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Group-Theoretical Interpretation
of the Korteweg-de Vries Type Equations

F. A. Berezin and A. M. Perelomov

Institute of Theoretical and Experimental Physics, SU-117259 Moscow, USSR

Abstract. The Korteweg-de Vries equation is studied within the group-
theoretical framework. Analogous equations are obtained for which the many-
dimensional Schrodinger equation (with nonlocal potential) plays the same
role as the one-dimensional Schrodinger equation does in the theory of the
Korteweg-de Vries equation.

1. Introduction

Let ^ be an arbitrary Lie algebra, et be a basis in @9 C\. be the corresponding
structure constants, ^ be the space of linear functionals on (S. Denote as eι the
basis in # which is dual to et and as xt the coordinates in # with respect to the basis
e\

In the space 3F of infinitely-differentiable functions on # consider the
operation

[/, 0]p. B . Ξ {/> Q) = Σ c)k * ^ / dko, &=d/dxj. (l)

It was shown in [1] (see also [2-4]) that the operation (1) turns the space of the
infinitely-differentiable functions on # into the Lie algebra. It is natural to call it
the Poisson bracket algebra associated with the Lie algebra ^ .

To each function / ( X ) G J ^ and to each xe$ the element Vf(x)e& is put into
correspondence according to the relation

(3)
ί = 0

With the use of the mapping V the Poisson bracket (1) may be rewritten in the
coordinate-independent form

where [_Vf{x\ Vg{x)~] stands for the commutator in 0.
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If there exists a scalar product (x, y) in the algebra ^ which is nondegenerate
and invariant under the adjoint representation then the space # may be identified
with ^ via the relation

(y,x} = (y,x), (5)

where xef , ye#, y is the element of ^ and to be identified with y.
The invariance of the scalar product yields the identity

c,α]) = 0. (6)

Therefore, in this case

= -(rg,lvf,x]), (7)

where x e # is identified with x via (5).
Consider the dynamics created in ^ by the Hamiltonian function H and use the

identity (7) to transform the equations of motion

^ = / = {H,f} = (x, ίVH, Vf\) = (Vf, [x, VH]) •

Consider the j-th coordinate of the element x = Σxjβj with respect to the basis
ej as /

It is evident that for any

dxj

Therefore xj= —— = [x, VH~]j. By multiplying this equality by e} and summing we

find that

x = [χ5 pΉ] . (8)

Therefore the equations of dynamics in ^ are always reducible to the special
Lax form

x = [x ,M], M=VH. (8')

In view of the evident analogy with the equations describing the rotation of
rigid body around a fixed point, the form (8) of the equations of motion will be
called the Euler equations below.

The considerations given above were presented in [5] in connection with the
models of Gross-Neveu type. It was noted there that the Korteweg-de Vries
equation is also treatable within the same scheme, a infinite-dimensional analog of
the real symplectic algebra playing the role of ^ .

In the present paper we are describing this algebra and are showing how the
Korteweg-de Vries equation can be obtained and studied with its aid.
Simultaneously we obtain equations analogous to it which have the same relation
to the many-dimensional Schrodinger equation (with nonlocal potential) as the
Korteweg-de Vries equation to the one-dimensional Schrodinger equation.
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It should be emphasized that in the cases under consideration the dynamics is
developed not on the whole orbit but on its intersection with some manifold which
has somewhat complex structure.

In terms of this submanifold one can also describe the inverse scattering
method for KdV equation. This will be done elsewhere.

2. Abstract Symplectic Algebra

Let if be a real Hubert space. In case if is realized as J£2(M, dx), where M is a set
with the measure dx, we shall give linear operators in if by kernels:

(Kf)(x)=SK(x9y)f{y)dy9 (9)

K(x, y) may be a function or a distribution.
Denote by Jf the direct sum of two copies of the space if: $?=

Elements of Jf7 we shall write as colomus / = K1 j , f^g, (fj) = (f1ji) + (f2j
where {fpf) is the scalar product in ^£. ^2'

Linear operators in JΊ? can be naturally written as second order matrices whose
elements are operators in ^£:

j i j k k
k

Consider the skew-symmetrical bilinear form in the space

= {f9τg)9 τ= A . (11)

Denote as Sp(M,IR) the Lie algebra consisting of real operators in Jf that have
the common domain of definition and leave the form (11) invariant: AcSp(M,ΊR)
if Aτ + τA' = 0 or, equivalently

A22= — Aγγ, ^-12= ^12' ^-21~^21 (^)

The asterisk stands for Hermitian conjugation. We shall refer to Sp(M,IR) as the
abstract real symplectic algebra. In case dim if = n<oo it reduces to finite-
dimensional symplectic algebra Sp(2rc,R).

The elements of Sp(M,IR) can be written in the form

B+=B, C+=C. (13)

Besides the algebra Sp(M,IR) we will consider also the algebra Sp2(M,lR), that
consists of Hilbert-Schmidt operators of the form (13). [For an operator A of the
form (10) in Jf to be a Hilbert-Schmidt operator it is necessary and sufficient that
Ajk be Hilbert-Schmidt operators in S£^\

Note that there exists an invariant scalar product in the algebra Sp2(M,R). It
has the form

2 ) . (14)

Note also that when K is integer and nonnegative one has

L2*eSp(M,]R), L2*+1eSp(M,IR) and Sp(L2*+ 1) = 0. (15)
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3. Abstract Korteweg-de Vries Equation

Let H(L) = H(A,B,C) be a differentiable function in the algebra Sp(M,R). Let us
realize the space J£ in one or another way as J£2(M, dx). In this case H(L) turns
into a functional of the kernels A(x, y)9 B(x, y\ and C(x, y) of the operators A, B,
and C, respectively. Denote as dH/dA the operator in if defined by the kernel
(dH/dA) (x, y) = δH/δA(y, x). Define analogously the operators dH/dB and dH/δC.
One may easily see that VH(L) e Sp(M,R) has the form

dHV dH (dHV dH

1 dH

ΪJA

dH

dB

1

~2

dH

δC

IdH

\dλ

X (18)

Consider as H the following function

Its gradient, according to the general equation (16), has the form

_/i B
\C -A

where

(19)

In accord with (8) the equation of motion in Sp(M,IR) determined by the
Hamiltonian (17) has the form

L=[L,FίΓ| . (20)

Consider the manifold JΓcSp2(M,IR) consisting of elements of the form

L = { c A)

Denote temporarily the r.-h. side of (20) as U=( X 1 1 2 j . The direct
\U2ί U22/

calculation shows that from (21) it follows that Uίl = Uί2 = U22 =0. This implies
that the manifold CfC is invariant under the dynamics (20). The operators A, B are

the first integrals while C develops in time: L{t) = I I, A = const, B = const.
\C(ί) A)

After calculating the element U2ί we find that Eq. (20) with the condition (21) are
equivalent to the following equation for C:

C = IA\ C] + 3A[C, A]A + 3B[C2, A~\

= [^[^[^,C]]]-3B[AC 2 ] . (22)

Equation (22) will be referred to as the abstract Korteweg-de Vries equation.
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Let us pass from the algebra Sp2(M,R) to the algebra Sp(M,R). Denote the
operator in the r.-h. side of (18) as

A B

C - i +

where A, B, and C are given by Eqs. (19).
There is no invariant scalar product in Sp(M,IR). Therefore there does not exist

the function H on Sρ(M,R) such that M—VH. We may nevertheless consider the
equations of motion

L = [L,M] (24)

the conditions (21) being meaningful as before. Once they are fulfilled the
operators A and B serve as first integrals and Eq. (24) proves to be equivalent to
(22).

Note that it follows from (21) that the eigensubspace for B is invariant under
the operators A and C. Therefore Eq. (22) reduces to the case when B — λ% i being
the unit operator. Finally, it is reduced to the case B = ί by the substitution

4. Auxiliary Spectral Problem and the First Integrals
for the Abstract Korteweg-de Vries Equation

Consider Eq. (24) and assume that such operators Lv R, and S, L1 = 0 exist that

LJ. (25)

/ ψ (χ Λ\

Let the vector function Ψ(x, t)= * ' satisfy the equation

(L-L 1) 'P = 0, (26)

where L is the same operator as in (24). By differentiating (26) with respect to t and
using (24)-(26) one finds

dΨ
Lί)-~-

In other words, the function

+M + R)Ψ (27)
dt j

also satisfies Eq. (26). We shall see below, that in the case of the conventional
Korteweg-de Vries equation relations (25) and (27) create the wellknown method
of investigation of this equation by means of the inverse problem of the scattering
theory [8].

Let us assume now that the operator S in (25) is equal to (— JR)

IL19MΓ\ = IL-L19K]. (28)
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Consider the theory associated with the algebra Sp2(M,lR). In this case it follows
from (28) that the functions

I^SpiL-LJ* (29)

serve as first integrals for Eq. (24).
Indeed it follows from (28) that another L — M pair should exist and be

equivalent to the first one

£ = [ A M ] , (30)

where

L = L-L^ M = M + R (31)

whence the above statement follows.
We have considered the spectral problem only in one point. It is more natural

to consider this problem with a spectral parameter λ included

L(λ) Ψ = {L-λL1) Ψ{λ) = 0. (32)

Demand that the Lax equation (30) with L = L-λLv M = M + /LR be fulfilled in
this case, too. Then, instead of (28), the two conditions

\_LVM-\ = IUK\ (33)

and

ίLl9K]=0 (34)

must hold. The number of integrals of motion increases since now

λLίY=Σln,kλ
n-k (35)

and the quantities Ink (fc = O, 1,..., n) are integrals of motion. Note that this trick
was first used in [6].

We are going to show now that with any operator L l 5 irrespective of relation
(28), the functions In(λ) (respectively In k) are in involution. This is a consequence
of a general circumstance that was as a matter of fact first pointed in [6] (see
also [7]).

Let ^ be an arbitrary Lie algebra with invariant scalar product, P(x\ Q{x) be
functions on ^ invariant under the adjoint representation, λvλ2 be arbitrary
numbers, aeΉ. In this case

{P(x + λ1a),Q(x + λ2a)}=0 (36)

Proof. Let f(x) be an arbitrary function on

d
-/(exp(ί ad(j;)) x)

The latter equality follows from (6). In particular, if/(x) is an invariant of the
adjoint representation the l.-h. side is equal to zero for any y. Therefore

[x,r/(x)]=0. (37)
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Let P(x), Q(x) be functions invariant under the adjoint representation. From (37),
(6) in follows that

{P(x\Q(x)}=0.

Analogously {P(x + a\ Q(x + a)}=0. Consequently

for any μvμ2. By replacing x by x + λ, a and y by x + λ2a in this identity and
putting x = μx(x + i 1 α) + μ2(x + λ2a) we conclude that

at λ1Φλ2. With the aid of the obvious limiting transition one finds that (38)
remains valid also if λ1—λ2. Equation (38) coincides with (36) owing to the
definition of the Poisson bracket1. By setting P = Im,Q = In in (36) one comes to the
necessary result.

Note that from Eq. (37) it follows an important consequence for the Sp(L*)-
type Hamiltonians the equations of motion have the trivial form: L = 0. In case
one considers not the Sp2(M,IR)-theory but the Sp(M,R)-theory the traces do not
exist. Nevertheless, the above consideration does not lose sense completely. It
indicates that the first integrals should be looked for in the form (29) [or (35)], with
the traces understood, however, in the regularized sense. The specific form of this
regularization depends on details. It may be scarcely pointed in general form.

In concluding this section we give a nontrivial solution of the Eqs. (33), (34)

0 -ί j ' [o -A:

[one should use (21) when verifying it].

5. Classical Korteweg-de Vries Equation
as a Particular Case of the Abstract One

Take the space if2(IR1, dx) for if, where dx is the conventional Lebesgue measure
on a straight line, and the operators A = dx = d/dx and B = i for A and B, (Cf) (x)
= j W{x, y)f{y)dy, C+ =C2. After substituting these values of A, £, and C into (22)

1 Apart from (36), another essential consequence follows from (37):

[FP(x),FQ(χ)]=0. (*)

This relation is evident for regular x, i.e. for those x which obey the following condition: the relations
[a, x] = 0, [b, x] = 0 lead to {a, έ»] = 0. The theorem is wellknown that if ^ is a fmite-dimensional Lie
algebra with nondegenerate invariant scalar product each its element is a limit of regular ones. Thus the
relation (*) via the limiting transition may be extended to all the elements of 0.

In the infinite-dimensional case no analogous general theorem is known and thus a verification is
needed in every given situation. For example, the theorem retains its power for the algebra Sp(M,lR).
The corresponding convergence should be understood in the sense of strong operator topology

2 Note that from this it follows W(x, y) = W{y, x)
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we obtain the equation for W:

^ | i Z ) = ( 3 3 + g3) W(?C9 y) + 3dχdy{dχ + dy) W(χί y)

-3(dx + dy)W2(x,y), (40)

where W2(x, y) is the iterated kernel:

[when deriving Eq. (40) from (22)] we used the integration by parts

Equation (40) possesses the property easy to verify by direct calculation: if
W(x9y) = V(x)δ(x — y) the r.-h. side of (40) has he analogous form. In other words,
the operators of multiplication by a function form in this ease an invariant
manifold. By substituting W(x,y9ή=V(x9ήδ(x — y) into (40) one finds that V(x9t)
obeys the Korteweg-de Vreis equation

dV
— = V=dlV-6VdxV. (41)

The auxiliary spectral problem (26), (32) has the form [we set λ = ίk in (32)]

Ψ
v dx+ikl\ψ2

Equation (42) is evidently equivalent to the Schrodinger equation with respect
to Ψx\

^ ] (43)

Therefore we fall into the standard channel of the studying of the Korteweg-de
Vries equation by the inverse scattering method [8]. ,

However one may manage without the reduction to the Schrodinger equation,
too.

Let ^ ( T 1 1 ^ 1 2 ) be a matrix solution of Eq. (42). Let Ψ(x)=U(x)χ(x),

where

U(x) =
ik- ]/V(x)-k2 iK+]/V(x)-k2

and the square root ]/V(x)— k2 is adopted to have the cut along the positive

halfaxis and to satisfy the condition ]/— 1= +z. For χ(x) the equation arises

dX π.. SΛS.Λ (<lll Qll] ^
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Let k2>V(x). In this case q21 = q l v #2i~4i2 Consequently, there exists a

solution of Eq. (44) with the same property: χ= _ _ . Let us impose the

\%2 111

auxiliary asymptotic condition on it χ(x)~χo(x)~ π _ / j KJ at x-> — oo. The

asymptotic behavior of χ(x) at x->-hoo has the form χ(x)~χo{x)A(k, t\ A(,t)

= (- _). Let us put now Ψ=Uχ, Φ=Uχ in (27). The matrix χ satisfies the\b a)
Eq. (44), like χ. The transparent calculations show that

(45)

whence the asymptotic condition for χ at x-̂ -oo follows:

Therefore, χ(x, t) = χ(x, ί)Tat all x. With the use of (45) we conclude that when

fd

Hence

It

In other words, — =0, — =6(ik)s β. Thus, a(k) is an integral of motion3.
at at

6. Many-Dimensional Analogs of the Korteweg-de Vries Equation

Consider as S£ the direct sum of K copies of the space if 2(1R", dx), where dx is the
usual Lebesgue measure in the ^-dimensional space IR", K>2nl2~i. It is natural to
represent the elements of JSf as X-component vector-functions on IR":

A= Σ ^Λ' dj = d/dxJ9 B=t

where ^ are real spinorial matrices, y? = 1, Jj = yp yflj + 777f = 0 at i

3 Since I is a differential operator equations (29), (35) do not have a direct sense. However
Sp(L — λLJ1 admits the regularization with the aid of the resolvent similar to that considered in [9].
With the r.-h. side of (29), (35) understood in this sense one can obtain the complete set of integrals for
the Korteweg-de Vries equation. A separate paper will be devoted to the detailed discussion of these
questions
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We define the operator C by the matrix kernel W(x, y):

j

Similarly to the previous case we obtain the equation for W(x, y)

™ = {(Δxδx + Δydy) + 3(Δx8y + Δydx)} W

-30x + dy)W2 (46)

where

0xW)(x,y)= ΣΎj(.d/dx})W(x,y), dyW(x,y) =

and W2 has the same meaning as in (40). Unlike the one-dimensional case the
operators of multiplication by a function do not constitute an invariant subspace.
This is not unexpected since for the many-dimensional Schrodinger equation the
differential L — M pair is known not to exist [11].

The auxiliary spectral problem (32) with the Lί -matrix of the form (39) has the
form

= 0, (47)

where (WΨ^x) = £ J WKj(x, y) Ψφ)dy.
It is evidently equivalent to the Schrodinger equation for Ψx:

-AΨ\ + WΨ\ = k2ψ\ . (48)

The expressions (29), (35) for the first integrals of motion admit regularization with
the aid of the resolvent with the help of sufficiently large power of the resolvent.

We hope we shall study Eq. (46) in details in future.

7. Conclusions

I. The theory of Lie groups is a flexible tool to construct nonlinear equations that
possess the Lax pair and, what is more, are Euler equations. At present a long list
of equations possessing the Lax pair is known, whereas very few of them are
known to have a group origin like the Korteweg de Vries equation does.

If they all appeared possessing this property this would imply the triumph of
the natural-phylosophic principle in accordance with which the first integrals of
the dynamical systems are always connected with groups, although this con-
nection may be more intimate than it is in the Noether theorem. In particular, all
the arguments given in the present paper remain valid if the initial real space $£ is
replaced by the complex one. Then, the bilinear form (10) changes into Hermitian
one and the requirements of its in variance lead to one of the real versions of the
orthogonal algebra. The many-dimensional analogs of the Korteweg-de Vries
equations built on its basis have the form (46), as before, but the matrixes y^ must
not longer be real, although the Hermitian character is retained. In particular, the
Pauli matrices are acceptable.
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II. The Korteweg-de Vries equation admits the wellknown Hamilton in-
terpretation in which the role of the phase space is played by the space of functions
of one real variable with the exterior form

00 X

ω(f,g)= j dxftx) ί g(y)dy. (49)
— oo — oo

On the other hand, the Poisson bracket (1) on the orbits of the adjoint
representation is nondegenerate and given by the exterior form (see [10])

ωx(ξ,ί) = (x,K,ί]), (50)

where x is a point of the orbit, ξy η are vectors tangent to the orbit in the point x.
At the first glance it is natural to expect that the restriction of the form (50)

onto the manifold of the Lax operators L = I * I should reproduce
\v(x)δ(x-y) dj

the form (49). This is not the case.
III. Within the conventional approach to the Korteweg-de Vries equation all

the dynamical systems of the form (24) in the space of Schrodinger operators
appear to be Hamiltonian as regards to the exterior form (49). This does not
hold for the abstract Schrodinger equation. Here is the simplest example of the
operator M that creates dynamics in the space of operators L on the form (21) with

A = d, B = l, C=U but cannot be represented as M = VH = ~
\ \s JLJ

= 5d*+10dUd

The corresponding Lax equation L = [L,M'] is equivalent to the nonlinear
evolution equation

U = %U'""-5(UU'"+U2U') (52)

that is not reducible to higher Korteweg-de Vries equation.

Note added. This paper has already been published as a preprint ITEP No. 156 (1978). After this paper has
been completed there appeared the papers by M. Adler, Invent. Math. 50,219-248 (1979) and D. Lebedev
and Yu. Manin, preprint ITEP No. 155,1-15 (1978) in which the KdV equation is treated from a similar
point of view.
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