
Communications in
Commun. Math. Phys. 74, 273-280 (1980) Mathematical

Physics
© by Springer-Verlag 1980

The Lipatov Argument
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Abstract. Lipatov's argument gives a formula for evaluating asymptotically
the large order perturbation coefficients for the anharmonic oscillator or (φ4)
quantum field models. We give a partial justification of the argument which
enables us to prove that the radius of convergence of the Borel transform of the
pressure for lattice φ4 models given by

exppnf j i Σ UVΦfiJ) + 0(/)2] - log Σ ΦiΐΆ- Ά

Let E(λ) be the ground state energy for the anharmonic oscillator

It is well known that E(λ) has an asymptotic but divergent series in λ

00

« = 0

We shall discuss the behavior of an for large n.

In 1973 Bender and Wu [2] developed W.K.B. techniques to obtain asymp-
totics of the form

(2)

with explicit expressions for Co, Cv and α. Recently Benassi et al. [1] have
rigorously established (2) along the lines of Bender and Wu. Several years later
Lipatov [5] developed steepest descent methods for functional integrals which he
and Brezin et al. [3] applied to quantum field models to obtain results analogous
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to (2). In [4] it is shown that these asymptotics together with the Borel transform
yield impressive numerical calculations of critical exponents.

This note provides a partial justification of Lipatov's method. We shall show
how Laplace asymptotics combined with some simple inequalities on the graphs
contributing to an are sufficient (modulo technicalities discussed later) to compute
the radius of convergence of the Borel transform

The radius of convergence is

a ~1/n

lim - 7 =C« — exp infF(φ), (3)
H->00 ft'

where

Actually here one can explicitly solve the corresponding Euler equation to show
that the minimizing φ is proportional to sechx. Our methods might be sharpened
to obtain α and C o in (2) and we expect them to apply to the φA model in two space
time dimensions. In fact we shall prove the analogue of (3) for lattice φ4 models in
any dimension where E(λ) in (1) is replaced by the pressure

where dμ is the lattice free field with covariance ( — A + 1 ) " 1 and A is the lattice
laplacian.

We now briefly discuss Lipatov's argument. We shall concentrate on the
anharmonic oscillator and discuss other models in the remarks. Let
Ωo = exp — x2/2. By the spectral theorem

E(λ) = Hm - lψ <Ω0, e
TH^Ω0}LHR). (5)

Let dμ be the Gaussian measure with covariance ( — d2/dx2 + 1 ) " 1 i.e. an Ornstein
Uhlenbeck process. Lipatov now fixes T in (5) and studies the large order
perturbation coefficients bΎ

n of

(Ω0,e-THiλ)Ω0}= dμ

by applying steepest descent jointly in φ and λ to the formal relation

This contour integral representation is very useful for interactions in which the
coupling constant does not appear linearly (e.g. in a double well) but is difficult to
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justify. Instead we use the simple identity

V (6)

The following lemma shows that for fixed Tthe log in (5) does not affect the large n
asymptotics. Hence it suffices to study bΎ

n.

Lemma 1. Let f(λ) be infinitely differentiable for λ>0 with a Taylor expansion

(7)

Then the corresponding coefficients an o/log(l+/(λ)) also satisfy (7).

We omit the elementary proof, but we shall present the proof of a closely
related lemma at the end of this article.

Now once the asymptotics of bζ have been obtained one then takes the T-+ oo
limit and (2) follows.

There are two major mathematical difficulties in the above outline. The first
one is to obtain large n asymptotics for fixed T by Laplace's method in function
space. For Weiner integrals such methods have been investigated by Schilder and
Pincus [6,7]. See also [8] for a discussion of the particular case considered here.
However, to obtain asymptotics as sharp as (7) present mathematical techniques
require isolated non-degenerate minima. Notice that for periodic boundary
conditions there is a one parameter family of minima.

The second major problem concerns the interchange of the large n and Tlimits
which was crucial to the above argument. The main purpose of this note is to show
how to resolve this difficulty by studying the graphs which contribute to an in
perturbation theory.

By standard perturbation theory an is the sum of all connected graphs y having
n vertices and with precisely 4 lines attached to each vertex. To each line of y
joining the ith vertex to the / h vertex one associates a factor of

Thus

I +F/2
an = lim T/ Σ ί πy Gixt- *,)<**i dxn, (8)

V^co V γ _ v / 2

where Πγ ranges over the lines of y. Now fix an interval [— T/2, T/2] and let GD, GP

denote the Green's function with Dirichlet and periodic boundary conditions on
the boundary of /m = [(m- l)T/2, (m+ l)T/2], m e l Note that

y)
+ 00 ^ '

X G(x-y + nT) x,yelo.



276 T. Spencer

Let dμx be the Gaussian measure with covariance Gx and define

logjjexpf-Λ 7 φ\s)ds]dμx\
I L - r / 2 J J-Γ/2

I T/2

= ^Σ ί ΠyGx(xi-x)dx1...dxn
1 γ -Γ/2

and also let
Γ + Γ/2Γ + Γ/2

J
L-Γ/2

Lemma 2. For α/ί n and T

aζ^<*«^<' (10)

This lemma enables us to fix Tand analyze a* or equivalently bζ'x for large n.
Suppose that one can prove

where

Γ/2 Γ/2

- Γ/2 - Γ/2

When I = P w e identify T/2 and — T/2 and when X = D φ is required to vanish at
+ T/2. The above result is elementary to establish for lattice φ4 models since the
corresponding integrals are finite dimensional. For the anharmonic oscillator the
methods of [7] yield this result except in the case of periodic data where there are a
continuous family of minima which violates a technical condition of [7]. After
dividing both sides of (10) by n\ and taking the nth root we have

n 1/n

fiD,T< ]:m

 un <rp>τ

\^s Λ ^ 1 1 1 1 1 — ~ ~ ^ l ^ <

n->oo n\

We shall show later that for lattice models

lim C f τ= lim CP

1>
T = C1 (11)

which gives the desired result (3).
Proof of Lemma. If we replace G by GD in (8), the resulting expression is clearly
smaller by (9). Since GD(xi9Xj) vanishes whenever xf and Xj belong to distinct
intervals Im we see that by translation invariance with respect to nTwe can replace
V by T. Thus the lower bound holds.

To prove the upper bound we use the obvious identity (for V=MT and x 1 =0)

v

-v

ΠyG{xi-x)dx2...dxn

Γ/2

= Σ ί ΠyG(xi-xJ + (ni-nJ)T)dx2...dxn, (12)
Πj eZ - Γ / 2
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where n1 = 0 and \rij\SM. By (9) the corresponding periodic graph is (with xx =0)

Γ/2

X J ΠyG{xi-Xj + mijT)dx2...dxn. (13)
mlJe% -Γ/2

It is easy to see that each term of (12) appears in (13) (but not conversely). Since all
terms are positive the proof is complete.
Remarks. The proof of the above lemma also applies with only minor modifi-
cations to φ 4 models on a lattice Έ and to the continuum (φ4)2 model. In the case
of (φA)2 we normal order the interaction with respect to the underlying Gaussian
measure dμ or dμx. The graphs are described as before except that lines linking a
vertex to itself are not allowed. The methods of this note are not restricted to the
study of the ground state energy or pressure. They apply equally well to the
perturbation theory of Schwinger or correlation functions. By arguments anal-
ogous to those of Lemma 1 it suffices so show that

The proof of Lemma 2 depends heavily on the fact that all graphs contributing
to a fixed order have the same sign. For this reason we cannot provide a similar
proof in the case of the double well anharmonic oscillator. For the (φ 4 ) 3 model
there is also a difficulty arising from the mass counter term which makes the signs
of the corresponding graphs difficult to determine.

The rest of this article is devoted to the φ4 model on a lattice Έ. Let Δx now
denote the finite difference Laplacian with boundary conditions X = P or D and
define

[ T TV
— —, -r- n Γ . By scaling φ(j)-+ ]/nφ(j) we see that

n\bx

n = ^ΣΦ(J)4rdμx

= n^2n2»Z~1 j e x p [ - nFτ

x{φ)~\ f ] dφ(j),

where

Z ^ = jexp[-<</>,(-^+!)</>>] Π dφij).

There is a positive measure da(t) such that

f e x p [ - nFτ

x{φ)-\ \[ dφ(j) = \ e~ntda{t).
JeΛ

Clearly

(f e~"ί
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However this estimate alone is insufficient to yield the corresponding estimate on
an. Higher order asymptotics in finite volume are difficult to establish because we
need to know uniqueness and non-degeneracy of the minima of F^(φ).
Nevertheless, the following lemma will enable us to obtain the desired asymptotics
on a*-Γ.

Lemma 3. Let U(λ) be a C00 function of λ^.0 with a Taylor series

u{λ)= Σ M n

n=l

If there is a positive measure doc(t) whose support is bounded from below such that
§e~tdot(t)< oo and

Then the Taylor series of log(l + U{t)) = Yjanλ
n has coefficients which satisfy

Proof Using the series for log(l +x) it is easy to show that

n ( i\m+ ί m

«»= Σ ^ ^ Σ UK-
m = l m m + ...+nm = n

To prove the lemma we must bound

oo / i\m+ 1 m
[Jl- Σ UK

( '

By a change of variables we may assume

O = infsuppJα(ί)

hence

Const ^\e-tnda{t)^e-nε\

where εn->0 as n-*co. Now using the above bound and the log convexity of
\e~ntda(t) we have
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These estimates combined with Stirling's formula yield

m

Y]bn Const™ Y]n.\nP+1/2

1 L nι < i l l i /-j i \(n-max(«i))

bn = m nlnp+ί/2 U + j

In order to bound the sum over n. let us relabel the index i so that nί is maximum
of ni i.e.,

m

n1 = n— Σnί = nj J = 2,3,. . . ,m.
2

Now observe that for |ε| ̂  J

^ ( r - l ) ! Const.

Iterated application of this inequality yields a bound on (14)

m^ί i2=2,3,...,m

(n-m+l)\

The sum over m ̂  2 shows

To conclude this note we verify (11) for φ 4 theories on a lattice Zv. Since

ΣΦ(J)^(ΣΦ(J)2)2

it is clear that there is a constant M independent of T such that

When X = P we interpret the sum as a sum over the torus. Now let φP(j) minimize

jpj among periodic functions. By (15) we see that Σ Φp(j)2 S Const hence there is a

JίJi J* s u c n t n a t f° r e a c n z = v

Σ M')2+ Σ ^
j:ji = jt j ' ji = jt 1

Since translates of φp also minimize FP we can choose jf = + T/2. Now define

Φ'U) = Φp(J) \ίi\<T/2 for all ί

= 0 \j.\ = τ/2 some ι.
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From (10) we have

since φ' satisfies Dirichlet boundary conditions. Since

The first equality of (11) follows. The second can be established similarly.

Remarks. From recent work of Gidas, Ni, and Nirenberg, the φ which minimizes
F(φ) of (4) decays exponentially at infinity (provided that the dimension is less than
or equal to 4). Using their methods one expects that

Cy-C[>D (16)

goes to zero exponentially fast with T.

In order to establish the coefficients C o and α of (2) we propose that one take T
to depend weakly on n, e.g. T=(nε). Assuming (16) goes to zero exponentially fast
in T we have

It then remains to justify a modified Laplace expansion in which T& (nε). Formally

one obtains (2) but with 0 1 - replaced by O(n~ε), for small ε>0.
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