechanics, rigorous results. New York: Benjamin, 1969

. Arnold, V.: Ordinary differential equations. Cambridge, Massachusetts: MIT Press, 1973

. Schwartz, L.: Cours d’analyse. Paris: Hermann, 1967

. Trotter, A. F.: Pac. J. Math. 8, 887-919 (1958)

10. Kurtz, T. G.: Funct. Analy. 3, 354-375 (1969)

11. Hepp, K., Lieb, E. H.: Ann. Phys. 76, 360-404 (1973)

12. Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. II New York: Academic
Press, 1977

13. Riesz, F., Nagy, B.: Legons d’analyse fonctionelle. Paris: Gauthiers-Villars 1968

14. Nelson, E.: Math. 70, 572-615 (1959)

15. Robinson, D. W.: Commun. Math. Phys. 7, 337-348 (1968)

16. Streater, R. F.: Commun. Math. Phys. 6, 233-247 (1967)

17. Sakai, S.: C*-algebras and W*-algebras, Berlin, Heidelberg, New York: Springer 1971

18. Lieb, E. H.: Commun. Math. Phys. 31, 327-340 (1973)

19. Yosida, K.: Functional analysis, Berlin, Heidelberg, New York: Springer 1965

20. Schwartz, L.: Theorie des distributions. Paris: Herman, 1973

21. Simon, B.: Commun. Math. Phys. 71, 247-276 (1980)

O 0N RA W

Communicated by E. Lieb

Received January 21, 1980





