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The Ginibre Inequality

Garrett S. Sylvester*

Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003, USA

Abstract. In the Ising-type models of statistical mechanics and the related
quantum field theories, an inequality of Ginibre implies useful positivity and
monotonicity properties: the Griffiths correlation inequalities. Essentially, the
Ginibre inequality states that certain functions on the cycle group of a graph
are positive definite. This has been proved for arbitrary graphs when the spin
dimension is 1 or 2 (classical Ising or plane rotator models). We give a
counterexample to show that these spin dimensions are the only ones for which
the Ginibre inequality is generally true: there are graphs for which it never
holds when the spin dimension is at least 3. On the other hand, we show that
for any graph the inequality holds for the apparent leading term in the large-
spin-dimension limit. (The leading term vanishes in the graph of the counterex-
ample.) Based on these results, one expects the Ginibre inequality to be true in
most instances, with infrequent exceptions. A numerical survey supports this.
The surprising failure of the Ginibre inequality in higher dimensions need not
necessarily mean the Griffiths inequalities fail as well, but a different approach
to them is required.

1. Introduction

This paper is an analysis of the Ginibre inequality. In the present introduction we
state the inequality and its main application in statistical mechanics (Griffiths
correlation inequalities), and summarize our new results.

The Ginibre inequality for a graph G is [2]:

I(G, χ, D) = f Π fo <>; + X(ί.X <*;] Π dω(σk)dω(σ'k) ^0
(i,j)eG keΛ

(1.1)
= ±1-
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(There are more general formulations, but we shall not consider them here.) Note
that this is actually a collection of inequalities, since nonnegativity is required for
any choice of signs χ(i jγ In (1.1), A is the vertex set of G. A typical edge is written as
an unordered vertex pair (z, j). This notation is abusive, because we permit multiple
edges between the same vertex pair, possibly with different signs χ. The measure ω
is the natural normalized rotation-invariant measure on the sphere SD~ *, and the

region of integration is the full product Y\ (SD~l x SD~1).
keΛ

We use the customary notation at σ^ for the standard scalar product. The spin
dimension is the dimension D of the Euclidean space surrounding SD~ί. We may
assume without loss of generality that G is an even graph (all vertices of even
degree), for if it is not the in variance of ω under the transformation σ-> — σ causes
/(G, χ, D) to vanish.

Inequality (1.1) was introduced by Ginibre as a device to prove the Griffiths
correlation inequalities of ferromagnetic spin systems [3,5]. These inequalities,
which generalize to Euclidean quantum field theories, are:

. -"-.. l J / '

Π σ β.lf Γf <V11 i j \ \ 11 k
(ί,j)eGι \[(k,l)eG2

-/ Π <V<*,V Π σk σλ>0. (1.2b)( l l i j H l l f e t ) — v '
\(i,7)eGι / \(M)εG2 /

Here the subscripts z,j, k, / range over a finite set A interpreted as the lattice sites. G,
G1? and G2 are arbitrary graphs with vertices in A. The average < > is with respect
to the normalized Gibbs measure

\a, beΛ ceΛ ] deΛ

We assume the ferromagnetism conditions Jab, hc^0 hold in (1.3). The vector e is
an arbitrary constant.

While the first Griffiths inequality (1.2a) is straightforward to check directly for
any spin dimension D, the second Griffiths inequality (1.2b) is presently known
only for the values D = l,2 for which Ginibre proved (1.1). It is natural to
conjecture that this restriction to low spin dimension is an artifact of the method of
proof: that the Ginibre inequality in fact holds for all D, with the second Griffiths
inequality the following as a corollary.

We show that this conjecture is false - the Ginibre inequality (1.1) breaks down
if the spin dimension is three or more. For example, if one takes G to be the
complete graph on five vertices, then for an essentially unique choice of signs χ(ij)

the integral /(G,χ,D) in (1.1) is strictly negative for all D^3. Since the Griffiths
inequalities follow from the Ginibre inequality but do not seem to imply it, failure
of (1.1) need not necessarily imply failure of (1.2b).

We also investigate the large-spin-dimension limit D-»oo. Here we prove that
the coefficient c(χ, G) of the apparent leading term in the 1/D expansion of/(G, χ, D)
is nonnegative. In particular, if c(χ, G) is strictly positive for some choice of signs
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χ(i j} on a certain graph G, then /(G, χ,D)>0 for all sufficiently large D. On the
other hand, c(χ, G) vanishes in the counterexample, permitting normally sub-
dominant terms to make /(G, χ, D) negative.

Our final results concern a survey of examples. As a preliminary step, we
associate the choice of signs χ(ίj) with a character χ of the cycle group Z(G) of G,
and then identify /(G, χ, D) with the Fourier transform FD(χ) of a related function
FD on Z(G). It follows that (1.1) holds (for all choices of χ(ίj}) if and only if FD is
positive definite. This reformulation is desirable both because of the familiarity of
positive definite functions and because it eliminates redundancy in the choice of
signs χ( .̂ Also, it yields an easy proof of (1.1) when D = 1, since F1 is always the
constant function 1. We calculated the numerical values of the Fourier transform
FD for a selection of twenty-five graphs by means of a digital computer routine.
(Exponential computational complexity makes extensive hand calculations im-
practical). The machine results indicate that FD is not positive definite in just four
of the graphs examined, and in these four graphs FD(χ) is negative for only a few of
the many characters.

To subsume, our theoretical results suggest that the Ginibre inequality (1.1) is
true in most instances, with definite but infrequent exceptions. Our numerical
results support this hypothesis.

The organization of the remainder of this paper is as follows. Section 2
analyzes the large-spin-dimension limit. Section 3 reformulates (1.1) in terms of
positive definiteness and presents a discussion of examples, including counterex-
amples to (1.1). A brief concluding section comments on the relationship between
the Ginibre inequality and the Griffiths inequalities. The methods and results of
the numerical survey are outlined in an Appendix.

2. The Large-Spin-Dimension Limit

This section considers the Ginibre inequality in the D— >oo limit. The technique is
to approximate the natural measure ω on SD-1 by a Gaussian measure v on ΊR.D

with the same mean and covariance. This approximation is asymptotically correct
to leading order as D— »oo. We then verify (1.1) with ω replaced by v.

Our primary tool is an explicit formula for the moments of ω [4]. In vector
notation this formula is

ί Π^iWσH— - r-Γ Σ Π° <
i

r-Γ Wtf) <fl,
SD-ί\ί=l I π π ' e 0 = l

where έP2e is the set of all pair partitions of {1,2, ...,2β}; that is, the set of all
pairs of injective maps π, π' : {1, 2, . . ., e} -> (1, 2, . . ., 2e} with π < π' and π increasing.
All the vectors a feIRD are arbitrary. (We take an even number of σ ί? since an
odd number yields 0 by reflection symmetry). In tensor notation, using super-
scripts to denote components of the vector σe^"1 ClR0, (2.1a) becomes
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Here

e
^iίi2...i2e= y ΓT fiίπ(β)ίπ'(β) ̂

(π,π')e&2e β=l

δ being the usual Kronecker symbol. By way of comparison, the corresponding
formulas for the Gaussian measure v with the same mean (zero) and covariance

-matrix — i are :

f (fl σ.σ,Wσ) = ̂  Σ Π < )̂ ' <V(/» > (2 2a)
R D \ ί = l I u (π,π')e0>2e β=l

J σilσi2...σί2 dv(σ)=—Δili2 ~ί2 . (2.2b)
RD D

e-l

Note that (2.2) differs from (2.1) solely by the omission of the factor J~[ (1 + 2α/£>),
α = 0

which approaches 1 as D->oo.
The integral /(G,χ,D) in (1.1) expands to a linear combination of products of

terms

Π σ. σΛΓMωK). (2.3)

where G1 is an even subgraph of G having vertex set Av Evaluation of (2.3) by
repeated applications of (2.1b) yields a complicated expression of the form

Π
ΊeΛi α=0 JJ

(2.4)
•(Contractions of products of the tensors A ) .

Here \k\ is the number of edges incident on vertex fe, while |GJ is the number of
edges in Gv Detailed consideration of the factor involving the contractions shows
that it is a polynomial in D of degree y^GJ, the largest number of edge-disjoint
cycles into which G1 can be decomposed. Thus, the integral (2.3) can be written as

1*1/2-1

πo

where R(D) is a rational function of D with degree y*(G1) — |GJ. Replacement of ω
by v in (2.3) merely eliminates the factor in curly brackets. Of course, this factor is 1
to lowest order in 1/D. Combining the terms from the expansion of (1.1) shows that
/(G, χ,D) is a linear combination of rational functions of D having degree
y*(G1) + y*(G2)-|G|, G = G1ΦG2, with poles in the closed left half-plane. The
apparent degree of this linear combination is the maximum degree y*(G) — |G| of
the functions involved. (The actual degree may be reduced by cancellations.)
Moreover, as we have seen, the coefficient of the apparent leading term in the 1/D
expansion of (1.1) (Laurent expansion about D = 0) is unchanged when ω is
replaced by the Gaussian measure v. We collect these conclusions in
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Proposition 2.1. The integrals

/(G, χ,D)=$ Π K ' <*; + X(U)< <•) ΓΊ <Mσfc)dωK) , (2.5a)
(i, j)eG fceΛ

70(G,χ,£>)=ί Π (σ; σj. + χ(u,σ;..σ;)Πrfv(σ,)dvK) (2.5b)
fceΛ

are rational functions ofD of degree —(\G\—γ*(G)) or less. Moreover, they have the
same coefficient o/D~(|G|~y*(G)) in their Laurent expansion about 0:

lim D<W ~ '*<G))|/(G, χ, D) - I0(G, χ, D)\=0.
—£>-»oo

Proof. The proof is immediate from the preceding discussion. QED
We next verify the Ginibre inequality with the spherical measure ω replaced by

the Gaussian measure v.

Proposition 2.2. Let v be the Gaussian measure on 1R0 with mean 0 and covarίance
matrix (1/D) L Then

/o(G,χ^)=ί Π K σ; + %(U)σΓ^)Π^K)^v(σ;)^0
(i, j)eG keΛ

V χ ( j f j ) = ± l , V G , V D .

Proo/. Define sί = 2"1/2(σ/ + σ'ί) and dί = 2~1 / 2(σ/-σ/ ). The integrand

is a polynomial with nonnegative coefficients in the scalar products sf s,-, st d^ ,
df Sj, df d7 . Moreover, the product measures are invariant under the change of
variables :

Thus IQ is a moment of a mean-zero positive-covariance Gaussian measure, and so
is nonnegative. QED

Combining Propositions 2.1 and 2.2 yields

Proposition 2.3. If the actual degree of the integral /(G, χ,D), regarded as a rational
function of D, agrees with its apparent degree — (|G|— y*(G)), then

/(G, χ, D) = j Π K σ, + X(if^ - σ}) Π dω(σk)JωK) > 0
(i,j)eG fceΛ

/or α// sufficiently large D.
In particular, Proposition 2.3 suggests that counterexamples to (1.1) can occur

when fortuitous cancellations reduce the degree of / by causing the leading term in
the 1/D expansion of / to drop out.
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3. Examples

We begin this section by restating the Ginibre inequality in terms of positive
definiteness. We then present an example to prove that /(G, χ, D) can be negative.
Finally, we discuss the results of a computer-aided analysis of/ (G, χ, D) for twenty-
five graphs G.

Consider the expression for I(G, χ, D) :

Expanding the product in the integrand yields

I(G,χ,D)= Σ ί(ί Π <VβjΉ( Π X<J(f Π <V
G i C G l\ (i,7)eGi / V ( f c , / ) e G ι / V (M)̂

^ Σ fD(GMG1)fD(Gl)9 (3.1)
G i C G

where /D and χ are defined by

, (3.2)

Here G t denotes the edge complement in G of the subgraph Gx. The sum over
subgraphs in (3.1) is effectively restricted to the set Z(G) of even subgraphs (cycles)
of G, since the invariance of ω under the symmetry σ— > — σ causes all other terms
to vanish. Z(G) is a natural commutative group - the cycle group - with symmetric
difference as the group operation. Moreover, the function χ defined in (3.3) is a
character of Z(G). It is easy to check that every character of Z(G) arises from some
(non-unique) choice of signs χ(i j} on the edges. Thus we obtain

Proposition 3. 1. Define the function FD :Z(G)-+IR by FD(G}) =fD(G1)fD(G1)9 fD as in
(3.2), and define the character χeZ(G) by (3.3). Then

I(G9χ,D) = FD(χ)9 (3.4)

where FD is the Fourier transform FD(χ)= £ FD(Gί)χ(G1). Moreover, the
GιeZ(G)

Ginibre inequality /(G,χ,D)^0 holds for all choices of sign χ(ίj) if and only ifFD is
positive definite.

Proof. The proof is immediate from the paragraph prior. QED
This restatement of (1.1) is an improvement from a computational viewpoint:

there are 2 |G| possible choices of signs χ(ίj) but only 2 |G |~ | y l | + 1 characters of Z(G),
all of which can be readily determined. Note also that the case D = 1 of the Ginibre
inequality follows immediately from Proposition 3.1, as Fί = 1.

We now turn to examples.
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Example 3.1. Let G be the complete graph on five points K5, and let χ be the character
resulting from the choice of signs χ(ίj)= — 1 far all edges (ij). Then

nr m F t \ -96(P2-l)(P-2)
/(G, χ, D) = FD(χ) = - 8 4 - > (3 5)

which is strictly negative when D^.3.

Proof. This is a calculation using (2.1). QED
Thus, the Ginibre inequality (1.1) is a low spin dimension phenomenon.
We comment on Example 3.1. The complete graph on five points is one of the

two elementary nonplanar graphs. This may be coincidental, as several other
nonplanar graphs tested did not violate (1.1). On the other hand, every counterex-
ample to (1.1) so far found is nonplanar, and some recent results suggest a
connection between inequalities and planarity [1]. Also, note that this example
displays fortuitous reduction of degree : the apparent degree of /(G, χ, D) as a
function of D (see Sect. 2) is — 7, but cancellations occurring in the sum over Z(G)
reduce the true degree to — 9.

We conclude this section by summarizing the results of a computer-aided
investigation of /(G,χ,D) for twenty-five graphs, including that of Example 3.1.
More detail is given in an Appendix. The first fifteen graphs considered were all
the graphs of cyclomatic number y = |G| — \Λ\ + 1 at most six having no vertices of
degree two or articulation vertices. (Reduction procedures permit one to make
these two simplifying assumptions about the vertices with no loss in generality.)
The remaining ten graphs were chosen with the hope of finding additional
counterexamples to (1.1). FD(χ) was computed for all characters of all graphs, with
D given the values 3, 4, 5, 10. Four graphs yielded counterexamples to (1.1), and for
these graphs all values of FD were also determined at the intervening values 6, 7, 8,
9 of D. The negative values of FD(χ) obtained in dimension D = 3 turn positive for
two graphs when D becomes sufficiently large, while the other two have characters
such that FD(χ) apparently remains negative for all D. All graphs analyzed are
tabulated in an Appendix, which gives more detail concerning the four exceptional
graphs, and a brief outline of the computational methods. In sum, approximately
21,500 values of FD(χ) were calculated, and of these 45 were negative.

4. Concluding Remarks

This section explicates the connection between the Ginibre inequality (1.1) and the
Griffiths inequalities (1.2a, 1.2b) it was designed to prove.

After multiplying through by Z2, (1.2b) may be effectively rewritten as

ί vGl(°G2 ~
 σ/G2) exp (Σ Jab[oa σfc + < σJJ) f] dω(σk)dω(σ'k) ^ 0 . (4. 1)

Here we use the abbreviated notation

σGt = Π <V<V
(M)eGί

Note that rotational in variance of (1.2b) as a function of e allows one to absorb the
magnetic field term in the pair potential term - the "ghost spin" method of [3].
Upon decomposing (4.1) into a sum by expanding the exponential in its Maclaurin
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series, we see that (4.1) follows from the inequality

ί σGl(σG2 - σ'G2) Π K σ, + < σ£) Y[dω(σk)dω(σ'k) ^ 0 , (4.2a)

or in equivalent symmetrized form

S(°Gί - *G>G2 -
 σ/G2) Π (*a

It is apparent from (4.2b) that a counterexample to (1.1) requiring only two minus
signs would cast significant doubt on (4.1), but all counterexamples presently in
hand need four. On the other hand, if one could prove (1.1) with the added
assumption that only two of the χ(ij) be negative, then the special case
((σf σ^Xσ^ σ^)) — <σί σj.><σfc σ ί>^0 of (1.2b) would follow immediately from
(4.2b).

A further decomposition of (4.2) permits one to derive it from (1.1). Define

stj = σf - σ . Γσ, σ^ = ±(SiJ + dv

R^^.-^)
and express the integrand of (4.2) in terms of these new variables. A sum with
nonnegative coefficients of integrals of the type (1.1) results. One can cause the
counterexamples to (1.1) to appear in this sum by suitable choice of G1? G2, G3.
However, these exceptional terms are generally of a lower order of magnitude than
the other positive terms in the same sum - presumably because they are generated
by fortuituous cancellations. Consequently their negative contribution is washed
out in the summation of Ginibre inequalities needed for (4.2), which could yet
prove true.
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Appendix

This Appendix sets forth the methods and results of a numerical investigation of
(1.1).

The analysis goes by way of Proposition 3.1, using a computer routine to
calculate the values of the Fourier transform FD. The routine has three main steps :
determination of fD :Z(G)->IR, generation of the characters χeZ(G), and sum-
mation over Z(G) to obtain FD(χ). The last two steps, though of exponential
complexity, are straightforward upon introducing a cycle basis. The first (also
exponentially complex) was achieved by recursive implementation of the reduction
formula

e *• X /ΛfoπO GJ, (A.I)
J (π,π')e^2e

which follows from (2.1). Here we have selected arbitrarily a distinguished vertex in
G1? having 2e incident edges. The pair partition (π, π') of these incident edges acts
on the graph Gx to eliminate the distinguished vertex by merging together each
pair of edges in the partition to yield a single edge in the reduced graph (π, π') G1?

and then omitting all trivial loops (edges incident on one vertex only). Some of the
results of applying this routine to twenty-five graphs are tabulated below.
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Table 1. This table enumerates twenty-five graphs analyzed numerically, listing them in order of
increasing complexity. The cyclomatic number γ of each graph is displayed with it. All values of FD(χ)
were determined for all graphs when D = 3,4,5,10. Graphs 15,18,19, and 23 (marked by asterisks) had
some negative values of FD(χ), and were also analyzed for D = 6,7,8,9. (Graph 15 is Example 3.1.) The
number of characters χ with FD(χ)<0 in dimension D for these graphs is represented by the number of
asterisks after D. The most negative value of F3(χ) is also shown, and a typical (minimal, nonunique)
choice of minus signs yielding it is sketched on the graph across the edges in question. Exact
calculations suggest that the relative numerical error is better than a few parts in 105. For example,
the computed value of F3(χ) for graph 15 was -1.87287 x 10~4, while the exact value is
-256/1366875^1.872885 x 10~4

G3: /= 5 G4:

G,7:/=7 G f β : / = 7 G,*9:χ = 8 G20: γ = 8
0=3*4*5 ,6 Q 3****4****t5*

A 7,8,9,10 A 6*7*8,9,10
F5(X)S-3.7IIOE-5 F3(X)S-|.4047E-4

5**6**7**8**
Λ 9**, 10**
F3(X)=-8.9485E-5

G 2 5 : χ = I O
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