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Nonlinear Dynamics of the Infinite Classical Heisenberg
Model: Existence Proof and Classical Limit of the
Corresponding Quantum Time Evolution

Pierre A. Vuillermot*1

School of Mathematics, Georgia I n s t i t u t e of Technology, Atlanta, 30332 USA

Abstract. For any initial spin configuration we prove the existence, unicity
and regularity properties of the solution of Hamilton's equations for the
infinite classical Heisenberg model with stable interactions, along with the
essential selfadjointness of the associated Liouville operator. We also prove
new properties of SU (2)-coherent states which, together with the concept of
Trotter approximations for one-parameter (semi-) groups, are used to show
that this dynamics is nothing but the classical limit of the time evolution
generated by the infinite quantum (suitably normalized) Heisenberg Hamilto-
nian. The classical limit emerges when the spin magnitude S goes to infinity
while Plank's constant h goes to zero, their product Sh remaining fixed. The
main results are stated in the form of intertwining relations between the
classical and the quantum unitary group.

Introduction

Rigorous results about the time evolution of systems with infinitely many degrees
of freedom are rather scarce, although the last few years have revealed new contri-
butions in the field by various authors, among whom Lanford, Lebowitz and
Lieb [1] who considered a lattice system of anharmonic oscillators of arbitrary
dimension, and more recently Dobrushin and Fritz [2] who considered one- and
two dimensional continuous systems with singular interactions. We consider
here the classical Heisenberg model with stable interactions. In section 1 we
prove the existence, unicity and regularity properties of the solution of Hamilton's
equations for any initial spin configuration, and essential selfadjointness of the
corresponding Liouville operator. We then derive in section 2 new properties
of SU (2)-coherent states which, along with the concept of Trotter approxi-
mations for one-parameter contraction (semi-) groups, are used to prove con-
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vergence of the time evolution generated by the infinite quantum suitably
normalized Heisenberg Hamίltonian towards that of the classical model described
in section 1. This classical limit emerges when the spin magnitude S goes to
infinity while Plank's constant ft goes to zero, their product Sft remaining fixed.
Parts of these results have been announced in [4].

I. Hamiltonian Dynamics of the Infinite Classical Heisenberg Model with
Stable Interactions

We identify the v-dimensional lattice with Zv and, with each site re/v, we asso-
ciate a unit- vector sre^2 c R* where y2 and (R;3 stand for the two-dimensional
unit-sphere and the three-dimensional Euclidean space respectively. Write A
for any finite region of Zv, A for its cardinality, and consider the classical Heisen-
berg model defined from the Hamilton function

with real couplings j(r) satisfying the stability condition

and j( — r} =j(r) as well as j(0) = 0. Consider the topological product ^2|yί| =
Π^ equipped with the symplectic probability measure dμΛ = (4π)~ | y1' Y[ x
reΛ reΛ

d(co$θr}dφr where each φre[0, 2π) and each θre[0, π]. This corresponds to the
phase space structure on y>2\A\ with {qr}reΛ = (cos θr}reΛ as generalized coordi-
nates, and {pr}reΛ — {Φr}reΛ

 as generalized momenta. Consider now the complex
Hubert space J^Λ = ̂ J^2μι C) and define the Liouville operator

ίI3){' ]

on the domain S>(LΛ) = ̂ (ί)(^2^'9C) = ̂  (once continuously differentiate
complex-valued functions on ^2!yll) where it is symmetric. Define then the Poisson
bracket of two ̂  ̂ functions by

We have in particular

and cyclically in x, j and z, for each r, r'εΛ. These relations are formally identical
to the usual SU(2)-commutation relations of the spin operators in quantum
mechanics, and will play an important role in section 2. Expressions (1.3) and
(1.4) can be rewritten in terms of the vectors sr's. Namely,

^,Σv a-.)
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and

reΛ u\ U7*r

as an elementary calculation shows. Thus

LJ^'PWL (1-8)

for each/e^L^) and in particular for /= s*,s£,s;; for some α we get the flow
equations in vector form

LA) = ίsα x ΣΛα ~ ΓK = i*«,A (L8')
reΛ

on y2'"4', where the dot stands for the derivative with respect to time. Equations
(1. 8') describe a Larmor precession of sα in the effective "magnetic field"
Σ j(α — r)sr due to the Heisenberg interaction (I.I). Finally, we shall denote by
reΛ

$1Λ the local algebra of observables of all the continuous complex-valued functions
on y>*\A\ namely 91̂  - <$(y2\A\ C).

The thermodynamic l imit will be performed along an increasing sequence
of boxes {Λn}^=l converging to /v in the sense of inclusion: whenever n^ri
we have Λn ^ An, and for any finite A there exists an integer N(Λ) such that N(A) ^ n
implies A ^ An. We shall write simply 9ΪM for 91̂  , #f n for 3£ A and so on. We

identify the configuration space of the infinite system with y2|2v | = [~] </*,
reZv

compact in the product topology. The equations of motion defining the Hamil-
tonian flow are simply given by the infinite-volume version of (1.8'), namely

*α = Sα X Σ J'(α - Φr (L9)
reZv

for each αεZ v, which makes sense by virtue of the stability condition (1.2). The
algebra of observables 9ί is defined as 91 = ̂ (^2lzv| C). Observe that 91 is nothing
but the quasi-local algebra generated by the 9ϊn's by Stone- Weierstrass theorem
[5]. Finally we identify the Hubert space jjf of the infinite system with ffi =
c/?2 ^y>2\τρ\ . Q^ where μzv denotes the infinite product measure dμ%v = f| (4π)~ 1 x

reZv

d(cosθr)dφr. Observe that J^n can be interpreted as the GNS-space associated
with the C*-algebra 9In and the state μn, while 3f can be interpreted as the GNS-
space associated with the C*-algebra 91 and the state μ2v (see [6] for a definition
of these concepts). Now observe that for any A' a A and /e^V, relation (1.6)
gives

L / - - i V s - ^ d x V~

αe/l'

Choosing then yi' = An for some n and/e^1}, we define the Liouville operator
σo

v of the infinite system on the dense domain 3)( LI/V) = [J (tf(

n

l ( in .Jf by its action
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on local ^(1 ̂ functions, namely

This expression again makes sense by virtue of (1.2), and defines a symmetric
operator on 3tf. Now write sΛn = {sα}αeylnelR3|ylnl for a spin configuration in Λn

and szv for a spin configuration of the infinite system. Our first result is concerned
with the existence, the unicity and the regularity properties of the solution of
(1.9), which are proved in the following

Theorem 1.1. For each neN and each initial spin configuration szv(0) =

(sΛn(0)>'szv/yln(0)) there exists a unique global solution s^ (ί;sΛ (0)) of the system of

equations given by (1.8') for %EΛn and by sa = Qfor aeZv/Λn. The mapsΛn( ; )

from R x <?2\Λn\ into <f2\Λn\ is moreover jointly #°° in (f ;sΛn(0)) and the limit

s zv (ί ;szv(0)) = lim sα ̂ (t s^(O)) (1.12)
«-> 00

exists for all ίetR, uniformly on bounded t-intervals, namely

lim sup || sα<yln(ί sJO)) - sα<Zv(ί ;szv(0)) || = 0 (1.13)

for each αeZ v απrf βαc/z ί0e[R + . The expression (1.12) represents moreover the
unique global solution of '(1.9).

Proof. Starting from (1.8') we get (with LΛn = Ln)

= II \ x Σ j(α - r)sr - τ

α

 x Σ Λ« - ί K
reΛn reΛn

= || sα x X 7(α - r)(sr - τr) + (sα - τα) x
reΛn reΛn

^ Σ L/(« - ^1 1 sr -
 T, II + I I s. - τ=< II Σ b'(« - » ) l

reyln f e^n

^2Mv(j)| |sy l n-τy lJ| (1.14)

with || s^^ || = Σ || s^ || , using (1.2) and elementary inequalities. Ln is thereby a
re/In

Lipschitz vectorfield on <?2\An\. Local existence, unicity and the regularity proper-
ties of the finite-volume solution then follow from standard arguments (see for
instance [7]), in particular from a contraction mapping argument applied to
the map

(MfΛ)Λn(t sJO)) = sα(0) + }du(iLnfΛ)(u) (1.15)
o

defined on a suitable complete metric space of ^2|ylπ| -valued functions around
(O s^JO)), whose fixed point

(M^Λn = sβιΛιt (1.16)

is precisely solution of (1.8'). Extension to a global unique solution sα(ί;syl (0))
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for each α and each ίeίR is then immediate in this case, since </2\An\ is compact,
and the regularity properties follow from the fact that Ln is a ^ * -vectorfield on
y>2\Λn\^ piχing now once anc[ for au t^ initial condition szv(0) = (s^ (0);sz v/yl (0))

and observing that (1.16) reads

ί dMS» x Σ ;'(« - rW
0 reΛn

(L17)
we get

for m < ?7, namely /Lm c Λ M , and consequently

(1.19)

The sequence (sα(ί;sylw(0))}*=1 is then Cauchy for each t > 0 by virtue of
(1.2), which proves existence of (1.12) for each α and teR (the extension to t < 0
is trivial). Now for each ε > 0 and
the estimate

t — t' rg εM~ l(j) we have again from (1.17)

|| sβfyln(ί ;S/ln(0)) - sα>yln(ί' ;Syln(0)) || rg Mv(j) | ί - ί' | ̂  ε (1.20)

The family {sα/ln(ί;syl^(0))}^°=1 is thus equicontinuous, and the uniform

convergence (1.13) then follows from Ascoli's first theorem [8]. To show that
(1.12) is solution of (1.9), we first observe that the sequence { £ j(a — r)sr(u)}^=1

reΛn

is also equicontinuous (same argument as that leading to (1.20)), which proves
its uniform convergence to ]Γ j(a — r)sr(w); this function is thus continuous on

reZv

y2'2"1, or equivalently an element of the quasi-local algebra $1. On the other
hand we have

||s»x (1.21)

uniformly in /?. Taking then the limit when π -> oc on both sides of (1.17),
a y? ^[O f] ;Jw)-dominated convergence argument shows that (1.12) is a solution of

(t ;szv(0)) = s ίO) -h I dm (μ) x Σ Λ« ~
v

(L22)

or equivalently of (1.9), and unicity follows again from a contraction mapping
argument. This proves the theorem.

Having got a complete description of the flow generated by (I.I) on ̂ 2|zv|,
we now face the problem of determining a well defined time evolution for all
the quasi-local observables. This will be done in several steps. Observe first that
one may consider jjfn c jjf ^ for n g ri and J^n ^ #? for each n. Introduce then
the sequence (Pj^=1 or orthogonal projections from Jf onto ffl n, namely

(PJ)(sΛn) = ί (1.23)
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We have the following

Proposition 1.2. The sequence {^M5Pn}^°=1 is a Trotter approximation for J>f,
and the sequence {L^}^°=1 of the finite -volume Liouville operators converges strongly
(in the sense of Trotter) to Lzv .

Proof. The first statement above means that

HI P nlN M (L24)

uniformly in n and

for each/ejf, where ||| ||| in (1.24) is the usual operator norm. The second one
is equivalent to

Urn || PL.J-LPJ 1̂  = 0 (1.26)
»->• oc

for each fe@(Llv) (see for instance [9]-[ll] for further details). The proof of

(1.24) with M = 1 is obvious from the definition (1.23) since μ2v/yln is a probability

measure. To prove (1.25) observe that jf n c jf w, implies PM ̂  Pw, for n ̂  n' in the
sense of quadratic forms since Pπ, PM = Pπ = Pn Pn, , which gives (Pn, — PJ2 =
Pn, — Pπ ̂  0. There exists therefore a bounded symmetric operator P on ffl such
that

= 0 (1.27)

for each/E jf . Now for/e (J jtf n we have Pπ/=/from some n since μzv//ln is a pro-
n = 1 oc

bability measure on r^
2^v/Λn^ and so P = D (identity operator) on (J ffl n. Conse-

n= 1
oc

quently we have P = U everywhere on ̂  since \J 2tf n is dense in jf . Relation
n= 1

(1.27) then reads

for each/eJ'f, which implies (1.25). To prove (1.26) we take/e^1* for some π,
choose m > n and rewrite (1. 11) as

(Lzv/)(szv) = i Σ sa { X j(« - r)sr + Σ ;(α - r)sr] x (1.29)

Using then (1.23) and observing that LmPm/= Lm/we get

V- ( r / Λ τ- / Λ ϊ d/
ίP T f — L P f)(sλ ) = i ) s •{ αμ-.Js-.J > /(α — rjsj x -r—
VrmJ-"Zv y m m Λ™ ^ α

 2 v | Z v ^ 3sα

" " " V m " (1.31)
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For the absolute value of (1.31) we then get the estimate

<3s

* Σ K . Σ
Σ

(1.32)

where II II denotes the usual euclidean norm in [R3 as in theorem (I.I). The K 's

are bounds on — —
δs

uniform in s. since each one of the components of -r— isAn

continuous by assumption on/ Consequently we have for the ^2-norm
of (1.31) the estimate

s l * , Σ L Λ « - r ) | j 2 (L33)
αe/lH re2 v/Λn ι

which implies (1.26) because of (1.2). This proves the proposition.
We next consider the problem of the selfadjoint extensions of Ln (and Lzv).

Observe first that (I.I) reads in polar coordinates

~ hΛn = 2 Σ & ~ Γ/) Θ COS θ COS (L34)

— </>r. The conjugationand is consequently invariant under the reflection <;
J on Jf defined by

n n J

(Jn/)(cos0 1 ?... ,cos 0μ^| ; φ 1 ? . . . , Φ\Λn\)

=/(cos Θ1,..., cos 0μ^ — φ1,... — φμ^|) (1.35)

and leaving ®(LW) invariant then satisfies the commutation relation [Jπ, Lj_ = 0
on ®(Ln). Lw has therefore equal deficiency indices by a Von Neumann's theorem
[12] and thereby at least one self-adjoint extension [13]. This is obviously a
version of the usual "time-reversal" argument [12] since we have defined the
generalized momenta by pr = φr for each r. The fact that Ln (and L2V) actually
has a unique selfadjoint extension (essential selfadjointness) is described in the
following

Theorem 1.3. Ln is essentially selfadjoint on &(Ln)for each n, and LZv is essentially
selfadjoint on &>(L2v). Furthermore for any initial spin configuration szv(0) =
(sΛn(0)>'szv/yιn(0)) on ^2'zv| and each ίeίR we have the strongly continuous unitary
groups

(Vn(t)f)(sΛn(Q)) =f(*Λn(t s^jO)) - (exp[ίL*ί]/) (s^jO)) (1.36)

on Jf, and similarlv

(U(f)/)(szv(0))=/(szv(ί;szv(0))) = (exp[iL*vί]/)(szv(0)) (1.37)

on Jtf, where L* = L** and L|v = L|* denote respectively the unique selfadjoint
extensions ofLn and L2v. Moreover, the sequence ofunitaries (Un(t)}^=1 converges
strongly (in the sense of Trotter) to U(ί) uniformly on every bounded t-interval,
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namely

lim sup I PnU(f)/- U,,(t)PJ ^ = 0 (1.38)

for eachfe.y? and each ί 0 eR + .

Proof. The flow SΛ (ί s^O)) described in theorem (I.I) generates a strongly
continuous unitary group on jΊfn through the first relation in (1.36) and Liouville's
theorem. Essential selfadjointness of Ln and the fact that Uw(ί) is actually generated
by L* then follow from an adaptation of known arguments [12]: First, /e®(Ln)
implies Un(f)/e£^(LJ by the regularity property of theorem I.I, as well as

= 0)/(s J = (LJ)(s J (1.39)

by definition of Lπ, pointwise on 5^2|yln| now/e^(Ln) has a uniformly bounded
derivative on y2\Λn\ and sαylw(ί;syl (0)) has the same property in any compact
ί-interval around the origin (see for instance the argument leading to (1.20)).
We then have

lim
at

(1.40)

by a dominated convergence argument. All this implies L* = L** and then the
second equality in (1.36), as a consequence of a theorem by Nelson [14]. Essential
selfadjointness of Lzv and (1.37) can be proved similarly. Finally (1.38) follows
from (1.26) and Trotter's stability theorem [9]-[ll]. This completes the proof.

Observe that the flow §A(t\$A (0)) generates also a strongly continuous
one-parameter group of automorphisms αn(ί) of the C*-algebra 2In through the
definition

=/(syln(ί sJO))) (1.41)

Similarly for the infinite system with the definition

(αzv(ί)/)(szv(0)) =/(szv(ί ;szv(0))) (1.42)

Thus, what theorem (1.3) describes are simply the unitary implementations
of these groups of automorphisms in the corresponding GNS-spaces J^n and ffl
corresponding to the states μΛ^ and μzv, respectively. We shall follow exactly
the same pattern for the time evolution of the quantum model we describe in the
next section.

II. Dynamics of the Quantum Heisenberg Model with Stable Interactions:
Rephrasing Old Results

Consider now the quantum Heisenberg Hamiltonian

-HJS)-^ Σ ./(r- r')Sr Sr, (II. 1)
r,r'eΛn
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acting on jfin(S)= ® C(2S+1), with couplings satisfying the same conditions
reΛn

as in section I, in particular the stability condition (1.2), and where S = -̂  1, |, 2, ... .
The local algebra of observables 2IW(S) is identified with the space of the linear
(bounded) operators on Jf^S) equipped with the uniform norm, and is generated
by the Pauli matrices obeying the SU(2)-commutation relations

[s*,s>]_=i<5 rA
2 (π.2)

and their cyclic permutations. The finite-volume time evolution is defined by

αB(ί ;S)A = exp[iίHπ(S)]A exp[ - it HB(S))] (II.3)

for each local A, and with Ae5Im(S) for m < n, the limit

α 2 v(t;S)A=lim απ(t;S)A (II.3')
n-> oo

exists for all ίeίR as a well defined element of the quasilocal algebra 2ί(S) generated
by the 2In(S)'s ([15], [16]); it defines eventually a strongly continuous group of
automorphisms on 2I(S). Obviously α n(f;S) is the exact quantum mechanical
counterpart of αn(f) in (1.41), and αzv(ί S) that of αzv(ί) in (1.42). Consider now the
central state

/0|IιS(-) = (2S-hir^Tr l l(-) (IL4)

on 9IM(S), where Ύΐn stands for trace on J?"W(S), and equip the vector space of
all the linear (bounded) operators on J^Π(S) with the Hubert- Schmidt sesquilinear
form

We shall write Jf M(S) for the corresponding Hubert space, which is nothing
but the GNS-space of 9lw(S) associated to the state (II.4). Elementary considerations
show indeed that the one-parameter family αw(f;S) is unitarily implemented in
^(S)by

Uπ(ί;S) = exp[itadH l I(S)] (II.6)

with adHM(S)(A) = [Hw(S), A]_, which is obviously selfadjoint with respect to
(II.5); moreover, we have

Hf S) = Πn(*n(t ;S)A) (II.7)

and

Vn(t 9S)ωn = ωn (II.8)

with the morphisms Πn(A)B = AB and the cyclic vector ωn = H n (identity operator).
One has a similar construction for the infinite system. Consider indeed AeJjfn(S)
and n > n\ we then have from (II.4) the consistency relation

ΛΛS(A®V,,M,,) = ̂ S(A) αι.9)
and consequently the inductive limit-state ps = lim pn s exists on 2l(S) (see for
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instance [17]). We shall identify the Hubert space Jf(S) of the infinite system
with the GNS-space of 9I(S) associated with the state ρs. The state ps being clearly
time-translation invariant since the pn s's are, the one-parameter family αzv(ί S)
can also be unitarily implemented in Jf'(S) through

Uzv(ί;S)/7(A)lV(ί S) = 77(α2v(ί;S)A) (11.10)

and

U2v(ί;S)ω-ω (11.11)

with /7(A) B - A B and ω = 11 (identity on Jf(S)) by Segal's theorem (see for
instance [6]). We shall denote by adZvH(S) its self-adjoint generator. Now observe
that we have again Jf n(S) ̂  Jtf'n,(S) for n rg n' and also, up to some natural identi-
fications, J"fM(S) e Jf (S) for each π. Considering then the family of orthogonal
projections Pn(S) from J f (S) onto J^n(S), one can play a similar game as in pro-
position (1.2) to prove that {jf n(S), Pn(S)}^L 1 is a Trotter approximation sequence
for Jf (S). Omitting the details we end up with the following.

Theorem II. I. The sequence of unitaries (Un(ί;S) = exp[iί ad Hrt(S)]}*=1 with
selfadjoint generator ad Hw(S) converges strongly, in the sense of Trotter, to the
unitary group

Uzv(ί S) - exp[ i t adzvH(S)] (11.12)

with selfadjoint generator ad H2V(S), defined by (11.10) and (11.11). Moreover, the
convergence is locally uniform on (R, namely

lim sup || Pn(S)U2v(ί S)A - Uπ(ί S)PΠ(S)A || ̂ (S) - 0 (11.13)

for each Aejf (S) and each ί0e(R + .
Comparison of theorems (1.3) and (II. 1) now shows that the Hubert space

Jf π(S), the generator ad HΠ(S) and the group Uπ(ί S) are the natural counterparts
of their classical analogues Jfπ, the generator L* and the unitary group Uπ(ί S).
A similar remark obviously holds for the infinite system. The precise connection
between them will be examined now. This will be done in several steps with the
help of the SU (2)-coherent state formalism, and with new Trotter approximations
of a far less intuitive nature than those considered so far.

III. SU(2)-Coherent States and the Trotter Approximation of Classical
Observables by the Quantum Ones

For each reZ v define the SU(2)-coherent state

S > (III.l)

where |S r> is the spin-up state S* S r >-S Sr> in C^2S+1) and S^ - S* ± iSr

y.
Write |Ω^n> = ® !&.> and define the map TnS from J^n onto jfn(S) for each

reΛn
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n by

Γ fS/= (2S + l)|Λί| ί d^Λn

Having

and

Ω
"

2 -~" Π
«' _L

(111.2)

(111.3)

(III.4)

from [18], writing j | j n S for the Hubert-Schmidt norm defined above we get

I I Γ,.s/ L2.s = (2S + I)-"1"1 Tr,n[(rn.s/)(r,.s/)*] (III.5)

= (2S

(Ul.6)

s s f -f
Applying then Schwarz inequality to /®/and (2S -f l) |yln|. [~[ < JL—~ \ on

the product space ^2'Λn' x <f2\An\ we get

2S

since

(2S + 1)M-I J
.^2|.4M1 χ^2|.l n |

as an elementary calculation shows. Consequently we have

= 1

(III.7)

(III.8)

(III.9)

uniformly in n and S for the corresponding operator norm. Observe now that by
virtue of [18] we have the particular representation

ί (ΪII.IO)

for the identity operator on ^7

yln,//ln(S), whenever n>n. We get therefore the
consistency relation

Tn;s(f®ϊΛn,/Λn)=Tn,sf®lΛn,/Λn (111.11)

for each/e^fn where lyl^/yίn stands for the identity function in 3? Λn,/Λn One can
OC>

then define unambiguously Ts on (j ffl n by Ts = ΓnS on each J^M, and we have

(111.12)
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for each/e \J tf n by (III.7), implying
n = 1

HI Γs 11^1 (111.13)

uniformly in S. An extension by continuity then defines Ts as a bounded operator
00

from ffl into Jf (S) since (J ffln is dense in #e. The preceding construction now
n — 1

allows us to prove the following

Theorem III.2. For each n the sequence (jf^S), Tn S}£L ί is a Trotter approxi-
mation for Jf π, and similarly the sequence (jf (S), Ts}^ λ is a Trotter approximation
for Jf.

Proof. The first statement means that

| | |τΠ f S | | |^Mπ (in. 14)

uniformly in S and that

/1U (ΠL15)
for each/e.jf^. The relations defining the second statement are similar. Relation
(III. 14) has been proved already with Mπ = 1 for each n (relation III.9). To prove
(III. 15) we choose/e2In and define

is s' + P2S

) = (2S + l) |Λn| \ d^An^AjJ(s^ιn) [[ <

We have

from (III.6) and Fubini's theorem. With se^2 fixed consider now the family
of one-site measures

;s;) - ( 2 S ' 2

and denote by <5s the Dirac measure at s. One has convergence of the vs's toward
(5s in the vague topology of measures when S -+ GO, namely

lim j dvs(s;s/)gf(s/) = gf(s) (111.19)
S->oc ^2

for each one-site continuous g. To prove this statement, we choose an orthogonal
system of coordinates whose z-axis coincides with s. Expression (III. 19) is then
equivalent to

2S + l 2 π +1 Γs / 2 + Π2 S

lim —— j dφ' j ds/ 2< —-— V g(φf ;s/z) = g(s) (111.20)
S-oo 4π 0 -1 I 2 J

with s = (0;0;l). With the change of variable f - S(s/z - 1), the left-hand side
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of (111.20) can be rewritten as

2π ° 2S

4πS Γ - 2S
•' J A ̂  + I ^ θ(Φ' ~ + l /

f-z \

(111.21)
0

where χ[_2S.0] stands for the characteristic function of [ — 2S;0]. Writing now

4- z 2S

l

for the integrand above, we have

lim UΦ' ί*) = (2π)- 1 exp [ί2]̂ ' l) (111.23)

for any fixed φ', pointwise everywhere in tz on ( — GO O] by continuity of g. Further-
more we get from (111.22) the estimate (uniform in S)

(IIL24)

where || g \\ x denotes the uniform norm of g on <f2. Since exp[ίz]e^f \( - oc O] \dt\
a ££l(( — oc O] ;dί)-dominated convergence argument then allows one to conclude
that

lim jf dtzfs(φfιtz) = ( 2 π Γ 1 g ( Φ t ' 9 l ) ] Λ2exp[ίz]
S-» oo — oo - oo

= (2πΓίg(φ' l) (IΠ.25)

for each φ'. Consequently we have

lim $dφ' ] dt%(φ';f) = (2πΓί ζ dφ'g(φ' ί) (111.26)
S->GC 0 -oo 0

by a similar argument on [0, 2π). Now we have

9(Φ' ;s'z) = Σ Σ CZmPΓ(s'z) exp [imφ'] (111.27)

(uniformly on SP2\ where the PJ"'s are the associated Legendre polynomials.
Consequently #(φ';l) does not depend on φ' since P™(1) = 5m 0 which, according
to (111.26), proves that

lim Idφ' } dt%(φ';tz) = g ( φ ; l ) (111.28)
S-*oo o -oo

for all φ e [0, 2π) or equivalently (111.20) since s = (0 0 1) = (sin θ cos φ sin θ sin φ
cos θ} implies θ — 0 while φ remains arbitrary in [0, 2π). The sequence of product
measures

Π dvs(s, ;s;) = (2S + 1)1^-1 Π — ^ "̂  (ΠL29)
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then converges in the vague topology to <5s , which means that

\imFs(*Λn)=f(sΛn) (111.30)
S-»oo

pointwise everywhere on y>2\An\ according to (III. 16). Consequently we have

lim/(sJFs(sJ = |/(sj|2 (111.31)
S-^oo

Writing now ||/ 1^ for the uniform norm of/ on <?2\An\ we get the estimate

^ \\f\\l (in-*2)
uniformly in S according to (III. 16) and the identity

(2S+ 1)M-I \dμAn(S'An) Π ^8 2 S= 1 (111.33)

Since 5^2|yin' is compact, a dominated convergence argument again then allows
us to conclude that

lim f dμΛΛ)f(*AFs(*Λ)= f ^ ( s l / ( s | 2 (m 34)

which is precisely (111.15) for/e s2ln (see 111.17). The general case with
follows from a density argument and the uniformity of (III.9) in S. One can prove
that

l™ II Γs/Lr(s,= I I /L (IIL3S)
S->α)

by similar arguments. This completes the proof.
In what follows, we shall denote by |Ω(S)> the coherent state associated to a

spin S. We now prove the following

Proposition III. 3. For each S > ^ we have the one-site relations

<Ω(S)|Ω'(S)><Ω'(S)|SZ|Ω(S)>

= 2S<Ω(S)|Ω'(S)><Ω'(S-f)|Ω(S-i)>cos^cos|--S|<Ω(S)|Ω'(S)>|2

= S < Ω(S) I Ω'(S) > < Ω'(S - i) I Ω(S - f) > cos ̂  cos j

- ± < Ω(S) I Ω'(S) > ~ < Ω'(S) I Ω(S) > (111.36)

and the complex conjugate expressions

<Ω'(S)|Ω(S)><Ω(S)|SZ|Ω'(S)>
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= S<β'(S)IΩ(S)><Ω(S - i)IΩ'(S - ~)> cos - cos —

+ ^ < Ω'(S) I Ω(S) > ~ < Ω(S) I Ω'(S) > (111.37)

Relations of the same kind hold for

( Ω ' ( S ) \ Ω ( $ } y ( Ω ( S ) \ S ( x ^ \ Ω ' ( S } y .

Proof. We prove (111.36). We have

(IIL38)

with

/ 2S V / 2 / n \ S + M / n \ S - M

c

s

M(θ:φ} = ί ) ί c o s - j ( s i n - 1 exp[i(S-M)φ] (111.39)

and S Z |M> = M M> from [18]. Consequently

<Ω'(S)|Ω(S)>= Σ ^^φ')Cs

M_s(θ φ) (111.40)
M = 0

and
2S

(111.41)

Now we have

2S

</ / θ θ' θ θ' \ 2 S

= --1 cos-cos-—exp[x]+sin-sin —exp[ί(</)-ψ')] (x = 0) (111.42)
6ί,X \ ^ £~ 2, 2, J

from (111.39) and the binomial expansion; thus

<Ω'(S)|SZ|Ω(S)>

( Q & θ θ1 ^Λ2(S~(1/2)> θ θ'
= 2S( cos - cos ~ + sin - sin — exp[ί(φ - φ )J I cos-cos —

-S<Ω'(S)|Ω(S)>
n c\ι

= 2S < Ω'(S - |) I Ω(S - \) > cos - cos — - S < Ω'(S) | Ω(S) > (111.43)

which proves the first relation in (111.36). The fact that (111.43) is equal to

S < Ω'(S - i) I Ω(S - i) > cos ^ cos ~ - ̂  < Ω'(S) | Ω(S) > (111.44)
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follows from an elementary computation; expression (III . 44) is indeed equal to

/ f) Θ' f) Θf

S< Ω'(S - ^)|Ω(S - ^)> f cos - cos — - sin - sin — exp[i(φ - 0')]

θ θ' ί θ 0' 0 Q'
2 cos - cos — - — I cos - cos — - + sin - sin — exp \_i(φ — φ')\

which is (III. 43). This proves the proposition.
Combination of the preceding results now leads to the following

Proposition III. 4. For each one-site continuous function f and y — x, y, z we have

lim -̂ί- ί d jφ')/(s') < Ω'(S) I Ω(S) > < Ω(S) | S7 1 Ω'(S) > = s*/(s) (111.45)
S-*=c δ y2

and for each one-site ^(1}-functίon g we have

lira (2S + 1) j dμ(s')ί/(s'){<Ω(S)|Ω'(S)><ί2'(S)|S7|Ω(S)>

}

(111.46)

Proof. We prove the proposition for y = z, the rest is similar. Write

F(s s') = ί cos - cos — - + sin - sin — e'(φ~ ΦΊ | cos - cos — (111.47)

Using the first relation in (III. 37) we then have

/(s')< Ω'(S) I Ω(S) > < Ω(S) I Sz I Ω'(S) >

θ θ'
= (2S + 1) JdMs')/(s') {2 < Ω'(S) I Ω(S) >< Ω(S - f) | Ω'(S - \ ) > cos - cos -

= (2S + l)ίφ(s')2/(s')F(s;s')|<Ω(S - i)|Ω'(S -

Since both/and F are continuous we then have from theorem (III.2)

lim ̂ ^ fdμ(s')/(s') < Ω'(S) | Ω(S) > < Ω(S) | Sz | Ω'(S) >

= lim (2S + 2)μμ(s')2/(s')F(s;s')|<Ω(S)|Ω'(S)>|2 -/(s)

= (2F(s s) - l)/(s) = sz/(s) (111.48)

since

j>(s')2/(s')F(s:s')|<Ω(S)|Ω'(S)>|2

2S

') (111.49)
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for S large. This proves (111.45). Now from (111.36) and (IIL37) we get

S < Ω(S) I Ω'(S) > < Ω'(S - i) I Ω(S -1) > cos Q- cos y

-S<Ω'(S)|Ω(S)><Ω(S-f)|Ω'(S-f)>cos-cos —

f\ -Λ

= ~ {< Ω(S) I Ω'(S) > — < Ω'(S) I Ω(S) > + < Ω'(S) | Ω(S) > ̂  < Ω(S) | Ω'(S) >}

(111.50)

Consequently we have by proposition III.3 the relations

(2S + l)$dμ(s')g(s') { < Ω(S) | Ω'(S) > < Ω'(S) | S21 Ω(S) >

-<Ω'(S)|Ω(S)><Ω(S)|SZ |Ω'(S)>} f l f l /

= (2S + l)$dμ(s')g(s') (2S < Ω(S)| Ω'(S) > < Ω'(S -

- 2S < Ω'(S) I Ω(S) > < Ω(S - \) I Ω'(S - \

= - ί(2S -

2>

d

+ <Ω'(S)|Ω(S)>^<Ω(S)|Ω'(S)>} (111.51)

Now integration by parts in the last expression shows that (III. 51) can still
be written as

2/(2S + l)fd/i(s') ̂  (s') I < Ω(S) I Ω'(S) > |2

+ f(2S + ί)ίdμ(s'W) {<Ω'(S)|Ω(S)>^<Ω(S)|Ω'(S)>

+ < Ω(S) I Ω'(S) > ̂  < Ω'(S) I Ω(S) > } (111.52)

since the boundary terms vanish. Combination of (III. 51) and (111.52) consequently
shows that

lim (2S + 1) jdμ(s')ί?(s') { < Ω(S) | Ω'(S) > < Ω'(S) | Sz | Ω(S) >
S^x

-<Ω'(S)|Ω(S)><Ω(S)|SZ |Ω'(S)>}

= lim ί(2S + Dί^s^ίs')!8^
s-co dφ [ 2

= i^(s)oφ

according to theorem (III.2) (relation (III. 19)). This proves (111.46) by our defini-
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tion (1.4) of the Poisson Bracket. This achieves the proof.
Now consider |ΩZV(S)> = ® Ωr(S)> which is well defined on jf(S) =

® C(

r

2S+ 1} since f] <Ωr(S)|Ωr(S)> - 1. We have the following

Theorem III.3. Consider the normalised quantum Heisenberg model

- HΛ(S) - (2S) 1 Σ 7(r - >")S/S; (111.54)
K.r'e/ln

where the couplings obey the various conditions given above. Then the sequence
{ad Hπ(S)}^L1/2 converges to Ln in the sense of Trotter pointwise everywhere on
y?2|yln| in other words for eachfe@(Ln) and each spin configuration szv = (s^ ;szv/yln)
we have

lim |<ΩJS)|adHn(S)7;(S)/- T (S)L J \ ΩΛβ) > =0 (IIL55)
S-^oo

Similarly, for the infinite system we have

lim |<ΩZV(S) adzvH(S)T(S)/- T(S)LZV/|ΩZV(S)>| = 0 (111.56)
S-^oo

Proo/. We prove (111.55) (relation (111.56) can be obtained by taking the infinite
volume limit of (111.55)). Since

— C2S 4-1^1 f dμλ (s. )(L f)(sA } Π <—— > ίTFT 57)— V ^ ^̂  •* / -^π -^n n J '^ ΛnJ A i l ^\ i ^j-ii.^/ / ^
^2|ylMl reΛn

we get

= (LJ)(sJ (111.58)
S-> oo

from theorem (III.2) (relations (111.16) and (111.30)). We now prove that

lim < ΩΛβ) I ad Hn(S)Tn(S)/1 ί2 (S) > = (Ln f ) ( s Λ ) (III.59)
S~>oo n

forall/e®(Ln). We have

<ί2/ln(S)|adHβ(S)Tπ(S)/|β/i>ι(S)>

= (2S+ l)l"»l£ I dμ/ln(s^)/(s^){<Ω^(S)|ί2ylιι(S)><ί2/ίrι(S)|Jf|;'>(S)|Ω'/lιι(S)>

- <Ω/,n(S)|^n(S)><Ω'ylιι(S)|H!;'>|β7lιι(S)>} (111.60)

from the definitions, with

H«(S)= Σ
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and

\=-(2S)~1 Σ ;'(r-r')S^S^. (III.6Γ)

Now consider the z-part of (111.60) in which we substitute (III.6Γ); we get

(2S)~ l(2S + I)'71"1 £ j(r - rf) J dμΛ (s'Λ )/(s' ) Π
r,r'eΛn <?>2\Λn\ jeΛn/{r,r'}

• {< o;(s) I Qr(S) > < Ωr(S) I sr

z I o;(S) > < Ω;,(S) | ΩΓ,(S) > < ΩΓ,(S)
- < Ωr(S) I Ω;(S) > < Ω;(S) | s* \ Ωr(S) > < ΩΓ,(S) 1 Ω;,(S) > < Ω;,<S) | sr

z | ΩΓ ,(S) >}
(IIL62)

upon using the properties of the coherent states stated above. Now choose / of
the form

/= ® fr (IΠ.63)

where each/^. denotes a one-site ̂ (1 ̂ function and apply the identity ArBr, — CΌr, =
Ar(Br, - Dr,) + Dr/(AΓ - Cr) to the expression in the bracket of (111.62); we then get

X j(r-r') f
r,r'eΛn #2(\Λn\

π

- < Ωr(S) I Ω;(S) > < Ω;(S) IS^ Ω (S) > ] (ΠI.64)

Applying then proposition (III.4) and theorem (III.2) (combination of (III. 16)
and (111.34)) to (111.64) we get

lim <ΩJS)|ad Hn(S)Tn(S)f\ΩAn(S)y = ί[h^>, /] (sj (111.65)
S^ oo

1
with fa;,20 = — - Σ J(r ~ r')srsr>ι which is the z-part of (111.59) according to (1.8)

r,r'eΛn

for functions of the form (111.63). The extension of each/e^(LJ follows from
similar arguments. The proof is similar for y — x, y according to proposition
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(III.4). This proves (111.59) which, combined with (111.58), gives (111.55). Similarly,
an infinite volume argument gives (III. 56). This completes the proof.

Along the same lines, we now prove the following

Proposition III.5. Under the same conditions as in the preceding theorem, we have

lim (ad Hn(S)Tn(S)/, Tn(S)g)^n(S) = (LJ, g}Xn (111.66)

for eachf<E@(Ln) and each g^^n Similarly for the infinite system we get

lim (adZvH(S)Γ(S)/, T(S) (̂S) = (Lzv/, g)^ (111.67)
S— > oo

for eachfeS)(Llv) and for each

Proof. We prove (111.66); by density, it is sufficient to prove it for gfe2l n . Since

ad HB(S)TB(S)/

= (2S+1)I""I f dμJsΛι)/(s^){Hπ(S)|Ω^(S)><ί3^(S) -|Ω^(S)>
yι\Λn\

-<Ω^(S)|Hn(S)} (111.68)

and

(2S + lf"' ί dμΛn(SΛι)g(SΛι)\ΩΛn(S)y(ΩΛβ)\ (111.69)

by definition, we get

= I dμΛn(sΛn)Gs(8ΛιfaJ (111.70)
5?2\Λn\

with

&>2\Λn\

upon using Fubini's theorem. Consequently we have

Gs(sJ - < Ω^(S) i ad Hn(S)Tn(S)f \ ΩΛβ) > (111.72)

from (IIL68) and (111.71), so that

lim GS(SΛ ) — (Lnf)(sΛ } (111.73)
S-> oo

pointwise everywhere on <f2\Λn\ by theorem (III.3) (relation 111.59). We then have
G s l l o o = 0(1) for large S so that there exists a constant K independent of S

satisfying the estimate

IGS(SΛ ¥ίΓ)i ^ κ \9\\ (111.74)
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for each ge2ίn. Moreover we get

lim Gs(Syl>(sJ = (LJ)(sJg(sJ (111.15)
S^oo

from (111.73) so that the relation

lim J dμΛn(sΛn)Gs(sΛn)g(sΛn)
S-»oc

= f dμAn(SΛn)(Lng)(sΛn)g(SΛr) (111.16)
yi\Λn\

follows from a dominated convergence argument. Relation (111.76) is precisely
(111.66) according to (111.70). An infinite volume argument gives (III. 67). This
completes the proof.

Similarly, one can prove the following result, whose proof will be omitted.

Proposition III. 6. Under the same conditions as in the preceding statements we
have

lim || ad Hn(S)Tn(S)/ ||̂ (S) = || LJ ||̂  (111.77)
S-»oo

for eachfe&(LJ and similarly

lim I ad2vH(S)T(S)/ |̂ (S) = || L2V/ ̂  (111.78)
S^oo

for eachfε@(Lzv).
Now we have the following

Theorem III.4. Under the same conditions as in the preceding statements, we have

lim || ad Hn(S)Tn(S)/- T (S)LJ |̂ (S) = 0 (111.79)
S-* oo

for allfeS>(Ln), and similarly for the infinite system

lim || ad2vH(S)T(S)/- Γ(S)L2V/ ||^S = 0 (111.80)

for α///eS>(L2v).

Proof. Consider (IΠ.79). We have

|adHn(S)Γπ(S)/-Γ(S)Lj||^(S)

= !| ad Hn(S)TB(S)/ |̂ (S) - (ad Hn(S)Tn(S)/,

- (Tn(S)LJ, ad Hn(S)Γn(S)/)^(S) + || Ta(S)Lj\\^ (111.81)

Now when S -» oo, the first term converges to ||Lπ/||^n according to pro-
position (III. 6), the second and the third one to — | |LΠ/| |^ according to
proposition (III.5) (relation III. 66) in which we choose g = Lnf, and the fourth
one to IL^/H^ again by theorem (III.2) (relation (III. 15). Relation (111.80) can
be proved similarly. This completes the proof.

We now extend the infinitesimal results of this section to global ones.



22 P. A. Vuil lermot

IV. Intertwining Relations Between the Quantum and the Classical
Unitary Group

We still write Un(ί;S) and U(f S) for the unitary groups generated by ad H^S)
and adzvH(S) respectively, where Hn(S) now refers to the normalised model
(111.54). We first establish the following.

Proposition I V.I. For each fetfn define gλ = (λ- L*)~ */ with λ > 0. Then we
have

] dte-λ'{Un(t ;S)ΓΠ(S)/- Γπ(S)Un(ty)
0

= f Ae-*Un(i;S){ad Hπ(S)Tn(S)^ - Γn(S)L*π^} (IV. 1)
0

for each t > 0 and each S. A similar relation holds for the infinite system, namely

= ate- A'U(t S) {ad2v H(S)T(S)0A - T(S)L V) (IV.2)

for allfejP, with g(λ) = (λ - L*)~ lfin this case.

Proof. We prove (IV. 1). We have

gλ = (λ - L*)-1/^ J dte-λtUn(t)f (IV 3)
o

which is the Laplace transform formula for the resolvant ([19]). Define the
quantized observables

FS=TB(S)/ (IV.4)

0^=^(8^ (IV.5)

together with

Then we have the identity

0
oo oo

= j dte-*'\Jn(t ;S)(FS - Fs

λ) + J dte^'{Un(t ;S)FS

A - Γn(S)Uπ(t)/}
0 0

Now we have

= (λ - ad HB(S)Γ 'FS

Λ - Tn(S)gλ = 0 (IV.8)
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from (IV.5) and (IV.6), and

FS - FS = TO/- (* - ad HB(

= Tn(S)(λ - Iξ)gλ - (λ - ad Hπ(S))Tπ(S)0Λ

23

,λ (IV.9)

Substitution of (IV.8) and (IV.9) into (IV.7) gives (IV. 1).
The proof of (IV.2) is similar. Proposition (IV. 1) is thus complete. Combination

of proposition (IV.I) and theorem (III.4) now leads to the following

Proposition IV.2. We have

lim \dte-λ'{υn(t ;S)Tn(S)/- TOUπ(t)/}

for eachfej^n and

lim
Λ-(S)

(IV.IO)

(IV.ll)

for the infinite system, wit

Proof. From proposition (IV.I) we get the estimates

f dte-»{υn(t S)T (S)/- T (S)UM(ί)/}
n(S)

^ λ~11| ad Un(S)Tn(S)gλ - Tn(S)L*gλ |(^(S) (IV. 12)

which implies (IV.IO) by theorem (III.4) (relation (111.84)). This completes the
proof.

Combination of the preceding results now allows one to prove the following

Theorem IV. 1. Consider the normalised quantum Heisenberg model (III.64).

Then we have

lim sup || Uw(ί S)T (S)/- Tn(S)Un(t)f ||^n(S) - 0 (IV.13)

for eachfe^fn and each ί0e[R + . Similarly for the infinite system we have

lim sup || U(ί S)T(S)/- T(S)U(ί)/ ||^(S) - 0 (IV.14)

for eachfeJtf.

Proof. Consider (IV.I3), the proof of (IV. 14) is similar. We have

(IV.15)
) + I Tπ(S)Un(ί)/ |U(S) ̂  2
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upon using (III. 12) and the unitarity property. Thus with

rfs(ί) = Uπ(ί S)T (S)/- TH(S)υn(t)f

we see that || άs(t) || ̂ n(S) is uniformly bounded in S and ί, so that

0 ̂  lim inf sup || >«s(ί) ||^n(S) ̂  lim sup sup (| /fs(f) ||^n(S) < + oo
n

(I V.I 7)

Moreover we have for f, ίΈίR +

Λs(t) - *s(t') = {Un(f S) - UΛ(ί' S) jT (S)/- T (S){Un(ί) - Uπ(ί')}/

= }dξUπ(ξ S) ad Hn(S)7;(S)/- Tn(S)}dξUΛ(ξ)L*/ (IV.18)

and consequently the estimate

|| rfs(ί) - ^(0 ||Λ(S) ̂  ί - t'| { I I ad Hn(S)Tn(S)f ||^n(S) + || L*/ ||̂ J (IV.19)

where we have used (III. 12) and the unitarity property once again. Now by theorem
(III.4) we have |[ad Hn(S)7n(S)/ '||^
constant K independent of S with

- 0(1) for large S, so that there exists a

t -1

Thus for each ε > 0 we have || άs(t) — άs(t')

(IV.20)

rg ε whenever 1 1 — t' \ ̂  δ = -.
K

The sequence {4S}£L t of ^n(S)- valued functions is thereby equicontinuous on
[R (the extension of our considerations to negative times is trivial since we are
dealing with unitary groups instead of general contraction semi-groups). Now
for any linear bounded functional κ:s on *tffn(S) with norm uniformly bounded
in S, we have

(IV.22)

for some C independent of S, and

(O) - *(*(t')) ^ C *(ί)

for each f, ί'eIR, so that the sequence of real-valued functions {κs(^s(ί))}£L1/2 is
in turn, uniformly bounded in S and t and equicontinuous. Moreover we have
by linearity

0

so that
αo

lim J <
S->00 0

<C

by (IV. 10) (or (IV. 11). Consequently we have

lim sup = 0

(IV.23)

(IV.24)

(IV.25)
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by the uniqueness of the Laplace transform and Ascoli's first theorem ( [8]- [20] ).
Now one can choose a sequence of such linear functional κs such that

lim sup κs(άs(t)) = limsup sup H^sWll^s) (IV.26)
S^oo |ί| ί̂o S-»oo |f| ί̂o

Combination of (IV.26), (IV.25) and (IV. 17) then leads to

lim suPμs(ί)||Λ(S) = 0 (IV.27)
S-+OC |ί |^ίo

which is precisely (I V.I 3) according to the definition (I V.I 6). This completes
the proof.

The following statements can still be obtained by polarization (theorem IV.2)
and by another Laplace transform argument (Theorem IV. 3). The proofs are
omitted.
Theorem IV. 2. Under the same conditions as in the preceding theorem, we have

lim (UB(ί S)T (S)/, Γ (S)0) (̂S) = (UB(ί)/, g)^ (IV.28)
S-+χ

for eachf,gej^n, and similarly

lim (U(ί S)T(S)/, T(S) (̂S) = (U(ί)/, g]x (IV.29)
S-+OC

for eachf,ge3f.

Theorem IV. 3. Under the same conditions as in the preceding theorems, one has

lim sup I < ΩJS) I Uπ(ί ;S)Tn(S)/- T (S)Un(ί)/ 1 ΩΛn(S) > | = 0 (I V.30)
S-^oc | r |^ί 0

for all £0e[R + and allfe^n. Similarly for the infinite system, one has

lim sup |<βzΛS)|U(f, S)7χS)/- Γ(S)U(f)/ 1 ί2zv(S) > | = 0 (IV.31)
S->oo |ί|^ίo

for a

Remarks and Open Problems. The preceding theorems exhibit the connection
between the quantum unitary group U(ί S) and the classical one U(ί); the latter
one is the Trotter limit of the former one when S -> oc . Although we chose a
unit system in which h = 1 throughout, one can readily convince oneself that the
correct limiting procedure to deal with otherwise is S -» oo , h ->• 0 with Sh fixed.
Observe now that the quantization operator Tπ(S) in (III.2) and its infinite volume
version (III. 12) are, group-theoretically speaking, intertwining operators between
the quantum and the classical unitary group (see for instance (I V.I 3) and (I V.I 4)).
More precisely, our theorems show that the two unitary representations U(ί S)
and U(ί) of the additive real line become equivalent in the limit S -> oc .

An interesting open problem is the extension of our results, for instance in
the spirit of [21], to D-dimensional classical and quantum spin systems with
D ̂  4. In that case, the flow equations (1.8') (or (1.9)) should be replaced by

«. = [*..«.] (IV.32)

with D x D antisymmetric matrices s and H, where [,] denotes the usual matrix
commutator, in other words the Lie bracket corresponding to SO(D). For D = 3
indeed, (IV. 32) would reduce to (1.8') with the effective magnetic field Hα =
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ΣJ(U — r)sr since [R3, equipped with the vector product, becomes a Lie algebra

isomorphic to that of SO(3) (the Lie algebra of all 3 x 3 -antisymmetric matrices).
Observe furthermore that our theorem (IV.2) can be used to compare classical

and quantum time- time correlation functions in statistical mechanics; if we
choose for instance

\(sAt)'] (IV.33)
.

in (IV.28), we get

- < /(ί) / (0) > Λn (IV.34)

where < )/1 stands for thermal average.
Let us finally mention that we have not been able so far to prove sharper

statements than those in theorem (I V.I) about the classical limit, for instance
intertwining relations such as (IV. 13) and (IV. 14) where the normalised Hubert-
Schmidt norm would be replaced by the uniform operator norm. Along the same
lines, it would be interesting to see whether the sequence (3I(S), T(S) <?=i is a
Trotter approximation for 91, where both 9I(S) and 91 are considered as C*-
algebras for their respective uniform norm.
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