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Normal Fluctuations and the FKG Inequalities

C. M. Newman*

Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA

Abstract. In a translation invariant pure phase of a ferromagnet, finite
susceptibility and the FKG inequalities together imply convergence of the
block spin scaling limit to the infinite temperature Gaussian fixed point. This
result is presented in a rather general probabilistic context and is applicable to
infinite cluster density fluctuations in percolation models and to boson field
fluctuations in (Euclidean) Yukawa quantum field theory models as well as to
magnetization fluctuations in Ising models.

1. Introduction and Results

We consider a d-dimensional cubic lattice of random variables,
{Xk:k = (kv ...,kd)eΈd}, and for each integer n^tl the associated block variables
{Xn

k:keZd} defined by

where < ) denotes expectation,

S"k= Σ *j, (2)

and B\ is a "block" of side length n located near nk:

(3)

We will present a simple natural set of conditions on {Xk} (see Theorem 2 below)
which insure (in renormalization group terminology [26]) convergence of {Xn

k} as
n—•oo to the infinite temperature Gaussian fixed point; i.e., which insure that as
ft->αo,

, (4)
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where the Zfc's are mutually independent normal random variables of mean 0 and
some fixed variance A, in the sense that for any bounded continuous function F
(on lRzd) which only depends on finitely many coordinates,

Um<F({*»})> = <F({Zt})>. (5)

By standard results of probability theory a formulation equivalent to (5) is that

/exp ίi Σ r^t)) -exp ( - £ Ar*/2) (6)
\ \ ksΛ I/ \ ksΛ J

for any finite AcTLd and any choice of real rfc's.
Two important recent papers concerning convergence to the infinite tempera-

ture fixed point are [1] and [11]. In [11] can be found references to a number of
papers discussing the relation between the renormalization group approach and
the central limit theorem (see also [7, 13, 3]), as well as a number of early papers
(such as [8]) on the central limit theorem for Ising models. These early papers (see
also [12]) typically needed to assume rather strong decrease properties of the
correlation functions however, in situations such as ours where

o ̂  cov(z pxk) EE {XjX,} - <Xj> (xky = c(k -j)

and where a simple estimation of the variance of X\ (see Lemma 4 in Sect. 2)
suggests that the A of (6) is given by

A= Σ Cow(X0,Xk), (7)
keZd

it seems clear that the "correct" hypothesis is

Σ Cov(X0,Xfc)<cx). (8)
keZd

The first result based essentially on this hypothesis was that of Baker and Krinsky
[1] our result should be considered as a natural extension and improvement of
theirs. It is an improvement primarily because our hypotheses are considerably
weaker and consequently have a much wider range of applicability for example
the results of [1] only apply to Ising models in zero magnetic field above the
critical temperature, do not apply with arbitrary single-site distributions, and
moreover would not apply to Yukawa or percolation models. The more recent
results of Iagolnitzer and Souillard [11] are based on the Lee-Yang theorem and
are thus of a somewhat different nature than ours or those of [1]. From one point
of view the methods of [11] are more general than ours since they should apply to
any model in which appropriate information about zeros of the partition function
can be obtained (and thus could be used to study energy fluctuations for example)
whereas our methods require the validity of the FKG inequalities. On the other
hand, even in the standard Ising model their results are valid only away from a
phase transition whereas ours should apply to a pure magnetized phase at zero
magnetic field below the critical temperature.

In this section of the paper, we present our main results. Theorem 1 gives a new
inequality concerning multivariate characteristic functions for random variables
satisfying the FKG inequalities. Theorem 2 is our main result concerning
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convergence to the infinite temperature fixed point. Following Theorem 2, we
discuss various models to which it can be applied and then consider the situation
when Cov(X0,Xk) is "barely" divergent. All proofs are presented in Sect. 2 of the
paper the key ingredient in the proof of Theorem 2 is the inequality of Theorem 1.

A real function F on lRm will be called increasing if

Xj^y, for all / implies
(9)

)

A finite set of random variables {Xv ...,Xm} will be said to satisfy the FKG
inequalities if for any increasing F, G,

(10)

assuming the two random variables in (10) have finite variance i.e., assuming

and similarly for G. An infinite set of random variables will be said to satisfy the
FKG inequalities if every finite subset satisfies them.

The FKG inequalities originated in work on percolation models [10], were
extended to spin-1/2 Ising models in [6], and have been generalized in many ways
since (see [14] and the references given there). They have also been discussed in the
Statistics literature [17, 4]. Our use of the FKG inequalities is strongly motivated
by the work of Lebowitz in [15] and by subsequent related results in [23] and [25,
Sect. III-O].

Theorem 1. Suppose Y1,...,Ym have finite variance and satisfy the FKG in-
equalities; then for any real rv ...,rm,

j . (ii)

Remark. (11) is based on the interesting Lemma 3 presented below in Sect. 2. A
multivariate version of Lemma 3 can be obtained which shows that for smooth
complex valued F9G on Rm and F = F(Yί,..., Ym\ G = G{YV . . , Ym\

m m

\Cov(F,G)\ίC Σ ΣWdF/dyJ^-WdG/dyJ^-CoviY.Y,,), (12)
1=1 n=ί

where || IL denotes the sup norm on Rm and C is a universal constant (no larger
than 3 j/2). Inequality (12) is not needed for the proof of Theorem 2, but it can be
used, for example, to show [assuming hypotheses A)-C) of Theorem 2] that
ergodicity of the j-shift (0+jeZd) is equivalent to:

Urn- f Co\(X0,Xk+lj) = 0 for all keZd.

Although (12) seems to require the full strength of the FKG inequalities, our proof
of Theorem 1 shows that (11) remains valid if one only assumes that for any choice



122 C. M. Newman

of r/5

 sι = Q with rzSj = 0,

for all x,yeWL.

As a consequence, hypothesis C) of Theorem 2 can be weakened.

Theorem 2. Suppose {Xk:keΈd} satisfies the following:

A) Finite Variance: (XI) <oo for all keZd.
B) Translation Invariance: for all m and for all j , fc1? ...,kmeΈd,(Xkι, ...,XkJhas

the same distribution as (Xj+kί, ...,Xj+krn).
C) FKG Inequalities.
D) Finite "Susceptibility" :

Λ= Σ Cov(X0,Xk)<oo. (13)
keZd

Then the block variables {Xn

k\ksΈd}, as defined in (l)-(3) converge to independent
mean zero Gaussian random variables of variance A (the infinite temperature fixed
point) in the sense of (6) (weak convergence of finite dimensional distributions).

Remark. When d=l, the convergence of (6) can be strengthened to yield an
"invariance principle" so that an analogue of (S) is valid for a larger class of F's
this result will be presented in [22]. For general d, one may define the generalized
random field on IRd,

and using standard arguments show that as a consequence of Theorem 2, ψn

converges to d-dimensional Gaussian white noise of parameter A in the sense that
(say for real functions / in the Schwartz space

/exp/i J φΛ(u)/(u)du\Wexpf- f Λ(f(u))2du/2).

Theorem 2 is sufficiently general that it is applicable to a wide range of models.
We proceed to briefly discuss three examples.

General Ising Models

In such a model with Hamiltonian, — Σ^H~^)σjσk~~nΣσρ a n c ^ single spin
JΛ j

distribution dρ(σj) (see [24, Sect. VIII-3] for basic definitions and terminology), we
may takeXk to be the spin variable σk. The FKG inequalities will be valid for any ρ
and h, providing J(/c)^O for all k [9]. Theorem 2 should in principle be applicable
to any translation invariant pure phase which is not at a critical point. It is also
possible to apply Theorem 2 to a critical phase by looking at magnetization
fluctuations in a lower dimensional slice for example, at the critical point of the
standard three dimensional Ising model where Cov(σ0, σk) is believed to behave
asymptotically like \\k\\~{1+η} for some small positive η (|| || denoting Euclidean
distance), one could apply Theorem 2 to the one-dimensional slice {X}: Xj = σ(j 0 0 ),
jeΈ1}.
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Percolation Models

If in a general Ising model of the above type one has the single spin distribution
dρ(σj) = pδ(σj—1) + (1— p)δ(σ^ with pe{0,1) and one defines X. to be 1 (re-
spectively 0) if j belongs (respectively doesn't belong) to an infinite cluster of
occupied sites (i.Q.,Xj is 1 if there is an infinite sequence j=j0J1J2> ••• of distinct
sites in Έd with j ι + ί a nearest neighbor oϊjι and σh = \ for each /), then the FKG
inequalities are valid both in the independent case (J = 0) [10] and in the
correlated case (JφO) [6]. Theorem 2 in this context concerns normal fluctuations
of "infinite cluster density" and is discussed in more detail in [21].

Yukawa Models

It has recently been shown that the FKG inequalities are valid for the boson field
φ in a Euclidean Yukawa quantum field theory (with the fermion field "integrated
out") [2]. We may take Xk to be φ integrated over a unit cube centered at k.
In order to discuss extensions of Theorem 2 when (13) is invalid, we replace the
block variables given in (1) by

l? = (S|ί-<S2»/(Var(Siί))1/2. (14)

The weakest condition which would insure that for k+j, Cov( Yfc

n, YTI)->0 as n-+ oo is
that the function

K(R) = Σ Cov(X0,Xk) (15)
11*11**

(where || || again denotes Euclidean distance in Rd) be slowly varying as R^co
i.e.,

^ A > 0

(see [5, Sect. VIII-8] for various properties of slowly varying functions). This
condition allows a logarithmic divergence in ^Cov(X0,X fc) as one would have if

k

for example, Co\(X0,Xk)~Const \\k\\~d. Note that asymptotically the denomi-
nator in (14) can be replaced by ndl2(K(n))112 since it can be shown that

Conjecture. If {Xk} satisfies hypotheses A)-C) of Theorem 2 and condition (16) is
valid, then (6) will be valid (for any finite A and real rks) with X\ replaced by Yk

and A replaced by 1.

Remark. We have been able to prove a weaker version of this conjecture in which
the following additional hypothesis is assumed:

lim/sup<(Y o") 2 l { | y δ | >, }>W0, (17)

where 1B denotes the indicator function of the event B. Since a uniform bound on
for p>2 would imply (17), it follows that (17) would be valid if, for

example, (Xj} = 0 and

2 > 2 , (18)
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since then <(7^)4>^3<(y^)2>2 = 3[Var(7^)]2 = 3. In certain Ising models, (18) is
valid as a consequence of either the Lebowitz inequality [16], the Lee-Yang
theorem [18], or the GHS inequality [19]. It is interesting to note that if one takes
Xk as the local energy density in the standard two-dimensional Ising model at its
critical point, then K(R) has exactly the type of logarithmic divergence allowed by
(16); in this case however the FKG inequalities do not apply (for a discussion of
the block variable limit in this case, see the remark following Corollary 2.10 in
[20]). A situation where both (18) and the FKG inequalities are valid and where
K(R) should be slowly varying with a logarithmic singularity, can be manufactured
by taking a two dimensional slice (as described in the discussion on general Ising
models above) out of the critical phase of the standard four dimensional Ising
model.

2. Proofs

A pair of random variables, X, Y, are said to be positive quadrant dependent [17]
if

= P{X>x, Y>y)-P(X>x)P{Y>y)^0 for all x,yeWL

It is easily seen that this condition is valid if {X, Y} satisfies the FKG inequalities.
In [17] it was shown that such an X and Y must be independent if they are
uncorrelated, by using the following identity (for X, Y with finite variance):

oθ 00

Cov(X,Y)= J ί HXtY{x,y)dxdy. (19)
— oo — oo

The following lemma generalizes this argument.

Lemma 3. Suppose X, Y are positive quadrant dependent with finite variance andf g
are C1 complex valued functions on 1R1 with /', g' bounded. Then

\Cov(f(X),g(Y))\ ^ H/ΊL HβΊL Cov(X, Y), (20)

where || II oo denotes the sup norm on R 1 in particular, for any real r, s

\(eίrX + isY} - (eirX) (eίsY}\ S \r\ \s\Cov(X, Y). (21)

Proof (19) can be easily generalized to yield

00 00

Cov(f(X),g{Y))= ί ί f'(x)g'(y)HXiY(x,y)dxdy; (22)
— GO — 00

thus by the positivity of Hx γ and by (19),

00 00

\Cov(f(X),g(Y})\^ ί j \f'\\g'\HXιYdxdy
— 00 — 00

as desired.



Normal Fluctuations and the FKG Inequalities 125

Proof of Theorem ί. We proceed by induction on m. The result is true for m = l
trivially and for m = 2 by Lemma 3 we suppose it is true for m^M. For m = M + 1
we may (by rearranging the indices if necessary) assume that for some e= + 1 ,
δ= ± 1 , and m'e{l, ...,M}, ε r ^ O for l<;/^m' while <Srẑ O for m ' + l g / ^
We then define

X=
M+l

Y= Σ (23)

and note that since {Y ..., 1̂ } satisfy the FKG inequalities so doX and 7 (because

increasing functions of increasing functions are increasing). Now since
m

J^r^^εX + δY, WQ have by (21) and the induction hypothesis that the left hand
1

side of (11) is bounded by

M + l

m' + l

M+l

M + l

<eiδϊ>-

1

M + l M+l

Σ
ZΦn

m' + l

m

i Σ γn)=\
Z Φ n

1
ZΦn

M+1

Π

which completes the proof.
The proof of Theorem 2 is based upon the following lemma and the simple fact

that

0 = ί (24)

Lemma 4. Suppose {Xk:keZd} have finite variance and Of^Cov(XpXk) = C(k— j)
for all j , k with

Λ= J] C(/c)<oo; (25)

for any k, jeΈd,

lim

Jim <(X^"-XI)2} = 0 ι/ jim mjn = 1,

(26)

(27)
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and

limCov(X£,X") = 0 if kφj. (28)
n ~* oo "*

Proof. We first note that

Sn~d Σ Σ C(k-j) = A. (29)

jeBk keZd

For 0<ε<l/2, we define

Bn

0(ε) = {j:εn<jι<(l-8)n for J = l , . . . , < / } (30)

so that for jeBn

0(ε) and /c<£££, \\k-j\\ >εn; thus

jeBS(ε)\\h-j\\Zεn H \\\k\\Zεn j

where \B\ denotes the cardinality of B. If we choose ε = εn so that εn-^0 while
εMrc-κx), then the right hand side of (31) tends to A; this together with (29) yields
(26). Next we note that

^ -X" 0 ) 2 > = Var (X™») + Var (X"o) - 2(mnn)

f 2 Var(X" 0 ) if m ^ n
[ }

ίVar(X^) + Var(X«0)- 2(n/m,f2Var(X"0) if .mn ^ n

l ), if mn^

Now since mjn-+l, we have by (26) that the right hand side of (32) tends to
zero which yields (27). In order to obtain (28), we note that since
Cov(X£, Xnj) = Cov(X%, XI) (where k'=±(k-j) with the sign chosen so that for
some /, k'ι > 0), it suffices by (27) to prove that

,X;,) = 0, (33)
n-*- oo

where we choose mn so that mjn-y 1 while n — mn-> + oo. Now in this case we have

^m^n-"2 Σ Σ

2(mnr" Σ Σ
jεB™n \\k-j\\^n-mn

(mjnf2 Σ

which completes the proof of Lemma 4.

Proof of Theorem 2. We first note that it suffices to prove (6) with A = {0} since
then by translation invariance (6) would be valid for A = {k}, and consequently,
since for arbitrary A, {Xn

k: keA} satisfies the FKG inequalities, it would follow by
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(11) (with {Yι} = {Xn

k}) and (28) that

lim /exp/i
\ \

Σ
°° \ \ keΛ

= lim /

keΛ

/exp/i Σ
\ \ keΛ

kJeΛ
kΦj

\" Π
I I ksΛ

(34)

which would yield (6) for general finite A as desired. We next note, as a
consequence of (27), that for fixed m = 1,2,...

|<exp(*>X"0)> -

^ (\Xfn/m] -Xn

0\} g (35)

where [ ] denotes the usual greatest integer function. Next, by (24) (with l=[n/m])
and (11) (with {Yι} = {XrJ} and η = W~d/2) and (26) (with fc = 0), we have as /->oo,

y (36)

where we have used in two places the fact that (by translation in variance) XJ and
XQ are identically distributed and have defined ,4m ΞE Var(Xo). Finally, as in the
proof of the standard central limit theorem (for i.i.d. random variables with finite
variance) [5, Sect. XV-5], we have as /->>oo for fixed m

(37)

Now, by combining (35), (36), and (37), we obtain

(/rX£)> - exp( - .4r2/2)|

y ^ r 2 / 2 ) ) (38)

since this is true for any m and since by (26) Λm-^Λ as m-^oo, we have that

lim <exp(irXS)> = exp( - ^r2/2) (39)
n—> oo

which is just (6) with A = {0} as desired. This completes the proof.
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