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Abstract. Schrodinger operators with interactions symmetric about a plane
(double-well potentials) occur in several branches of physics, such as chemistry
and quantum field theory. They commonly exhibit asymptotic eigenvalue
degeneracy, i.e., pairs of eigenvalues coalesce as the potential wells get farther
apart. After a sketch of the theory of double wells, it is shown that the problem
of estimating the gap between two such eigenvalues is reducible to finding
asymptotics of eigenfunctions. For several examples and classes of potentials
the gap is estimated or bounded above and below. The general case is fully n-
dimensional.

I. Introduction

It is well known that if a potential V(x) with two minima is symmetric under
reflection through a plane (hyperplane, if JV>3), then the eigenvalues of the
Schrodinger operator

-A + V on L2(IRN) (1.1)

tend to group in pairs (possibly after restriction to some symmetry subspace). In
the simplest case, V has two equivalent, widely separated minima. The physical
explanation for the grouping is that the particle evolving according to the
Hamiltonian (1.1) could be localized near either well (minimum) in approximately
the state it might be in if the second well did not exist. To some degree of accuracy
there will be a two-fold degeneracy because of the possibility of being at either
well. However, the presence of the second well has two weak effects, a) that the
actual eigenstates must be even or odd about the central plane, in chemical
language, they must be gerade (g) or ungerade (u) and b) that the degeneracy is
split by the perturbation, making the antisymmetric state lie slightly above the
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symmetric one. The magnitude of the splitting is typically exponentially small in
the relevant parameter, the separation R between the wells; semiclassical argu-
ments indicate that in the simplest cases the gap is on the order of

Rαexp(-/c#b) (1.2)

for some a, b > 0, and k > 0. For this reason it is hopeless to try to compute the
splitting by any perturbative series expansion in l/R. After discussing the general
properties and history of double wells, this article will derive rigorous formulae for
the splittings in a fairly general setting and any finite dimensionality, and will then
evaluate those formulae in several representative cases. Two examples, the
anharmonic oscillator and the hydrogen molecular ion H^, are discussed in
detail in Sects. Ill and IV.

Double-well potentials are practically ubiquitous in physics, but are particular-
ly of interest in three branches, quantum field theory, statistical mechanics, and
molecular chemistry.

Quantum Field Theory

Schrodinger operators with double-well potentials are thought to be a fruitful
model for understanding gauge fields with degenerate vacua. The vacua would be
independent but for weak, semiclassical tunnelings between them, known as
instantons. The stability of the false vacuum, unfavored by the coupling, is
inversely related to the eigenvalue gap. This is entertainingly discussed by

Coleman [19], who compares instanton and WKB analyses of the splitting for
one-dimensional anharmonic oscillators, and gives references to the literature. The
WKB analysis of the gap for the one-dimensional anharmonic oscillator was made
rigorous in [2]. The limit as the dimension n—>GG would be interesting. See also
related work in [3-5].

Statistical Mechanics

It has been argued by Kac [6] that there is a very general relationship between the
existence of long-range order in statistical mechanical systems and the degeneracy
or near degeneracy of the eigenvalues of certain operators related to the transfer
matrix. Kac's argument elaborates on ideas of Ashkin and Lamb [7] and Newell
and Montroll [8], and as an example he showed that under fairly wild approxi-
mations the existence of long-range order of a certain spin system was equivalent
to the asymptotic eigenvalue degeneracy of the same one-dimensional anharmonic
oscillator studied by the quantum field theorists mentioned above. In addition, the
problem has been studied in [9] from the statistical-mechanical point of view. The
rate of asymptotic eigenvalue degeneracy would be related to critical behavior at a
phase transition.

Molecular Chemistry

It is in this field that the subject of double-well potentials has the longest history.
They model diatomic, homopolar molecules such as H^ or O2, at least in the
approximation of infinite nuclear masses (i.e., stationary centers of force) and, in
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more complicated molecules than H^ , averaged interelectronic forces. These two
approximations are standard, so not much comment will be made on them. The
latter is, of course, most trustworthy in the case of a diatomic ion with filled shells
and one valence electron. Spin interaction, relativistic corrections, and the like are
extraneous to the central mathematical problem of this article, and will be ignored
(see [10, 11]). One of the key formulae, (2.3), applies to any quantum particle in a
potential having bilateral symmetry, and thus to a wider set of chemical problems,
such as the decay of right-handed to left-handed molecules, but only the case of
diatomic molecules will be dealt with below. The splitting in the energy levels of
the g and u states is a quantum phenomenon, and has no analogy in the related
classical problem of a planet orbiting two suns [12, 13], nor even in the old
quantum theory (Hj was the subject of Pauli's doctoral dissertation [14]).
However, once it was recognized that in wave mechanics a particle could tunnel
from one well to another, the classical and old quantum analyses were useful for
showing that the simplest case, Hj , was separable in elliptic coordinates, and it
soon became the most popular diatomic molecule for theoretical study. The first
correct analysis of the separated equations was by Jaffe [15], who, however, did
not attempt to compute the eigenvalue gap. Hydrogen molecular wave functions
have been tabulated in [16], and the first accurate computation of the gap is due to
Herring [11], who reports that LCAO calculations are off by about 10% at large
internuclear distances (see also [17, 18]). The hydrogen molecular ion will be
analyzed as an example below.

The general definitions and convergence theorems have been discussed by
Aventini and Seiler [19], Combes and Seller [20], and Morgan and Simon [21].

To fix notation, the relevant facts are collected here,

Definition (1.3). Two unitary operations that will be used frequently are:

ίTag'](xl9x29...) = g(x1+a9x29...) (1.4)

and

^,...)^-*^...). (1.5)

Definition (1.6). The class V of potentials most frequently considered below
consists of real-valued V(x)eU + (Lco)ε on 1R" (i.e., for all ε>0, V=A + B, where
\\A\\r<co, ||J5||00<ε), for all r such that l^r^q, q some number ^max(n/2, 2) for
n φ 4, q > 2 if n = 4.

Also let ̂ s be the potentials of V that are C00 for all x: |x|>6, some finite
number, and which -»0 as |x|-*oo.
Remarks. 1. These potentials are slightly more restrictive than being relatively
compact, which needs only r = q. Having all re[l,g] is essentially a locality
assumption, and can probably be relaxed. i^s includes Coulomb and most other
potentials of interest in the molecular case for one electron (F-»0 at oo).

2. The double-well potential is typically a sum of single-well potentials,

Wf=Vr+Vl9 (1.7)

where Vl = TfVT_f is the potential V translated by / along the negative x^axis,
and Vr = $TfVT_f& is the reflection of Vl about x1=0.
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3. In the field-theoretic case, F-»oo at oo, which makes convergence proofs
easier; see Reed and Simon [22, Vol. IV]. Formulae for the eigenvalue gaps carry
over from this paper without change, though they may be more difficult to
evaluate.

Definition (1.8). For an unperturbed Hamiltonian

h=-Δ + V(x)9 (1.9)

define

Hf=-Δ + Wf(\), (1.10)

with Wf as in (1.7), as the related double-well Hamiltonian.

Remark. For FeiΓ, both (1.9) and (1.10) are bounded below and have σess = IR+.

Theorem (1.11). Suppose that e<0 is a nondegenerate (see Remark 2, below)
eigenvalue of h, Ve Ύ* , and e is isolated from the rest of the spectrum by a distance
>d. For all ε>0, there exists /0 such that if />/0, then there are exactly two
eigenvalues of Hf nearer to e than d, and as /-> oo they converge to e.

A companion to this theorem gives an estimate of the eigenfunctions in the L2

sense.

Theorem (1.12). For Vei^\, the eigenfunctions Ψ± associated with the two
eigenvalues E± approaching e by Theorem (1.11) can be normalized so as to satisfy

(1.13)

where

| |Φ| | = 1 (1.14)

(when unindexed, \\ . . . || = || . . . || 2).

Remarks. 1. These theorems show that the LCAO method of chemistry, viz.,
approximating eigenfunctions of Hj with linear combinations of those of h as in
(1.13), while not generally numerically accurate, as noted above, is at least valid in
an asymptotic sense.

2. Analogous theorems hold for eigenvalues degenerate because of a symmetry
such as under rotation about the x1 axis, by restriction to the appropriate
subspace.

3. It would be possible to say something about the size of /0 and the rate of
convergence in (1.11) for specific choices of K

4. See the references for a proof of Theorem (1.11). The easy part is to show the
existence of two eigenvalues near e this follows from a variational estimate with
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LCAO eigenfunctions and Weinhold's lemma (see [18]). The hard part is the
absence of extraneous eigenvalues.

The proof of Theorem (1.12) is a simple consequence of Kato's generalization
of Temple's inequality (see [23-25]), once the convergence has been controlled in
its general outlines by Theorem (1.11). Since this theorem is also used later, it is
stated here :

Theorem (1.15). Let A be self-adjoint and ΨεD(A), \\Ψ\\ = 1. Suppose that E is the
only eigenvalue of A in an interval α<£<β, and let η = (Ψ\AΨ) and
ε2=\\lA-η^Ψ\\2=\\AΨ\\2-η2. If ε2 <(β-η}(η-a\ then

η-ε2/lβ-η]^E^η + ε2/[_η-a~]. (1.16)

Remark. The error in the upper bound depends on the lower isolation distance and
vice versa.

Corollary (1.17). Let F(f) be a trial function for Hf, i.e., F(f)eD(Hf) and
\\F(f)\\ = 1. // \\lHf-e~]F(f}\\->Q, then one eigenvalue E of Hf satisfies

far />/0.

Proof, lim (F(f)\H ΓF(/))-»e, which is isolated from the rest of the spectrum of H ,
/-*oo J J

by at least d for / large enough. Using F(f) as the trial function Ψ of Theorem
(1.15), eventually ε2<(β~ η)(η — α), for α, β = e± something a little greater than d,
and the corollary follows immediately (most easily seen with A = Hf — e). Π

The following variant of the Eckart bound is proved in [25] :

Proposition (1.18). Let A be self-adjoint with eigenvalue λ isolated from the rest of
the spectrum by a distance d, and let P be the associated eigenprojection. If

then

ι^HPζ| | 2 ^ι-l l [H-;oci l 2 /^ 2 . (U9)

Corollary. Theorem (/./2).

Proof. Use Corollary (1.17) with

F±=Nf(TfΦ±T_f@Φ}, (1.20)

where Nf = l/\\TfΦ±T^f^ίΦ\\ clearly -*l/J/2. The assumptions guarantee that
F ' ±eD(Hf\ and it is easy to calculate that

[Hf-e]F±=Nf(@±l)TfVT_2f@Φ

= Nf(VrΦl±VlΦr)9 (1.21)

where Φr = TfΦ is the left LCAO contribution to the eigenfunction and
Φr = T_f&.Φ is the right contribution. Since <%ΦεD(-A + 1), there exists #eL2(lRn)
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such that

and

Since T_2 /g^O weakly as /->oo and V(-Δ + I)"1 is compact,

->0. (1.20)

The previous corollary then shows that

so (1.13) follows from the orthogonality of F± and Proposition (1.18). D

II. Eigenvalue Gaps and Eigenfunction Asymptotics

This section will present two different methods for estimating the eigenvalue gap.
With both methods, an estimate of the gap is equivalent to a certain asymptotic
estimate of the behavior of the eigenfunctions at large distances from a well. The
details of the asymptotics needed are somewhat different for the two methods, and
also somewhat different from the asymptotic estimates needed in [2, 26]. The twin
methods appear mixed together in an embryonic form in [11], where an
approximate, rigorous formula for the gaps between g and u energies of H^ is
derived, and evaluated with a nonrigorous, but correct, asymptotic functional
approximation. In fact, one of these methods leads quite readily to an exact
formula for the gaps for general double wells.

Theorem (2.1). Define Hf as in (1.10) for Fe^s. Consider any two eigenvalues E±

for which the eigenfunctions Ψ ± are respectively even and odd under βfc. Define the
operator S such that

/ ; : ; » .
// (SΨ _\Ψ + )ΦO, then

E_-E+= 2 Λψ+(Q,x2,...)dΨ_(0,x2,...)/dx1dx2...dxa. (2.3)

Remarks. 1. The conditions on the potential can be considerably relaxed; little
more than FeCm for the appropriate m in a neighborhood of {x1=0} and the
absence of strong local singularities is required. For example, Fmay be allowed to
grow as |x|-»oo.

2. Formula (2.3) is not restricted to natural pairs of geminate eigenvalues,
which exist in a limit by Theorems (1.11) and (1.12), but to any pair of a symmetric
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and an antisymmetric state. However, in the general case both the numerator and
the denominator of (2.3) are typically small and thus it says little about E_ —E+

whereas if the two eigenvalues are a geminate pair, then (SΨ_\Ψ + )~ \\Ψ_\\ \\Ψ+\\,
which is normalized to 1.

3. It was only for convenience of reference that the potential was written in the
same form as in (1.7). Theorem (2.1) applies to any such bilaterally symmetric
potential, and has nothing to do with the parameter /

4. Physically, the right side of (2.3) is a current. Therefore it makes precise the
statement that nearness of eigenvalues is related to small likelihood of tunneling
between the wells according to the uncertainty principle.

Proof. Note that

so, taking an inner product with SΨ _,

E_-E+ = (SΨ_\[E_ -Hj]

Therefore, by using the symmetries of the eigenfunctions and Green's formula, one
gets (2.3) from:

(SΨ_\[E_-Hf] Ψ + ) = 2 J Ψ_[E_+Δ-W]Ψ+dxίdx2...dxn

= 2 j [(£_ + Δ — W) *F_] Ψ+ dx1dx2...dxn
x i ^ O

+ 2 J (Ψ + dΨ_/dxl-Ψ_dΨ+/dxί)dx2dx^...dxn

dΨ
= 2 J Ψ+^dx2...dxn. (2.4)

The use of Green's formula is justified as follows: The Schrόdinger regularity
theorem guarantees that Ψ±eC2 in a neighborhood of {x1 =0}, so Ψ± = A± + £ + ,
where A± is C2 and supported near {x1=0} and B±eD(Hf) and vanishes near
{x1—0). Thus the integral of (2.4) consists of four parts, and Green's formula
obviously applies to each of them assuming the integrals are finite. The boundary
integral will be finite as a consequence of general pointwise bounds on Ψ± and
d Ψ ± / d x l 9 which are in a sense the subject of much of this paper: (2.7), (2.15), (2.16),
(5.5), (5.7). D

The alternative argument that reduces the problem of the eigenvalue gap to
eigenfunction asymptotics is based on Temple's inequality (1.15). This shows that
accurate trial functions lead to accurate estimates of eigenvalues, and gives useful
bounds on the errors. In order to apply this argument, it is necessary to first get
some information about exponential fall-off of eigenfunctions. Much has been
done in this field, and the results given below overlap earlier ones to a great extent,
especially for n = 3. They are proved here because they are tailor-made for the
subject of this article, and so that the exposition is self-contained. An early bound
of the type of Lemma (2.6) is due to Slaggie and Wichmann [27]. See also the work
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of ShnoΓ quoted in Glazman, [28], and [29, 22, 30, 31]. The quickest way to the
result uses a subharmonic comparison theorem of Deift et al. [30]:

Lemma (2.5). Suppose that S is a closed set, F^FF^O on IR"\S, and f and g are
continuous and A\g\ ^ V\g\ and Δ\f\ ̂  W\f\ (in the distributional sense}. If \g\ ̂  \f\ on
dS and f and g-+Q as x^oo, then \g\^\f\ on W\S.

Lemma (2.6). Let h, e, Φ, etc. be as in (1.9)-(1.14), and suppose that Vei^ is
compactly supported. Then there exists a constant C < oo such that

|Φ(x)|^CG0(x;β), (2.7)

where (-Δ- e)G0(x e) = ό"(x).

Proof. It is known [22, 32] that under these conditions on V the eigenfunction is
bounded, | |Φ| | 0 0<oo, so the bound (2.7) only needs to be shown for
x<£K = {x:dist(x, suppF)^!}. This follows immediately from Lemma (2.5) and
Kato's inequality, because G0 and Φ solve the same equation on the complement
of K. Since elliptic regularity makes Φ continuous and bounded on dK, C may be
chosen large enough that CG0 dominates Φ there (G0 is strictly positive). Π

The simplest double-well problem to analyze has two symmetric, compactly
supported wells. The following theorem will seem familiar in chemical circles.

Theorem (2.8). Let Vεi^ be supported in a compact set K, and define h, Hf, etc. as
before. Then

2fιe)); (2.9)

and therefore

E_-E+ = -4N2(Φ\VT_2f^Φ) + 0(G2(2f;e}). (2.10)

Note that Λ^l/j/2, and

2f;e)) = o(f-n). (2.11)

Vn<oo, so unless there is a miraculous cancellation in (Φ\VT_2f&Φ), to leading
order,

£_ -E+ - -2(Φ|FT_2/^Φ). (2.12)

Remark. To leading order, E+ is what perturbation theory would predict for the
eigenvalue if the second well were treated as the perturbation of the first.

Proof. By (1.21),

\ \ ( H f - e ) F ± \ \ = \\Nf(l±<H)TfVT_2f<%Φ\\

^2Nf\\V\\2sup\T_2f@Φ\.
xeK

By assumption | |F| | 2<oo, and by (2.7),
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Temple's inequality (1.15) applied to the restriction of Hf — e to the even and
respectively odd subspace under & states that

E±=(F±\HfF±) + 0(\\(Hf-e)F±\\2)

2f',e)), (2.13)

because the restriction makes the isolation distance of E± at least 0(1) in / Then,
from (1.19),

= e± 2N2(Φ\ VT_ 2f&Φ) + 2N2(TfΦ\@TfVT

and

yielding (2.11). (In the last line, T_f& = &Tf was used.) Π
For comparison, a weaker form of (2.11) will be derived using the first method,

Theorem (2.1). For this purpose it is necessary to modify Lemma (2.6) to show
exponential fall-off of eigenfunctions away from double wells.

Lemma (2.14). Let V be as in Theorem (2.9), and let HfΨ± =E±Ψ±. Then there
exists C< GO independent of f (but conceivably depending on ε). such that if distance
(x, K2)^ε>0, K2 = K ( f ) v 3 t K ( f ) , where Jί(/) = {x:x + /e1eK} and MK(f) is the
reflection of K through {x1=0}, then

x-/e1;£±)} (2.15)

and

|3ίP±/δx1 |^C{G0(x-h/δ1;E±) + G 0(x-/g 1;£±)J. (2.16)

Proof. These two estimates would follow from essentially the same proof as for
(2.6) except for the independence of C on /, because Ψ ± and dΨ ±/dx1 satisfy the
same equation as do G0(x±/e1 ;£±) on the complement of K2. The bound and the
constancy in /, however, follow from the Lippmann-Schwinger equation for Ψ + :
Dropping the ± for convenience, the time-independent Schrόdinger equation is
equivalent for Vei^ to :

y. (2.17)
K

The only singularity of G0(x — y) is at x = y, and is not attained in the integral.
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Therefore,

\Ψ(x)\^sup\G(x-y;E)\\\WΨ\\,

<2 sup G0(x-y;£)4- sup G0(x-y;/)j ||F||

giving (2.15), because the subharmonic comparison Lemma (2.5) allows G0(x — y)
to be dominated by G0(x), which solves the same equation away from K and 0.
The other bound follows similarly from the differentiated Lippmann-Schwinger
equation,

dΨ(x)/dxl = - Ψ(y)dny, (2.18)

which is justified for Ψ by elliptic regularity outside of K2. Thus

\Ψ(x)/dXί\^ sup |<3G0(x-y;£)/δx1 | + sup \dG0(\-y;f)/dx1 \\W\\2

again by subharmonic comparison by (2.5) and the fact that G0 and δG0/dx1

satisfy the same equation away from their singularities. Π
These a priori bounds on the fall-off of the eigenfunctions allow bounds on the

eigenvalue gap to be derived from (2.3) even if nothing else is known about Ψ ±.
For large |x|,

(2.19)GO (x ;;..)- const xΓ ("~ 1 ) / 2exp(- |/^I|xl)

[33]. If n— 1, then (2.3) contains no integral, and states that

and the same estimate follows when π^2, because

| x Γ " + 1 e x p ( - ( J - E _
{*!=/}

00

^ const' J 4>ρ"~2exp(-(j/-£_ + J/-JE

T^2+/2)/te2+y2) ( π"1 ) / 2, (2.21)

by transformation to polar coordinates, and the integral of (2.21) can be shown to

be 0(exp(-(j/^£l+ ]/-£ + )/).
An advantage of Temple's inequality is that strict symmetry under M is not

required. Consider two single-well Hamiltonians h1 and h2, with |F l j 2 | bounded
and of compact support, and such that hί and h2 have a common, isolated,
nondegenerate eigenvalue e\

h1Φ1 =eΦ1
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Define Lf= -A + T_fVίTf+ TfV2T_f = - A + Vr+ Vl9 the Hamiltonian having the
sum of the two single-well potentials after translation by ±f in the ^-direction.
Then, as before, for / large enough Lj has exactly two eigenvalues near e, which
converge to e as /->oo. Moreover, the asymptotics of the eigenvalue gap are
similar to before :

Theorem (2.22). Let E± be the two eigenvalues associated with e, E+ (/)-»£,
E_ ^E + . and

J ψ _ IT ψ
^fτ ± ~~ ± ±

Suppose that

\(Φl\ Wl + KΦrl Wl - θ(fn{(Φr I VrΦt) + (ΦJ VtΦr)})

-+0 (2.23)
for all n<cc. Then

E_-E + = -{(Φr|KrΦ() + (ΦJW}(l +<*/-")) (2.24)

for all n<co.

Remarks. 1. The restriction to bounded V is for convenience (but compact support
is essential).

2. The conditions (2.23) on estimates involving the unperturbed problem are

typically true and easy to verify. The right side is ordinarily 0(exp( — 2 ]/ — ef) and

the left side is ordinarily 0(exp( — 4 ]/—ef). There could be difficulties if Φr l has a
nodal surface along the Xj-axis or under peculiar circumstances leading to a
cancellation on the right side.

Proof. The general fact of convergence is again left to the references. Instead of F±,
consider the set of trial functions of the form

z = T^2, and Φr = T__fΦλ.

It is straightforward to see that

[H - e] Fα

± = N/ f β f ± ( l/ί KΓΦ, ± 1/Γ ĉ V^r) , (2.25)

and if the normalization is such that ||F^.|| = 1, then ||[H — e]Fα

±||-»0. Recalling
the remark to Theorem (1.15), Temple's inequality gives a better upper (re-
spectively lower) bound to E+ (resp. E_) than its lower (resp. upper) bound; for
any α,

(2.26)
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Note that since Φr and Φl fall off exponentially away from Vr and Vl9 the
normalization is Nj tΛt+=Nj ^_+o(f~n)=l+o(f~n) for all n, so it will hence-
forth be set to 1 and the difference will be absorbed into the error term.

At the same time, there exists a particular value of α, say α = /?, for which Fβ

+ is
orthogonal to the exact higher eigenfunction Ψ _ , so the complementary bound for
E+ is improved; consider Fβ

+ a trial function for [H — e] [1 — P_], where P_ is the
projection onto Ψ _, so now E+ is isolated by a distance independent o f/ (unlike
£_-£ ). Then

- 0(|| [H-e

min [...]- 0 max

+ I {(Φ ι\ W + (*rl W) ( 1 + <>(/ " ")) , (2.27)

because of (2.23), (2.25), and because

and similarly for Vfir. The minimum is taken at

α-HOίUΦJF^ + ίΦ^Φ^/UΦ^Φ^ + ίΦ

Inequality (2.27) coupled with (2.26) for α = l/2 implies that

E+=e + i{(Φl\VlΦr) + ( Φ r \ V r Φ l ) } ( l + o ( f - n ) ) ,

for all n, and the analogous argument for £_ gives

so subtraction yields (2.24). Π
It is clear that the proof actually gives an exponentially small error estimate

that would not be difficult to write down.

Note. Sigal and Klaus have separately pointed out in private communications that
(2.12), etc. can also be derived with the perturbation argument of Klaus and Simon
[34]. Since Temple's inequality is one of the ways to derive perturbation theory for
self-adjoint operators [24], this is a closely related argument at a fundamental
level.

III. The Anharmonic Oscillator in One Dimension

This is an important example, and has already received a great deal of attention as
cited in the introduction in particular a leading-order asymptotic formula for the
eigenvalue gap has been proved in [2]. Hence, in recovering the same result using
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the twin methods of this article some niceties will be pretermitted. The standard
double-well anharmonic oscillator may be written

(3.1)

as an operator on L2(IR). It is equivalent to study

- d2/dy2 + W(y;β)=- d2/dy2 - y2/2 + β2y4 . (3.2)

Let σβ(y) be a real-valued eigenfunction of

(3.3)

where χ+ =χ[0 oo)W — 1 if .x^O and otherwise 0. The eigenvalue corresponding to
σβ is E(β)-*2n+ 1 — 1/16/?2. As before, it is known that (3.2) has geminate pairs of
eigenvalues £±, and E± + 1/16/?2 coalesce to 2n-f- 1 as /?-»0. The gap E_ —E+ will
first be estimated using Temple's inequality : Note that

where Nβ is normalization and -» I/ J/2. If y > 0, then σβ satisfies a free Schrδdinger
equation, so clearly

σβ(y) = σβ(0)exp(-\/r'-Ey), (3.4)

and by Temple's inequality (1.15) using Nβ(σβ±ί%σβ) as the trial function,

where ... means that the other terms are o(f~") times the smallest one written.
The exponential smallness of the dropped terms follows from (3.4).

by integration by parts. The task is thus to estimate σ^(0). As can be proved
following [26], a good pointwise estimate of σβ(y) is:

- f y^(W(z}~E)l'2dz\ y- l/2β

for some αe (0,1/2) and constants C and C [and Da(z) is a parabolic cylinder
function]. In words, σβ(y) is roughly a harmonic-oscillator function where the
perturbation is small and is given by WKB elsewhere. The constants can be
determined by looking up the normalization of harmonic oscillator eigenfunctions
[35] and by asymptotically matching the functions at x = β~a, at least to leading
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order. Using formulae from [33] and the integral,

ί Re(W(y)-E)ll2dy= J
-1/20 0

y), y>0,

shows that for y> -l/2β + β~Λ,

e x p - 2 J
-1/2)3

Therefore

_
— +

e x p - 2 j Re(W(y)-2n-l)ll2dy(l + 0(βv)), (3.5)
V -1/2 /

which agrees with [2].
The same result can be reached from Theorem (2.1), which in one dimension

reduces to

E_-E+=2Ψ+(tyΨ'_(Q)/(SΨ_\Ψ + ) . (3.5)

Clearly, for a geminate pair (SΨ_\Ψ + )-+!, and the problem is to estimate the
eigenfunctions and their derivatives. The following fact simplifies the analysis
somewhat :

Proposition (3.7). Let

Φn(x) = (l/πll22nn l)1/2Hn(x) exp( - x2/2) , (3.8)

which is the n-th normalized harmonic-oscillator eigenfunction, i.e.,
(-d2/dx2 + x2)Φn = (2n+l)Φn. Then the eigenfunctions Ψ±(-l/2β,β) and their
derivatives Ψ'±(—l/2β, β) are continuous in β and

Ψ±(l/2β9β)-+Φn(0),

and (3.9)

Ψ'± (l/2]8, jBHΦ (O).

Proof Sketch. This is a known result except for minor details. It is convenient to
think of Ψ ± as an eigenfunction of (3.1) and therefore evaluated at the fixed point
x = 0<=>y = — 1/2/J. An eigenfunction must equal a function of β times the
subdominant (dying) solution as x-+ — oo of the ordinary differential equation it
satisfies. It is known that this subdominant solution is entire in β (and also in E,
regarded as a parameter) [36, 37] for fixed x. The same holds for the derivative,
and the normalization is continuous, so the theorem follows. Π
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Proposition (3.7) means that up to a correction that vanishes as j8-»0, the
problem of estimating ^(x) pointwise is the same as estimating solutions to the
eigenvalue equation required (a) to be symmetric or antisymmetric about x = 0,
which is the same as having a Neumann or Dirichlet boundary condition there
and (b) to have the same logarithmic derivative at y= — \/2β as Φn has at x = 0,
which also amounts to posing a Dirichlet or Neumann condition, depending on
the parity of n, at y = — 1/2/J. But this is just a special case of the reduced problem
of [26], so Ψ+(0) and Ψ'_ (0) can be substituted for from there, which leads to (3.4)
to leading order [cf. (1.5) of [26] and note that the normalization is different by a

factor (l/2)2 = 2].

IV. The Hydrogen Molecular Ion

This is another essentially one-dimensional problem, because of the separation in
elliptic, or more exactly prolate ellipsoidal, coordinates. The simplest use of
Temple's inequality would be to let the trial functions be LCAO, that is,
combinations of hydrogen wave-functions. This choice of trial functions could be
used to prove the coalescence of the eigenvalues as in Theorem (1.11), but fails to
estimate the gap between g and u states, because of the long range of the Coulomb
force. Though Hj makes a simple theoretical model, it actually exists, and beams
of it can be produced in the laboratory [38].

In natural units, the Hamiltonian is (1.10) on L2(IR3) with

F(x)=-α/|x , α>0. (4.1)

The eigenvalue equation HfΨ = EΨ is separable in prolate spheroidal coordinates,
η, ξ, and φ, such that

cos φ (4.2)

In these coordinates, Ψ = Λ(ξ)S(η)exp(imφ\ where

^(l-η2)dS/dη + (-pa + p2(η2-l)-m2/(l-η2))S = Q (4.3)

and

09 (4.4)

and p2 = —f2E, meZ, and the separation constant is written pa, with the benefit of
hindsight. The solutions of (4.3) are studied special functions [39] known as oblate
[sic] spheroidal wave functions, and the ones regular at η=±l are denoted
Smn(~iP>rl)> n^m. Equation (4.4) was studied in [15]. When written in elliptic
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coordinates, (2.3) becomes

= 2

Xn+1(-Φ,0)(2π/2 f Λ(ξ,E+)Λ(ξ,E_)ξ2dξ)

- ί +}}dηSmn(-iP,η)Smn+1(-iP,η)](ξ2-η2)Λ(ξ,E + )
-1 OJ 1

i-η2

= 0,l,2,.... (4.5)

Remarks. 1. Equation (4.5) is an exact formula, for all values of / including the
physical value, in terms of studied functions. Previous formulae appear to be only
asymptotic expansions for /-»oo [17]. (Note that Smk has parity (— l) f c~m and that
in the limit p-»oo there is eigenvalue coalescence for the S"s with n and n+ 1 [39].)

2. The denominator of (4.5) and the parameter a(f\ which has been sup-
pressed, are continuous in / and approach constants as /->oo. Thus, up to
normalization, the eigenvalue gap for H^ is equivalent to a similar property of the
oblate spherical harmonics. In fact, (4.3) is equivalent to a one-dimensional
double-well equation of Schrodinger type, for with S = (l — η2)~ll2ιp and λ = pη,

-^ + {(m2-l)(l/(p-A)+l/^^

(α<0). (4.6)

Let us evaluate (4.5) in the limit /->oo, to compare it with earlier literature. As

+ ..., / A ^(4.7)

(n — m)/2,

l(n — m— l)/2,

and (up to a constant)

S ί-iv( P

n — m even

n — m odd;

2 / 2(l-V2r/2™p(-p(l-η))L(™\2p(l-η)\
_

(4.8)

where L(

v

m) is a Laguerre polynomial ([39], where a= —λmjp — p).
The equation for A reduces in the limit to the analogous equation for the

hydrogen-atom Hamiltonian separated in parabolic coordinates (as does the
equation for S near either end point). Perturbation theory shows that the
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convergence is in the L2 sense, so to leading order both yΓs may be replaced by
their limit in the integrals in (4.5). To be more specific, let Λ = (ξ2 — l)~1/2φ and
then change variables so that ζ = p(ξ — l): then (4.4) becomes

[(1

(4.9)

As /—»GQ, all terms in square brackets [ ]->!, and (4.9) becomes Whittaker's
equation, just as for hydrogen. Keeping terms to 0(l//) = 0(l/p),

~' "N ' 0, (4.10)

where P is a uniformly bounded perturbation, and

b= |/l-

and

The solution φ = Ί κ̂ m/2(2bζ) regular at infinity is also regular at 0, and hence an
eigenfunction for (4.9), when K — (m + l)/2 = 0, 1, 2, . . . . In the limit, 0 becomes [40]

in the L2 sense, (4.11)

and £-» — α2/4/c2, k = v + m + l , v + m + 2, . . . . From the eigenvalue condition and
(4.7), one finds that to 0(\/f\

E=-α 2/4/c 2-α/2/+..., (4.12)

after a little algebra.
By changing variables and scaling,

00 00
7<-)dζ j dζφ2(ζ)/ζ(ζ + 2p)

> o ,!.

$ξ2Λ(ξ,E+}Λ(ξ,E_)dξ
1 0

Thus (4.5) becomes

£--£+-s™(-φ,θ)s_+1(-φ^^^^
0

(4.13)
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The denominator of this is

f2\(ί-η2)Sma(-ip,η)SmΛ+1(-ip,η)dη
0

-»/2 j dη(ί -η2Γ + 1 e~ 2p(l -"\L™(2p(l - η)})2

0

1 0)

α \ v! / m!

because of (4.12) and formulae in [33, 40]. From (4.8) and other formulae in

[33, 40],

Sm,n( - Φ, 0) Sm,n+ ,( - φ, 0)-*4p exp( - 2p) [L<T

->4pexp(-2p)(-2p)2V(v!)2.

Thus (4.5) becomes

!

-exp(-2p)

2v((m-fv)!) 2(m-|-)
exp(-α//fe-fe). (4.15)

(The tilde means that the ratio ->1.)
This agrees with the asymptotic calculations of [17], who use different

normalization and notation. For example, with the ground state, m = v = 0, fe = l,
Eq. (4.15) reads

£_-£+~2α3/exp(-α/-l), (4.16)

which converts to the leading term of their Eq. (46) with α = 2, R = 2f, and an
overall factor multiplying (4.16) by 1/2, from the difference in normalization.

V. Double Wells in n Dimensions without Compact Support or Elliptic Symmetry

Two sorts of n-dimensional double-well Hamiltonians have been considered
above, but each one had a special property that simplified the analysis. The
hydrogen molecular ion has a separable eigenvalue equation, and is thus
essentially a one-dimensional problem like the anharmonic oscillator. The efficacy
of the theory of ordinary differential equations for one-dimensional problems
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makes the analysis much easier than otherwise. On the other hand, with potentials
V of compact support, asymptotic estimates are obtainable by comparison with
the free Schrόdinger equation. It will be shown in this section that similar
comparison arguments can be made in more general cases, at the cost of some
additional labor and some weakening of the results.

Temple's inequality becomes ineffectual unless the potential V falls off very
fast. Recall the proof of Theorem (2.8). The task is to bound

\\(Hf-e)F±\\^0(\\VT_2f@Φ\\),

but if V is not compactly supported, then although the exponential fall-off of Φ
makes VT_2f$Φ very small near x^O (where V lives), it is only 0(V(2feί)) near
x — 2/Cj, (where T_2f&Φ lives). Therefore the error estimates given by Temple's
inequality for the first (or rc-th) order perturbative correction to the eigenvalue
swamps the eigenvalue gap. This difficulty was avoided for the anharmonic
oscillator by looking to the ordinary differential equation, a tactic not available in
general.

It is, however, possible to refine Lemma (2.14) for the case at hand, giving
exponential fall-off for the actual eigenfunctions Ψ ±. The comparison Lemma (2.5)
can be used to bound \Ψ ±\ and \dΨ ±/dx^\ by const {G0(x-f/e l5

£±+5) + G0(x-ye l5 E±+δ)} for any <5>0, providing that V falls off as |x|-*oo,
but it is not immediately clear that the constant is independent of / Thus it is first
necessary to have a crude, /-independent bound on Ψ± and their derivatives,
uniformly in x. Kato [32] and Herbst and Sloan [41] have proved bounds of the
right type. The first proposition of this section states the appropriate bound for the
double-well eigenfunctions :

Proposition (5.1). Let Vei^, where q of Definition (1.6) is >n/2 if n^4. Then, with
Hf, Ψ±, etc. defined as in Sect. 1,

(5.2)

for a constant C(n) independent of f.

Remarks. 1. One way to prove this is to use the Lippmann-Sch winger equation
(2.17) and the Green-function estimates:

G0(x,£)eLg(Rn) for £<0

and

1 ̂ q^ co,n= 1

, w = 2; (5.3)

and make repeated applications of Young's inequality.

2. It is not difficult to weaken the assumptions on V to membership in one Lq

space, q as in Definition (1.6), in which case C depends on q, and if q — n/2, n>4,
then the bound (5.2) only holds for x— /ex and x-f/e^JB, where B is some fixed
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ball centered at x = 0. Constants C(n) or C(q, n) could be computed in terms of Lp

norms of G0 and V.

Corollary (5.4). Let VE i^s. Then for arbitrarily small, positive δ, and x outside balls
(this phrase will be an abbreviation for the kind of restriction on x in the previous
remark),

|!P±(x)|^const{G0(x+/819£±+<5) + G0(x-/S l 9£±+(5)}. (5.5)

Proof. This follows directly from Proposition (5.1) and the comparison Lemma
(2.5); Choose balls large enough that

\ Ψ ± ( x ) \ ί C ( n ) (5.6)

and |VP(x)| <δ for x outside them. Since Ψ± is bounded on the surfaces of the balls
independently of/, it is dominated by a large enough constant times {G0(x-f/e1?

E± +(5) + G0(x— /el9 E±+δ)} there, and hence everywhere outside the balls by
Lemma (2.5). Q

Proposition (5.7). Under the same conditions,

Proof. Unlike (2.16), this does not follow immediately from (2.5) as for Ψ±(\)ι
dΨ ±/dx1 satisfies an inhomogeneous differential equation, with an extra term
Ψ±dW/dxi. However, it follows from the differentiated Lippmann-Schwinger
equation :

dΨJdx, = $(dG0(x-y,E)/dx1) W(y) Ψ±(y)d«y

ί + ί + ί , (5-8)
yelarge balls = M | y ~ x | ^ l other y

where the balls are large enough that W is bounded outside them. Suppose the
distance from x to M is at least 1. Then

f (δG0(x-y,
yeM

yeM

x-/e1,£±)} (5.9)

(where χM is the characteristic function of M) and

J

axJIi sup \W(γ)\ sup |!P + (y)|
| y-x|^ι |y-χ |^ι

^const{G0(x+/e1,£±+(5)-fG0(x-/e1,£±+(5)}, (5.10)

by (5.5) and the fact that for |z|^2 there is a constant C such that
G0(z/,£)^CG0(z,£) for all z satisfying |z;-z|^l.
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For the remaining integral, note that for z away from zero, G0(z, E + δ) is

essentially exp(— ]/ — E — δ |z|), because the coefficient of the exponential part of
G0 varies as an inverse power of |z|, and is easily dominated by a small change in δ.
Likewise for dG^/dx^. So, from the triangle inequality,

(5.11)

for δ1 = y — E — ]/ — E — δ

which implies that

+ G0(x-/e1,£±+«5)}. (5.12)

Thus the remaining integral is bounded by

const {G0(x+/e1,£±+«S) + G0(x-/e1,E±+(S)} J G0(x-y, -^
other y

which completes the proof. Π
A more careful analysis would show that δ may be set to 0 if V falls off

sufficiently fast. In any event, once fall-off of this sort has been proved, it is
straightforward to bound the eigenvalue gap, since

£_ — E ^ const+ J Ψ + (x)dΨ_(\)/dxld
n-ίx

- O (exp ( - 2 y~e-δf}\ n = 1 ,

and otherwise

(5.13)

(These constants, which are of course not all the same, could be made explicit in
terms of the various norms of V and G0. They are complicated unless V is specified
more narrowly.)

VI. Conclusion

A number of related facts about geminate pairs of eigenvalues and eigenfunctions
of double-well Hamiltonians have been proved, principally with the goal of
deriving and evaluating formulae for the differences of the eigenvalues. The
asymptotics of these gaps are simply proportional to certain asymptotics of the
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eigenfunctions this is important because solutions of differential equations have a
rich functional structure, from which it is possible to extract a great deal of
information. At the risk of making this article as tedious as a twice-told tale, I have
used two different, but often intertwined, analytical aids to spin out the theory of
geminate eigenvalues for the strengths of the two tools are complementary, and it
is only with both that the theory is comprehensive enough.

There remain a few gaps and unresolved related issues. What happens when
the potential is not quite symmetric or when one well lies slightly above the other?
Can the upper bounds (5.13) be proved to be asymptotically optimal, especially for
excited states? It is likely that the methods of this paper cast some light on these
questions. The question about what happens as n->oo may be more difficult.

Acknowledgements. The inspiration to work on these problems was the conference "Mathematical
Properties of Wave Functions" held at the Zentrum fur interdisziplinare Forschung in Bielefeld,
Federal Republic of Germany, November, 1978. Conversations with John Morgan, Rudi Seiler, and
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