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CEN, Saclay, F-91190 Gif-sur-Yvette, France

Abstract. The notion of Feynman amplitude associated with a graph G in
perturbative quantum field theory admits a generalized version in which
each vertex v of G is associated with a general (non-perturbative) π^-point
function H"v,nv denoting the number of lines which are incident to v in G.
In the case where no ultraviolet divergence occurs, this has been performed
directly in complex momentum space through Bros-Lassalle's G-convolution
procedure.

In the present work we propose a generalization of G-convolution which
includes the case when the functions Hnv are not integrable at infinity but
belong to a suitable class of slowly increasing functions. A "finite part" of
the G-convolution integral is then defined through an algorithm which closely
follows Zimmermann's renormalization scheme. In this work, we only treat
the case of "Euclidean" r-momentum configurations.

The first part which is presented here contains together with a general
introduction, the necessary mathematical material of this work, i.e., Sect. 1
and appendices A and B.

The second part, which will be published in a further issue, will contain
the Sects. 2, 3 and 4 which are devoted to the statement and to the proof of
the main result, i.e., the convergence of the renormalized G-convolution
product.

The table of references will be given in both parts.

Introduction

It has become commonly accepted in Particle Physics that various collision
mechanisms may be conveniently described in the language of generalized
Feynman amplitudes. These quantities are associated with "fat" Feynman graphs,
in which the orthodox point-wise vertices of perturbation theory are replaced
by "bubbles", whenever strong interaction processes have to be taken into account
(For an up-to-date example of such description, see the well known deep-inelastic
scheme [1]).
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According to the situation which is considered, these bubbles are supposed
to represent either complete scattering or production amplitudes, or partial
hypothetic "resummations" of Feynman amplitudes. Moreover, as far as the
momentum configurations are concerned the latter are sometimes taken in
Minkowski space and then the Feynman zε-prescription of integration is used,
by reference to the perturbative case; but sometimes for convenience reasons,
they are also restricted to the Euclidean space, and the problem of analytic conti-
nuation on the mass-shell of the resulting quantities is left unsolved in general.

It was this conceptually confuse situation which led one of us [2] and M.
Lassalle [3] to introduce and investigate systematically in complex four-momen-
tum the notion of G-convolution product associated with a graph G.

The main property which was proved by these authors is the following. Let
G be a connected graph in which each vertex v is incident to nv (external or internal)
lines of G, and let n be the number of external lines of G. Assume that with each
vertex v of G is associated a general π^-point function H(nv)(Kv): under this name
is meant an analytic π^-point function whose domain is the primitive1 axiomatic
domain in the complex space C^ϊ)~1) of the four-momenta Kv carried by the
lines incident to υ. Assume that with each internal line i of G is associated a general
two-point function H(2)(Λ) of the corresponding complex four-momentum f {.

Then under suitable integrability assumptions on the //(2)(Λ) and on the
H{nv)(K% it is always possible to define a general n-point function H^ of the set
K of (complex) external momenta of G, through the following formula which
generalizes the Feynman integral:

H(

G

n\K) = ί Π&n»\K%KΛ))Π&2%iK>k))dJt (1)
Γ(K) v i

In this formula, k denotes a set of Am independent complex integration variables,
m being the number of independent loops of G; Kv(K,k) and /.(K, k) are linear
functions which are determined by taking into account the four-momentum
conservation equations associated with all vertices of G;Γ(K) is a 4m-dimensional
contour in the complex space C*™ which lies in the analyticity domain of the
integrand and depends continuously on the external configuration.

In Bros-Lassalle's result, the following properties of H^ are specified:
i) Formula (1) is meaningful when K varies in the "Euclidean region" E^"'^

(i.e., K = (P, iβ°), with PeU3^' », Q°eUin~1}), provided that Γ{K) be also chosen
as the Euclidean region {k = (p,ίqo)peU3m,q°eUm}. This is a trivial consequence
of the basic fact [4] that the primitive axiomatic domain of each rc^-point function
Hnv(Kv) (resp. i/(2)(/£)) contains the "Euclidean region" of the corresponding
i^-space (resp. *f .-space). H^\K) is thus primitively defined and analytic in E4(n~1}.

ii) By using appropriate distortions of the contour Γ(K) which generalize
the Wick rotations, H%\K) is shown to have an analytic continuation in the
whole primitive π-point domain. The various standard boundary values [4]
of H^ on the real space (i.e., on "Minkowski-space") are thus defined, and they
satisfy the Steinmann relations.

1 Moreover the correct axiomatic analyticity domains for the absorptive parts of H{nυ\ or equiva-

lently the Steinmann relations for H(nv) are also assumed to hold (see ref. 3)
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iii) The τ-boundary value2 τ£° of H^ is defined by the Ruelle- Araki prescrip-
tion which generalizes the fε-prescription of Feynman amplitudes. Moreover
formula (1) yields an expression for τ£° as an integral over Minkowski space in
which each factor H(ttv) (resp. H{2)) has been replaced by the corresponding
τ-boundary value τ{riv) (resp. τ(2)) in the integrand.

iv) For i), ii) and the first part of iii) to hold, it is sufficient that the integrability
conditions of (1) at infinity be satisfied in every "quasi-Euclidean" region E(W) =
W + E4m, where W is an arbitrary compact region of C4m. (Of course the second
part of iii) requires integrability in Minkowski space).

From the physical point of view, the necessity of imposing integrability condi-
tions as in iv) is not fully satisfactory, since the Green functions Hin) of a polyno-
mially interacting Field Theory in four-dimensional space time may very well
have increase properties at infinity which produce ultraviolet divergences in
integrals of the type (1), as it is the case in perturbation theory. As a matter of fact,
the G-convolution product defined above revealed itself a sufficiently good notion
for carrying out the study of the analyticity properties implied by Many Particle
Structure Analysis [see refs. 2, 5]: it was because by using analytic cut-offs of the
Pauli-Villars type, all structural equations3 involving p-particle irreducible
kernels could be written in a "regularized" form in which all the G-convolution
products were well-defined in the above sense. However in this procedure, it
was impossible to keep under control the asymptotic properties of the theory
and to define the "exact" p-particle irreducible kernels. To do this it would be
necessary to write "renormalized" structural equations in which G-products
including ultraviolet divergences should be given a precise prescription of inte-
gration in order to yield in all cases a finite result.

As another important example for which it could be helpful to have a renor-
malized version of G-convolution product, we have in mind the study of field
equations of a definite four-dimensional Lagrangian theory with polynomial
interaction. Indeed in momentum space, these field equations are equivalent to
an infinite system of G-convolution equations linking together the various rc-point
Green functions of the theory4 there again, a renormalized form of the equations
is required, as it is already indicated by perturbation theory.

Among the known rigorous treatments of renormalization in perturbation
theory, Zimmermann's procedure [7] is specially attractive for writing equations
in momentum space, since (at least in its Euclidean version) it is exempt from
regularization parameter and prescribes to replace the primitive Feynman
integrands IG associated with the graph G by a new rational integrable function
RG, which is called the "renormalized integrand".

It is our purpose in the present work to define a renormalized G-convolution
product for an appropriate class of functions Hi2\H(tlv\ having slow increase
at infinity, by adapting the algebraic procedure of Zimmermann, namely by

2 For the rc-point function associated with a quantum field this is the Fourier transform of the vacuum

expectation value of the time-ordered product of n field operators (corrected part)

3 Of the general Bethe- Salpeter type

4 An approach of this type was proposed by J. G. Taylor [6]
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replacing the primitive integrand IG(K,k) of formula (1) by a new renormalized
integrand RG(K,k); the latter should by built up with the same ingredients H{2\
Hinv) as JG, but its integrability should be assured. We should also like to prove
that the resulting integral Hf {ren)(K) = j RG(K, k)d^mk is an analytic function

Γ(K)

satisfying the above properties i) ii) iii) iv). However, in the present paper, we shall
restrict ourselves to the definition of RG and H(

G

)(τen) in the Euclidean region
(i.e., to i)). The analyticity properties of H{

G

){ren) and in particular the passage
from Euclidean to Minskowski space along the lines of [3] are not investigated
here: some results in this connection are given in [12].

As a preliminary step, it will be necessary to define appropriate classes to
which the various functions H(2\ H(nv\ RG, will have to belong; such classes will
be introduced and studied in Sect. 1. These classes must of course contain the
class of rational functions (corresponding to the perturbative case) and be charac-
terized by their precise type of majorization at infinity in terms of powers of the
four-momenta in Euclidean space.

A very clever realization of classes of functions of this type had been intro-
duced by Weinberg in 1960 [8]. This author proved a very useful theorem ("power
counting" theorem) which provided a set of necessary and sufficient inequalities
to be fulfilled by a function of such a class to be an integrable function.

In perturbation theory, it turned out that a simplified and weaker form of
the Power Counting Theorem [9] was sufficient for dealing with the case of
rational functions. Here however, we will actually need to apply Weinberg's
theorem in its most general version. As a matter of fact, we shall use classes of
functions which are almost as general as those introduced by Weinberg, except
for the following important restriction: we shall also impose conditions at infinity
to the successive derivatives of our functions. As in other mathematical contexts5

where one wishes to avoid functions having an oscillatory behaviour at infinity,
we shall assume that the powers or "asymptotic coefficients" (in the sense of
Weinberg) which govern the behaviour of our functions at infinity decrease by
p units when a derivative operator of order p is applied to them. This type of condi-
tion will be justified by a technical but crucial result concerning the lowering
of certain asymptotic coefficients when an appropriate "Taylor's rest operation"
is applied: the proof of this statement which is rather tedious will be given in an
appendix. It will be made clear in section IV that it is this result which allows
Zimmermann's renormalization scheme to be applicable to the present case
as well as to perturbation theory.

In Sect. 2 a definition of our generalized renormalized integrand RG is given:
this definition closely follows Zimmermann's algorithm [7] and involves a sum
of counterterms which are associated with all the G-forests: a G-forest is a subset
of "non-overlapping" subgraphs of G.

In Sect. 3 we introduce the notion of "complete forest with respect to a nested
set of subspaces of Is™" (this is also an extension of a notion defined in [7]). This
notion allows to write new expressions of RG which are used in the following
Sect. 4. The latter contains the proof of our main theorem: RG satisfies Weinberg's

5 See the definition of symbols in the theory of pseudodifferential operators [10,11]
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convergence criterion, and thus the renormalized integral H^Hτen)(K) is a well-
defined function in the euclidean region. In these results the space-time dimension
is an arbitrary integer r.

1. Some Classes of Functions with Slow Increase

1.1. The Classes Af

Let E be an ΛΓ-dimensional vector-space on 1R. We shall make an extensive use
of certain classes A^ of complex valued functions with slow increase on E which
have been introduced in 1960 by Weinberg6 [8]. Each class A^ is characterized
by a bounded real-valued function α on the set of all the linear subspaces S =/= {0}
of E. a will be called the "asymptotic indicatrix" of the class A%\ by reference to
the following fact: each number, or "asymptotic coefficient", oc(S) will describe
the power of increase (or decrease) which majorizes every function in A{*\ in
"almost all" the directions of the corresponding subspace S; this is made precise
in the following definition.

Definition la6. A complex-valued function/on E belongs to the class Aff if, for
every set oϊm^N independent vectors L1 ...Lm and every bounded region W in E
there exists a set of numbers b 1 ... bm ^ 1 and a constant M > 0 (depending on
Lγ,..., Lm and W) such that:

j=l

(l.l)

. 7 = 1

when the real variables η.(j = 1,...,m) belong to the region {η. ^ b \ and when
CeW.

In (1.1), {L1 ?... ,Lj} denotes the linear closure of the set of vectors {L1 ?... ,Lj}.
From this definition, we easily derive:

Proposition 1.1
a) Aff is a vector space (on U or C)

b) I/f^A^eA™ thenfJ2eA<?+Λ»

c) If<xS:<x':A%)czAip
Let us now consider two vector spaces E, E' with respective dimensions ΛΓ, N\
and a linear mapping p from E to E'. Then we have the following property.

Lemma 1.1. Letf be a function on E' which belongs to a certain class A{p. Then
its inverse imagef = p*f on E (namely: VKeE,f(K) = f'(p(K)) belongs to the class
A{*] which is determined as follows: for every subspace S ofE, let us denote by S' its
image in E :Sf = ρ(S); then oc(S) = otf(S'). In the case when S belongs to the Kernel of
p(i.e., Sf = {0}), ot'(S') has to be put equal to zero.

The proof of this statement makes use of the following

Auxiliary Lemma A. Ifg is a Weinberg function in A%\ it still satisfies the bound of
formula (1.1) for arbitrary sets of vectors Lγ,..., Lm (i.e. even when the latter are not

6 In the original classes AN introduced by Weinberg, logarithmic factors QnηJ^faLι"mLj)) were also

written at the right-hand side of (1.1); however this refinement is not needed for the present work
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linearly independent, or when some of them are equal to {0}). The asymptotic co-

efficients OL({L1L2...LJ}) still have the same meaning as before: {L1? L 2 ...L^.}

denotes the subspace S which is generated by the (possibly redundant) set of vectors

Lί,L2,... ,Lj. In the special case S = {0}, a(S) is defined as being equal to zero.
In view of its technical character, the proof of this auxiliary lemma is given in the

appendix A.

Proof of Lemma 1.1. Let (Lί,L2... Lm) be an arbitrary set of independent vectors
in E and let C belong to a compact subset W of E. We put: Lj = p(Lj) (l^j^ m)
and C = p(C). Then we have:

/( Σ Ljηr..ηm + c) = /'( Σ Uflj-n* + c ) (1.2)

But in view of Lemma A there exist numbers bί,...,bm'^.l and a constant M > 0
such that:

/ m

Σ
\j= i

(1.3)
j=

provided that: η.^b} l^j^m and C'eW' = ρ(W).

By noting that {L\ ... L̂ .} = p({L1... L.})9 and by taking (1.2) into account we
immediately interpret the bound (1.3) as the announced result for p*f. In particular,

if Lje Ker p for 1 <̂  j ^ m\ the corresponding asymptotic coefficients α( {L1... L •})
are equal to α'( {0}) = 0. q.e.d.

The most trivial examples of functions in classes A{^ are the polynomials on E.
In fact, if E = U it is clear from Definition la that the coordinate function K is in
the class Aψ with (unique) coefficient α(IR) = 1. By applying Lemma 1.1 to the case
when E' = U9 we then obtain that every linear form t on E with null-hyperplane H
belongs to the class A^} such that:

α(S) = 0 iϊSaH a n d α ( 5 ) = l iϊSφH.

More generally, by applying Proposition 1.1 (b, c and a successively) we obtain:

Proposition 1.2. a) Let {I. ie 1} be any finite set of linear forms on E with respective
null hyperplanes Hr Then each monomial Π^Γ belongs to the corresponding class

iel

A^ which is defined as follows: VS aE; α.(S) = ]•] v.
{ieI;SφHι}

b) Let Qv be any polynomial of degree v on E; then Qv belongs to the class Affl whose
asymptotic indicatrix is the constant v(VS c: £, v(S) = v).

The following non trivial property of the classes Aff has been proved by
Weinberg in [8], and will be used as a basic tool in our Sect. 4.

Lemma 1.2. For a function f to be ίntegrable on E, it is sufficient that it belongs to a
class Affl whose asymptotic indicatrix α satisfies the following inequality:

sup(α(S) + Λ(S))<0 (1.4)
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In(1.4), the sup. extends over all the subspaces S ofE, and h(S) denotes the dimension
ofS.

1.2. The Classes Σμ

Let $ be an ^-dimensional vector space in which a certain norm (denoted by || ||)
has been chosen. We consider the class C*°($) of all the functions which are infinitely
differentiable on S, and we denote by PV{D) any homogeneous polynomial of
degree v in the derivatives with respect to the coordinates of the variable in $.
In a more intrinsic way (independent of the choice of a system of coordinates),
PV(D) is a linear operator on the space C°°(<̂ ) which is associated with a given
element Pv of the symmetrized tensor product S®v and is defined as follows; if
/GC°°(<?) and if/(v)(K) denotes the derivative application of order v of/at K, which
is a linear form on S®\ then one has:

VXG^ ? (Pv(D)f)(K) =f{ΛK)(Pv) (1.5)

We then define the following classes Σμ of functions on <?, which are contained
in the general class of symbols introduced in ref. [10 and 11].

Definition lb. Let μ be an arbitrary real number. A function/on $ is said to belong
to the class Σμ if it belongs to C00 ($) and if for every integer v ^ 0 and every homo-
geneous polynomial PV{D), there is a constant Cv such that:

Cv\\\pv\\\(i + \\κ\\γ-v (1.6)

here 111 Pv | 11 denotes a certain norm of Pv in $ *', which we do not need to specify.

Remark. Σμ is independent of the choice of the representative || || in the class
of all the (equivalent) norms on S. Indeed in the physical applications of section 2,
there will be no canonical choice of the norm on S\

Let now E denote an JV-dimensional vector space (as in 1.1) and let λ be a
linear mapping from E to S. We shall prove:

Lemma 1.3. For every function f on $ which belongs to the class Σμ, the inverse
image λ*f of f belongs to the class Afi μ) whose asymptotic indicatrix α(μ) is defined
as follows:

α<">(S) = μ ifSφKerλί (1.7.b)

Moreover, for every integer v > 0 and every homogeneous polynomial QV(D)
of degree v on E, the function Qv(D)(λ*f) belongs to the class Aa^~v).

Proof. Let {L1?... ,Lm} be an arbitrary set of independent vectors (m ̂  N) and
W a bounded region in E.

Let J g m be the integer such that:

1)^{0} (1.8)
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If J = wi,

(A*/

where M

If J < m,

we have:

,fyL j |...,, + CΛ 1 //'2/'/~'\\l

\j=i J J m /

Γ = sup|/(A(C))|
CeW

we have:

= /( Σ
\j=J+l

J. Bros and M. Manolessou-Grammaticou

(1.9)

Then under the conditions:

(1.10)

(1.11)

the norm inequality yields:

m

Σ λ(L.)ηr..ηm ^ Σ Π f,

Then by taking into account Definition lb (namely formula 1.6 in the case v = 0,
P o = 1), we easily derive from (1.10), (1.12) the following majorization:

J = l

(1.13)
j=J+i

which holds under the conditions (1.11).
In (1.13), the constant M is given by the formula:

Now if we introduce the asymptotic indicatrix α(μ) by the formula (1.7), we
can easily check that the right-hand sides of both inequalities (1.9) and (1.13)

m

can be rewritten in a unique way as M ["] (η*μ)ULi-~Lj») (since in view of (1.8) the
ji

inclusion {L1 . . . L j cKer/ l holds if and only if j^J). Thus the first part of
Lemma 1.3 is proved.

To prove the second part, we use the fact that for every Qv in £ ? v , there exists
an element P v in $*\ such that:

indeed, if λ denotes the linear mapping from E®v to $®v which is canonically
induced by A, Pv is determined by the equation: Pv = λ. (Qv)9 and (1.14) can be
derived from (1.5) and from the definition of /I*.

Now, by applying the same argument as above to the function Pv(D)f instead
of/(namely, by using formulae (1.9), (1.10), (1.12)) and by taking (1.6) into account,
we obtain the second result of Lemma 1.3. q.e.d.
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1.3. The Classes jrf(*χσ'ω) of Admissible Weinberg Functions

In this subsection, a vector space $\κtk)= ^[κ)~
1) x E[k) is considered; the sub-

scripts (K\ (k) etc... will always refer to the name of the variable which is used
in the corresponding space; the superscripts rL etc...refer to the dimension
of the space. The notations are justified by the physical applications of the next
section: K and k will correspond respectively to the external and to the integration
momentum variables which will be associated with a graph G; these momenta
will be supposed to belong to an r-dimensional euclidean vector space (which
plays the role of the space of the euclidean four-dimensional energy-momentum
vectors). Er

{k) is the space of the sets of L independent euclidean r-vectors, namely:
k = (fe1?... ,fcL). ^[χ)~

1) ~ Ern/Er is the space of the sets of n euclidean r-vectors
K = (K1 . . .£„) linked by the relation: K1 + K2 + ... + Kn = 0 ("conservation
of total momentum"). In £r^k)5 N — L + n — 1 denotes the total number of
independent r-vectors. We shall also make use of the canonical projections π
(resp. χ) of £r" onto £ ' L 7 (resp. <Γg- ί ]); namely we have: π(K, k) = (0, k) χ(K, k) =
(K90).

As in subsection 1.2, we shall also consider homogeneous polynomials in
the derivatives with respect to the variables K, which we shall denote by Pm(Dk);
for every/eC°°(£[£fc)), Pm(Dk)f is a well defined function on £[lλ) which does not
depend on the choice of the coordinates (see the beginning of 1.2).

Similarly we shall also consider the Taylor expansion of degree d of a function
/with respect to variables K at K = 0; we denote it by td

K)f and the corresponding
Taylor rest by (1 — td)f: these functions are always considered as intrinsically
defined on £r^ky even if their explicit expression in coordinates has to be used
in some of the arguments given below.

Definition lc. Let σ be a given set of subspaces of Er,h and let ω be a given set of
subspaces of # ^ k) such that:

a) σ c ω (here every subspace Seσ is also considered as a subspace of ir^k)\
see the previous footnote).
b) MSeω π(S)eσ
c) Seω and S c S' imply S'eω
d) σ and ω do not contain the subspace {0}.

Remark. From a) and b) one gets that if S cz Er

(ky the relations Seσ and Seω
are equivalent. Then, from c); Seσ and S c S' a Er

(k) imply S'eσ. A couple of
sets of subspaces (σ, ώ) which satisfy the above conditions a), b), c), d) is said to
be an "admissible couple in #^> f c )".

Definition Id. Let α be an asymptotic indicatrix on &[%tk) such that for every
subspace Seω one has:

α(S) = α(π(S)). (1.15)

Then we associate with α, σ, ω a class j / ^ ' σ ' ω ) of "admissible Weinberg functions"

/(fe, K) by the following conditions:

We shall always identify £ j } with the subspace {0}(K) x E^ <
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i) / belongs to the class Af^
ii) for every homogeneous derivative polynomial Pm(Dκ) of degree m, the

function Pm(Dk)f belongs to the class Af^ which is defined as follows:

VSeω αM(π(S))=αM(S) = α(S)-m

From the above definition and from Proposition 1.1 we easily derive the following.

Proposition 1.3
a) s^fjf'ω) is a vector space

b) i/Zie^^^Ja^S2 )

c) ifσ' c σ and ω'aω then s/§σ-ω)

d) if a' ̂  α (i.e. VS α'(S) ̂  α(S))

we now consiαer two spaces ό ( X f k ) - 6 ( J K ) x ϋ ( k ) J d ( K , f k # ) - ό ( K I ) x ̂ 'k, }

(A/" = L + n — 1, ΛΓ = L + π' — 1), and the following linear mapping s from £r^k)

into ££;,,,:

f ) (1.16)
c = /c

where p is an arbitrary linear mapping from £r

(^k) into ^^ ' ) ~
1 } π and π' denote

the respective projections: (K, k) -+ (0, fe) and (K\ k') -> (0, /c').
The linear mapping8 X' = p(K,0) from ^ ' ^ into ^ " ^ induces a well-

defined linear mapping p ( w ) from ( ^ ~ 1 } ) ? m into {£r£~ 1))f)w. So, to every deriva-
tive polynomial PJDK\ represented by an element Pm in (S>r

{^)'
1ψm there

corresponds a derivative polynomial P'm(Dκ\ (represented by the element P'm =

Now we can prove:

Lemma 1.4. Let (σ,ω) and (σ',ωf) be two admissible couples respectively in £[%k)

andjo*^'k) such that:

Seω implies s(S)eωf and σ' = {S' c E^t): S" = iS Seσ},

where i denotes the isomorphism from {0} x E[^ } onto {0} x Efk^ defined by k! = k.
Let then f(K\ k') be an admissible function in a class stf("N;σ''ω>) then the inverse
image (s*f)(K,k)=f(s(K,k)) of f is an admissible function in the corresponding
class j / ^ σ ' ω ) where OL is determined by the condition:

V S c ^ j α(S)=α/(s(S)).

Remarks.
i) One easily checks the following identity which results from the special form

Namely, the tangent mapping to p]k=ko at any point (K0,k0)
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(1.16) of the mapping s:

πΌSoπ = π'°s = iπ (1-18)

ii) In the applications (see Sect. 3 and 4) it will be convenient to identify the
spaces Ejΐ and Er£f) (i acting as the identity operator) and to write σ' = σ.
With this convention, Property (1.18) yields:

if S' = s(S) then π(S) = π'(S/) (1.19)

Proof of Lemma 1.4. In view of Lemma 1.1 s*/belongs to the class Af^ such that:
VS, α(S) = af(Sf). Let S be such that Seω. Then we have in view of Definition Id
applied to the function f(K\k') and formula (1.18)

φ(S)) = α'(s°π(S)) = oc'(πΌSoπ(S)) = α'(π'(S')) i.e. oc(S) = α(π(S))

so that the indicatrix α satisfies the requirement (1.15) of Definition id.
Let us now consider an arbitrary derivative polynomial Pm(Dκ) and the

corresponding polynomial Iζ(Dκ,); then in view of condition ii) of Definition
Id, we can say that P'JP^feAffi, with:

a'JS') = α'(S') - m S'eω'

and

am(S') = a'(S') S'φω'

Formula (1.17) and Lemma 1.1 then imply that Pm(Dκ)(s*f) belongs to the
class Af™] where

aJS) = oc'm(Sf) = α'(S') - m = α(S) - m, if Seω

if S£ω

For proving the following Lemma 5 on Taylor expansions of admissible
functions, we need the two following auxiliary propositions.

Proposition 1.4. Let f belong to a class A^9 and let π*fbe the inverse image off
by the projection π (i.e.f(k) considered as a function of(K,k), constant in K). Then
for every admissible couple (σ, ω) in Sr^ky π*/ belongs to the class j / ^ σ ' ω ) which is
defined as follows :

for every subspace S of lfκk) :όc(S) = φ(S)) (1.20)

Proof In view of Lemma 1.1, the function π*/belongs to the class Af^, with
ά defined by (1.20). It is clear that for every admissible couple (σ,ω) ά satisfies
the requirement (1.15) of Definition Id. Moreover, since PmΦκ){τz*f) = 0 for
every operator Pm(Dκ), the condition ii) of Definition Id. is trivially satisfied.

Proposition 1.5. Let Qm(K) be an arbitrary polynomial of degree m of the coordi-
nates of K and let %*Qm be the inverse image of Qm by the projection χ (i.e. Qm(K)
is considered as a function on $r^ k) constant with respect to k). Then for every
admissible couple (σ, ω) in <?(χfc)JX*δm belongs to the class j / ^ w > σ ) ; σ ' ω ) which is
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defined as follows:

if Seω: α ( w σ)(S) = α ( m 'σ )(π(S)) = m

if Sφ Efc and S<βω: α(m'σ)(S) = m (1.21)

if S cz Eg; ami S^σ: a(m'σ)(S) = 0.

Proof Qm belongs to the class A^-^, where the index m denotes the constant
function: m(S) = m for every S <= <f̂ w

)~
1) (see Proposition 1.2).

Due to Lemma 1.1., we can say that χ*Qm belongs to a class jtf%'τ) such that:

m(S) = E

Since m ^ 0, it is clear that:

Vτ, VS :m(S) ̂  α(m'τ)(S), so that Z * w ^

Vτ, α (m'τ) satisfies condition (1.15).

Finally every function Pm(Dκ)(Qm) is a polynomial of degree m — m' and
obviously belongs to a class ,4<α^'τ)) which fulfils condition ii) of Definition Id.
We are now in a position to prove:

Lemma 1.5. Let (σ, ω) be an admissible couple in ir^ky letf(K, k) be an admissible
Weinberg function in a class sί§σ>ω) and let h(K,kj=(td

{K)f)(K,k).
Then for every admissible couple {σfωr) in $r^k) such that σ' ID σ, there exists a

class jtf%'σ>'ω>) which contains h and which satisfies the following properties:
a) VS,withπ(S)eσ.

b)

c)

Proof By choosing a set of coordinates (K) = {Kλ ;l^λ<*4(n— 1)} for represent-
ing K, we can write:

h(K,k)= Σ ^j-Dy

κf(β,k) (1.22)

where we have used the notations: v = {vλ 1 g λ ^ 4(n - 1)}, | v | = Σ vλ,

v! = Π(vλ !), (KY = Y\Kγ, and D\f= (\{^)\f-
λ \ λ /

In view of Proposition (1.3) a), we are led to show that each product
(K)v-Dv

Kf(0,k) occurring at the r.h.s. of (1.22) belongs to the class s/% σ'-ωt) for
every admissible couple (σ', ω') in £r£k) with σ' ~D σ,

By applying Proposition 1.4. to the function Dv

Kf(0k) which belongs to the

E9
(K)
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class A^ύ (see Definition Id. ii) such that:

α|v)(S) = α ( S ) - | v | if Seσ,

α |v |(S) = α(S) if Sφσ,

we conclude that for every admissible couple (σ\ ω') in #[£ fc), (σ' ID σ), the function

π*(Dv

κflκ = 0)(K, k) = Dv

κf(0, k) belongs to the class sf§-σ'-ω'\ such that:

άv(S) - α(π(S)) - | v | if π(S)e σ,

άv(S) = α(π(S)) if π(S)£σ (1.23)

By applying Proposition 1.5 to the function (K)v, we now see that for every

admissible couple (σ\ ω'\ (K)x belongs to the class s/i*M'σ'h.σ'><°')9 defined by for-

mulae similar to (1.21) (with m -• | v |).

Then, in view of Proposition 1.3.b), we conclude that the product (K)vDv

κf(0, k)

is an admissible Weinberg function in the class j ^ + ^ ' 'V'.ω')^

Formulae (1.21) and (1.23) allow us to compute the function αv = άv + α ( ' v ' ' σ ) :

a) if π(S)eσ:

a\S) = (φ(S)) - I vI) + I vI = α(π(S)) (1.24)

b) if π(S)φσ, π{S)eσ'\

a\S) = φ(S)) + I vI ̂  φ(S)) + d (1.25)

c) if S a E£y with S^σ':

αv(S) = α(S). (1.26)

Let us call α' = sup αv then in view of Proposition 1.3.d), we have:
{v;O^|v|^d}

Vv with 0 ̂  I vj ^ d :(K)vDv

κf(0, k)ejtf%>σ'>ω'K

Moreover, formulae (1.24), (1.25), (1.26) show that α' satisfies the required condi-
tions a), b), c), of the lemma. q.e.d.

Lemma 1.6. Letf(K, k) be an admissible Weinberg function in a class s/(^σ'ω) and
let g(K, k) be the Taylor rest of order d off: g = (1 — tfK))f Then for every admissible
couple (σ'? ω

f) in Sr

{^ k) with σ' c σ, ω' a ω there exists a class ^%'σ'ω) which contains
g and which satisfies the following properties:

a) VSeω';

α'(S) = α'(π(S))=α(S)

b) VS c E[^ with S£σ' and Seσ:

α'(S) = α(S) - d - 1

c) VSczE

In the proof of this statement, it will clearly appear that σ' can be chosen to be the
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empty set φ. With this special choice, Properties b) and c) can be equivalently
formulated as follows:

Lemma 1.6.' Iff belongs to s^f^σ'ω\ then g = (1 — td

{K))fand all the derivatives of g
with respect to the variables (K) belong to a certain class Affi such that:

a) VSczEr^withSeσ:

αφ(S) = α ( S ) - d - l

b) VScEβwίthSφσ:

Proof of Lemma 1.6. It is a straightforward application of Lemma B.2. Let us
consider a fixed admissible couple (σ\ ω') with σ' a σ, ω' a ω, and an arbitrary
derivative Dv

κg of g, with order | v| our argument will include the case of g itself.
Dv

κg belongs to the Weinberg class A{ψ^\ with α( (defined by formulae (B.44)...
(B.50).

We now notice that the following inequalities hold for every value of | v |:
a) VSeω', we have (due to (B.44), (B.45)) :

α | v |(S)gα(S)-|v| if SczEjJ (1.27)

α,v,(S) = α(S)- v| if

x, v,(S)^α(S)-|v| if o ^ ^ ( f c ) J

b) \/S£ω' with Seω, we have (due to (B.44), (B.45)):

α | v | (S)=α(S)- |v |^α(S), if S φ E*

α,V|(S) S α(S) - d - 1, if S c E£} (1.28)

c) VSφω, we have (due to (B.46), (B.50)):

α,v|(S)^sup[α(S),α(π(S)) + d - | v | ] , if Sφ ^

α |v|(S) = α(S), if S c £ [ J

Now let us define the index function α' as follows:

α'(S) = α'(π(S)) = α(S) for Seω' (1.29)

α'(S) = α(S) for S <̂  £ j } with Sjέω', Seω

α'(S) = α(S) - d - 1 for S c £^ } and Seσ\σ' (1.30)

α'(S) = sup [α(S), α(π(S) ) + d], for S ̂  £^ } S £ ω

α'(S) = a{S) for S c E^iS^σ. (1.31)

The above analysis clearly shows that (in view of Proposition l.l.c. and Definition
Id.), g belongs to the class s/%>σ'>ωΊ. In particular, formulae (1.29), (1.30) and (1.31)
exhibit respectively the Properties a), b) and c) of α' which were stated in Lemma 1.6.

q.e.d.
We shall end this section by proving the following lemma which relates the classes

Y£ of subsection 1.2 with the classes of admissible Weinberg functions j ^ σ > ω )
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Lemma 1.7. Let λ be a linear mapping from the vector space $[ztk) into an
n-dimensίonal euclidean vector space ^"^(K = λ(K, k)).

Then for every function fon Sn^ which belongs to the class Σ£,the corresponding

inverse image λ*foffis an admissible Weinbergfunction on # ^ fc) which belongs to the
following class s/(^σ'ω)

a) σ is the set of all subspaces S of Er^ such that S φ Ker λ.
b) ω is the set:

ω = {S cz £r

(lk) -.SφKeτλ; π(S)eσ} (1.32)

c) the indicatrix α is such that:

- VSeω : α(S) = φ(S)) = μ (1.33)

- VS<βω:a(S) = 0 if S cz Ker λ (1.34.a)

oc(S) = μ if Sφ Ker λ (1.34.b)

Proof We first verify that (ω, σ) is an admissible couple in Sr^ k because properties
a) b) c) d) of Definition lc are satisfied.

Let us apply now Lemma 1.3 (with 4{κ,k) plajάng the role of E). We obtain that
/l*/belongs to the class Af^ with α defined by (1.34) (1.33). In fact, when Seω i.e.
S φ Ker λ and π(S) φ Ker λ then 1.7.b implies that α(5) = α(π(S)) = μ. Similarly
when Sφω then there are two possibilities: either Sa Kerλ which from 1.7.a
implies α(5) = 0 or S 9̂  Ker A, π(S)φσ which implies α(S) = μ.

It remains to check that A*/satisfies condition ii) of Definition Id: but this is
entailed by the second part of Lemma 1.3.

Appendix A

In the Definition lb of functions belonging to a class A(*\ it is assumed (as in [8])
that inequalities of the type (1.1) are satisfied for all sets of linearly independent
vectors {L1,..., Lm}. As a matter of fact, we need to use such inequalities even in
cases when Lx,..., Lm are not independent. We shall then show that this property
can be derived from Definition lb.

Lemma A. Let f be a function in RN, which belongs to a definite class Aff. Then if
{Lχ,..., Lm} is an arbitrary set of vectors (m being an arbitrary integer), and ifWis an
arbitrary bounded region in MN, there exist positive numbers M and bj(l Sj S m),
such that:

VCeW, Vηj^bj, l^j^m,

one has:

7 = 1

^Af Π <
( { L l " L j } )

J = l

Remarks
i) As in formula (1.1), oc({Lί... L.}) denotes the asymptotic Weinberg coefficient
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of the subspace S which is generated by the set {Lx,..., L j but now the dimension
of S can be smaller than j .
ii) It is useful to note that formula (A.I) still holds true when some of the vectors

j} are chosen to be equal to {0}, provided that one then adds the condition:

Proof. From the set {L1, L 2 , . . . , Lm}, we extract a well-defined subset of n indepen-
dent vectors {Lh,Li29...9Lin} with iί < i2 < ... in ^ m, through the following
recursive construction:

a) ix is the smallest integer such that Lh Φ {0}.
b) Suppose that i1,..., ik_ 1 have been determined. Then ik is the smallest of the

set of integers j> ik_ί such that {Lfi ,Li2,...,Lik_ί, Lj} be a set of independent
vectors.

c) n is the largest value of the index k such that b) be applicable, i.e. n is the
dimension of the subspace generated by {Lx,..., Lm}.

For any integer j ^ m, there exists a unique set of real numbers ajk such that:

k

From the above construction, we even deduce that:

and ajk = 0 iΐj<ik,

so that we can write:

m n ( a \

Σ L Λ . . . ηm = Σ ( 1 + Σ „ * k - »LV (A.2)
J = l fe=l \ 7 > i k ^ ik '•• f 0 - l /

We now wish to determine numbers η[... η'n as functions of η = (?/1,...,ηm\ in
such a way that:

By taking (A.2) into account, we are led to a unique solution which is defined as
follows:

Σ °A

Let us now apply definition lb to the set of independent vectors {Lik

^ k ^ n}. There exist constants Mr and ί? ,̂ for 1 ^ k ^ n, such that:

VCe PF, Vη = (η1,..., ηj such that
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one has:

n \ n __

Λf f ] Λ M (A.4)
j=i fc=l

Now, if we put a= Σ I ajk I ( n o t e that α > 1) and if we impose the conditions :
CM)

ηik^2a for l^k^n 1

η. ^ 1 for every y(l ^ j ^ m) J (A.5)

we easily deduce from (A.3) the following inequalities:

k^^ΓΪ\U^)^3Π\'. (A.6)

From the left inequalities (A.6), we infer that the conditions ηk(η)^ b'k are
fulfilled as long as (A.5) holds together with the additional conditions:

ηik^3bk for l g f c ^ n .

From the right inequality (A.6), we conclude that the right-hand side of (A.4)
is majorized by:

ηfLl' Lj}).

To obtain this, we have also noticed that for ίk ^j <ίk + 1 one has :a({Lί ... Lj}) =
α( {Lh ... L k}), and that for j <iί, one has: α( {Lί,..., Lj}) = α({0}) = 0 (see
remark ii) above).

To summarize, we have proved the following result:

if we put: = 1 for j φ ik

bik = sup (2a, 3b'k) for 1 ̂  k S n

and M = 3nM\

then the conditions: CeW,η.^.bp 1 rgj ^ m imply the inequality (A.I.) q.e.d.

Appendix B

Taylor Rests of Graded Weinberg Functions

In this appendix, we consider Weinberg functions in a definite class A(*o) on a space
U^y) = U*χ) x Uq

{y)(N = p + q\ which are infinitely differentiable and satisfy the
following additional conditions.

Let/be such a function; we assume that each partial derivative Dv

xf of/ with
respect to the variables x, with total order n = j v | belongs to a definite class
A^n\ So, each asymptotic indicatrix ocn(n = 0,1,2...) governs, in the sense of
formula (1.1), the behaviour at infinity on every subspace S of U^x y) oΐall the deri-
vatives D^/of/with total order n. We shall also say that/is graded with respect to x
and that it is asymptotically governed by the sequence {α o ,α 1 5 . . . ,α π , . . . ,} .
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Of course this sequence is by no means unique, since in particular/is governed
by every sequence {oζ} such that: Vrc ̂  0, a'n > an (see Proposition 1.1.c).

We shall prove a general property of the Taylor rests with respect to the varia-
bles x of these graded functions (Lemma B.I). This result will then be applied to the
case of admissible Weinberg functions (see Definition Id) which are graded func-
tions of a special type (Lemma B.2).

Lemma B.I. Let f be a Weinberg function in U.^xy) which is graded with respect
to x, and asymptotically governed by the sequence {αj .

Then the Taylor rest g = (1 — td

(x))f of order d offίs also a Weinberg function
which is graded with respect to x; it is asymptotically governed by a sequence {an}
which is determined as follows:

a) For n> d, one has:

VScR^,αJS) = αn(S) (B.I)

b) For n^d, two cases occur:

-ifSczWω:an(S) = ad+1(S)

-ifSφW(y): (B.2)

αB(S)= sup \μd+ί{S)-]+d-n+l (B.3)

Here we have used the notation Sf > S which is defined as follows: we say that two
y

subspaces S, S' of M*x y) satisfy the relation S' > S if the following conditions hold:

i) S n R ^ c z S ' n R ^ f l R ^ being always identified with the subspace {0} x Uq

{y)

ϋ) n(s) = π(S'),π denoting the projection (x, y) -» (0, y) of UN

{x^y) onto Uq

(y). In (B.3),
the "sup" runs over all subspaces Sf of U^x y) which are such that S" > S.

Remark. Since each indicatrix an is a bounded function (see Sect. 1.1) taking this
"sup" always yields a finite number.

Proof There will be two parts in this proof. The longer part (A) will be concerned
with proving that for every function /(x, y) which is graded with respect to x and
governed by a sequence {αj , the corresponding function g = (1 — td

(x))f belongs
to a class A%, with the indicatrix α = α 0 , given by formulae (B.2) and (B.3), namely:

a(S)= s u p [ a d + 1 ( S ' ) ] + d + l , ^ S φ Rq

(y) (B.3')
{S",S>S}

In the shorter part (B), this first result will be used to show that each derivative
Dv

xg of g, with order | v | = n belongs to the corresponding class A(-n\ with an given
by formulae (B.I), (if n > d) or (B.2), (B.3) (if n S d).

A) To prove that g belongs to A^\ we shall first treat the case when x is a
single variable, namely: p = 1, q arbitrary. Then we shall treat the general case
through a recursive argument over p.
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1. The Case p = 1

To prove that g(x,y) is a Weinberg function, we have to consider an arbitrary
set of m independent vectors {L1,..., Lm} in U(x) x U*y) and an arbitrary bounded
region W in this space. Let ^ ( L 1 , L 2 , . . . , Lm W)I be the region of U(χ) x R*y) which
is parametrized as follows:

(x9y) = Lϊη1...ηm+ ... + Ljηj... ηm + ... + Lmηm + C

with C G Hf and V) ^ m: ^ ^ 0 (B.4)

We have to prove that in &(L1,..., Lm W) the function gf satisfies a majorization
of the following form:

\ _____

provided that ^ x > fc1... ηm > bm where bί,...,bm are suitably chosen positive
numbers.

We shall use the following basic expression of the Taylor rest of/:

xd+11

g(;χ5 j;) = 7~\Dχ

+ lf{{\ - ί)χ, j)^rfί (B.6)

d! 0

We thus need to extend the parametrization (B.4) to the region

{((l-φc,y), w i t h O ^ ί ^ l , {x9y)e9t{L19...9Lm'9W)}

Let L be the unit vector of U{x), identified with (x = 1, y = 0); for every j rg m,
we can write in a unique way:

Lj = μjL + _\ with L^.elR^

and C = μL + C with C " }

For (x,y) in ^(Lj L m ; W\ we then have:

((1 - t)x9 y)=Σ LjVj -Vm-Ltx + C (B.7)

with
m

and if we choose i; = ίx as a new integration variable in (B.6), the latter can be

rewritten:

Following closely the method used by Weinberg in the proof of his general
"power counting" theorem (see [8]), we shall cover the integration interval [0, x]
of (B.9) by a finite number of sets, in each of which a particular majorization of
the Weinberg function | l>£ + 1 / | holds. These sets can be clustered into families
according to the following recursive scheme.
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One first covers [0, x] by an open set &~h = [J It: h is a fixed integer ^ m
ieσh

which will be determined below; each I. is an open interval whose label varies
in a finite family σh. One then successively defines sets &~r, e/r9 2tfr, of [0, x] for
/z ̂  r ̂  m, in such a way that:

•*",<= . ^ r + i ( f o r r ^ m - 1 ) (B.ll)

with

^ = ( i h U s / , ,.,,-I

Λ = U .̂...v (B 1 2 )
(ih...i r)eσ r

^^? j ] TJ
(ih .Λr)eσr

Each set / ί h_ ί r is an open interval, from which a closed interval or "hole"

Hih ir is taken away; the corresponding hollowed interval is:

Each finite family σr of labels (ih... ir) is determined recursively by conditions
of the following form:

ireσ(ih ..ir-i)

(the latter obviously imply (B.ll), if (B.12) is taken into account).
Let F(v) be the integrand in the right-hand side of (B.9). From (B.10), (B.ll),

it follows that:

and correspondingly:

J F(υ)dv S Σ $\F(v)\dυ+ J \F(υ)\dv. (B.13)

In each set JihmmΛr, (for r ̂  m), and Hih . , a definite Weinberg majorization of
I F(ι ) I will be produced then by taking (B.I2) into account, one will obtain bounds
on all the terms of the r.h.s. of (B.I3): all these bounds will turn out to have the
required form (i.e. that of the r.h.s. of (B.5)).

It is only for r = h, that βr needs a definition which is slightly different from
that of [8]. In a) we shall define βh and derive the corresponding majorization
of j |F(ιO|dι;. In b), we shall rest upon [8] for the detailed definition of all the

other sets βr, J f r , 3~r and indicate briefly the majorizations of the corresponding
terms in (B.I3).
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a) Contribution of the set Jf

h

Let h be the integer (h ̂  m) for which:

μh φ 0, and μ. = 0, for every j^h — ί;

h is also the integer for which each subspace Sj= {L1,...,Lj}, with jrg/z— 1,
is contained in Uq

y), while each subspace Sj9 with jg : h, is not contained in Mq

y).
In the argument of Dd

x

+1f in formula (A.9), we replace υ by a new variable z
which is defined by:

( B 1 4 )

u being a fixed number.

This allows us to write:

7 = 1

L M )\z\ηh+1 ...ηm

(Lh-Lu)(^)\z\ηh+1...ηm-ε(z)L\z\ηh+ί...ηm+
\\Z /

where ε(z) denotes the sign of z.
This expression is convenient for taking into account the assumption that

Dχ+1f belongs to the Weinberg class A^ + ί and therefore satisfies the following
majorization (note that here it may be necessary to use the result of the auxiliary
lemma proved in Appendix A, if sets of non independent vectors {L1 ,...,Lj,L}
are produced):

/ m

Dd

x

+1f[ΣL
\j=ί

V z /

provided that:

η^bfu) for

YhL>h.(n\

and K(u);

\1

J J m J

h-1

^Mh(u) Π ^αd'
7 = 1

.. .Lh- \.Lh-Lu)) m
« d + l ( I - - - ) J ~ J

j = h + ί

j = I ...m, jφh

i<{Li,...,L,»

Mαίί+ i({Li, . . . ,Lj,L

η.

(B.16)

(B.18)

here Mh(u\ and the bj(u) (O^j ζ m) denote appropriate positive numbers which—
a priori—depend on u; the bj(u) are always supposed to be larger than 1.

The set of points v for which the majorization (B.I5) is satisfied is given by
plugging conditions (B.17), (B.18) into (B.14): condition (B.17) yields the interval:

={v;ηh... ηm(u - b~ \u)) <υ<ηh... ηm(u + bζ\u)} (B.19)

adding condition (B.I8) yields the "hollowed interval"

J(u) = I(u)n{v;\v-ηh...ηmu\>ηh + 1...ηmb0(u) (B.20)
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Let us determine a positive number u0 such that the integration interval
[0, x] in (B.9) be covered by (J I(u). This is readily obtained by choosing

0 ^ U 5Ξ UQ

m

uo= J] μ. + μ; in fact, in view of (B.8) we have:

*+ Σ - J— + - -

and if we impose the conditions:

we obtain the inequality:

which yields (in view of (B.15)):

By applying the Heine-Borel lemma, we can extract from {J(w);0 ̂  w ̂  w0}
a finite covering by intervals /. = 7(w.) (i belonging to a finite set σh); we also
introduce the corresponding family of "hollowed" intervals J. = J(w.) through
formula (B.20).

We then conclude that when v is restricted to vary in the set </h = 1J J., the
ίeσh

following majorization can be deduced from (B.I5) (the latter being applied to each
case: u = w ):

ί\F{v)\dv^ Π ^ d + 1 ( { L l " ' " L j } ) χ Π ̂ ;d

fh J=1 j=h+l

v V h(Ui'n<*d+ i({

ieσh *

&O(Mi) ̂  |z|^»/faί>h 1(ίli)

In view of (B.16) and (B.21), this majorization holds provided that one has:

ηh^ί and Vj^ h9 1 ̂ j ^ m : ̂  ^ s u p ^ ) ) (B.23)

It remains to estimate the dependence of the right-hand side of (B.22) with
respect to ηk, by performing the integration over z. The dominant contribution of
the term labelled by "Γ in the summation £ can have the alternative forms:

ηa

h

ι or ηl1'1 In ηh; we take this as a definition of ά., the occurrence of either form
being linked with the sign of the difference of the exponents:

(B.24)
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It is easy to check that:

i) if α' ̂  α'.: ά. = aί + d + 1

ii) if a! < α[.: ά. = sup [(αj + r) + sup (1, aί — aίi + d — r+ 1)]

which yields ά. ̂  sup(α', a[) + d + 1

From this it follows (in view of (B.24) that in all cases:

(B.25)
. .Lj)

For deriving the latter inequality, we have made use of (B.3) and of the fact that
for every number u, one has:

{L19...Lh9L} >y{L1...Lh} and {Lx,... Lh_ 1 , Lh - Lu) >y{L1...Lh}

Similarly, we notice (by referring to (B.2r), (B.3')) that:

^ Q ) , (B.26)

(y)
since then {L1,..., Lj}

—for; ^ h + 1, α d + 1 ({L 1 , . . . ,L j ,L}) + d + 1 ̂  α({L 1 ?... ,L j}), (B.27)

since then { L 1 , . . . , L p L) > {L1,..., L.}.

From (B.25, B.26, B.27) we conclude that the majorization (B.22) entails the
following one:

J \F{v)\dυ^Mhl\ηfLu'"M) (B.28)
/h j=l

for a certain constant Mh, and provided that the parameters η. satisfy the conditions
(B.23).
b) Contributions of the sets /r,for h<r g m, and of the set fflm.
To define an interval Iίh ιV, one considers a certain sequence Ur of r — h + 1

positive numbers : {t/ih,..., u h . , . . . , wίh .} and the associated change of variables:

^ = V ( Z ) Ξ Σγ1j r1r - 11mUih...ij + r1r+l ' rlm

Z (B-29)

This definition extends to the case r = m, provided that one adds the convention
that "ηm+ ί... ηm" is then equal to 1. From (B.29), one obtains:

m h-ί

Σ Ljηj...ηm-Lυ + C= Σ M r - ^
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The assumption Dx

+ feΛ^d + 1 then implies the following majorization:

f = %Γ(*)> o ^ W X

r - 1

h-1

J = l

ΓT η"d+1^Lί '••Lh-uLh-Luίh,...,L

i .. .LH- ι,Lh-Lulh,... ,Lr-Luih

i + i({L 1,...LΓ,L}) -Q ^ ^ ( { L L . L , , !

(B.30)

X . . .

(B.31)

The numbers Mr(Ur) which occur in (B.30) are appropriate constants such that:
bj(Ur) ^ 1. One then defines:

so that (B.31) holds in J f h_ ι V .

Assuming that a sequence Ur_ί = {uih... uih ir_ J has been defined recursively,

a set of numbers {uih ir ;ίreσ(iί... ir_1)} is determined through the Heine-Borel

lemma in such a way that:

ireσ(iι...ir- 1)

Taking as its starting point the set {ui9ieσh} of a), this procedure achieves the
definition of all the sequences {uih .J and sets Iih ir,Jih ir>Hih irτ f° r every
r ^ m.

From (B.30), (B.31) and from the definition (B.12) of βγ, we then conclude
that:

h-l m

X . . .

Σ

... J \z
bθ(Ur)£\z\£ηrbr l(Ur)

where we have put:

J=Γ+1

(B.32)

ct'-aίu i.

(B.33)

(B.32) holds provided that all η. ̂  bf ^ 1, the fejr) being appropriate numbers.
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The estimate of the powers of η. for h Sj ' ^ r in the r.h.s. of (B.32) are given
by an analysis which is similar to the one described in a). It yields the desired
result

J" \F(v)\dυ ^MrY[ ηfLi-t-M (B.34)
Λ 7 = 1

To obtain this, we had to take into account (as in a)) the fact that:

so that (in view of (B.3/)):

Γ sup (α;h....;] + d + 1 ^ ^ ( 1 7 ^ } ) (B.35)
J

and similarly: ad+1({L19... ,Lr,L}) + d + 1 ^a({Lί ...Lr})
Finally, it remains to majorize J |F(ι;)|diλ On each interval Hih irn, we have:

_ . (B.36)

which implies:

m ft— 1 m

7 = 1 7 = 1 7=Λ

where C = C-Lz varies (in view of (B.36)) in a compact set W.
The majorization (B.31) is thus replaced by:

ft-l

y%
(χd+ i({Li,...,Lh- i,Lh — Luih,...,Lj — Luih...i.})

Since no z-integration remains in this bound(valid on Hh i w ? ) the end of the
above argument (see (B.35)) applies directly and allows us to conclude that:

J \F(υ)\dυSMmY\rifLl-'Lj)) (B.37)
Mm 7 = 1

We can now conclude that in the case p = 1, the announced result (B.5) is a
trivial consequence of (B.13), (B.28), (B.34), (B.37).

2. The General Case

We split arbitrarily the space U?x) into two factors:

RU = Rr(U)

 x RS(v) ( i e- x = (u> vϊ w i t h r^p-l9s£p-l).

We then use the following identity which links together the Taylor rests
of/at x = 0 and at w = 0, and the Taylor rests of the partial derivatives Dv

uf,=0
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at z; = 0:

[ ί 1 - ΦΩ (*> y) = K1 - <)/] (w> v>y)+-
d v

Since all the functions f{u,v,y\Dv

uf^u = Q{v,y) are graded Weinberg functions
with respect to variables u and v and since r, s ^ p — 1, it is possible to apply—as
a recursive assumption—the statement of the present lemma to each Taylor
rest which occurs at the right-hand side of formula (B.38). We will show that
each term of this formula belongs to the class Ajp+qy with:

a(s) = ad+ί(S) iϊSczRΐy)

α(S)= sup [a d + 1 (S0] + ( d + l ) ifS^Rf y )

i) (1 - if)/is a Weinberg function in the class A-{p+q) such that:

α'(S)= sup [ α d + 1 ( S ' ) ] + d + l, if Sς£ i?^*
{S' S' > S}

where S ' ^ S if: i) S n R ^ , <= S ' n R ^ , and ii) π(ll)(S) = π(fl)(S'), π(M) denoting the

projection of [ R ^ onto (R^ } parallel to Ur

(u). If we also introduce the projection
71 (v) °f "(it/) o n t o ' ^ y ) P a r a l ώ t o "(,,)» w e have: π = π( i ; )°π( l l ) from this we deduce

that the property:

S' > S implies 5' >- S
(v,y) r y

Then we can easily check that for every S, one has :

αr(S) ̂  α(S)

ii) For each multiple index v with \v\^d,Dv

uf,u=0 is a Weinberg function on
^S(υ,y) which is graded with respect to υ and asymptotically governed by the sequ-
ence {α|v,,α|, + 1 , . . . ,α,v,+ Π...} (the functions oc,,+n(S) being here restricted to
the set of suospaces S of Us

(+fy. Then from our recursive assumption, we can
say that (1 — t*~^)Dv

uf,=0 belongs to the class A^+Q which is defined as follows:

*f

H(S) = κd+1(S) iiSczR*y) (B.39)

α[v |(S)= sup [αd | |
S' S'^S

Now, we have to consider the function (1 - ^ ~ | v | ) ^ y j u = 0

 = K a s a function
on U^ (constant in υ), namely n*u)hv: Lemma 1.1 implies that this function
belongs to the class yl^'^such that:

(B.40)
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Then from (B.39) and (B.40) we can conclude that VSc U^y) such that S φ Rq

{y)

^ sup [ a d + 1 ( S ' ) ] + d - | v | + l

Indeed this results from the following (easy to check) geometrical property:

Lemma. IfS, Sf a M8^ with Sf>S and ifS = πJS){S c R^y)\ then S' > S.

Finally, since uv is a Weinberg function9 with asymptotic coefficients oc(S) = | v |
for every S φ R*+* and α(S) = 0 for S c R*+«, we can conclude from (B.39), (B.41),

and from Proposition l.l.b, that each term -y[(l - ίy~ | v |)^/jM=0]( ι ; '3 ;) occurring

in (B.38) is a Weinberg function which belongs to the class Λj- +q). Therefore,
in view of Proposition l.l.a, we conclude that (1 - tx)f(x9 y) belongs to Afp+q).

B) For every derivative operator Dv

x with total order | v | = n, the function
Dv

xg is related with the corresponding derivative Dxf off through the following
formula:

DVJ = (!-&"&:/ (B.42)

Notice that for n > d9 (B.42) reduces to Dv

xg = DVJ. Now Dv

xf is, as/, a graded
function; it is asymptotically governed by the sequence {Vm^0:αm = α m + j . So
when n > d, we readily obtain that Dxg belongs to the class A{*'o) = A^n) namely,
formula (B.I) holds true.

When n ̂  d, we can apply the result of part A to the function Dxf and to its
Taylor rest of order d - n. In view of (B.42), we conclude that Dxg belongs to a
class ^ n ) with an expressed as follows:

n+i(S)=«d+1(S) (B.2)

αΛ(S)= sup [ α i _ B + 1 ( S ' ) ] + d - n + l = sup [αd + 1(S')] + d - n + 1 (B.3)
{S' S'^S} {S' S'^S}

y y

This achieves the proof of Lemma B.I.

Application to Admissible Weinberg Functions (see Definition Id)

Let ω (resp. σ) be a set of subspaces of U^χ y) (resp. IR^) enjoying the properties
of Definition lc and let α be an index function on M? „ such that:

The class j / ^ ' σ ' ω ) can be alternatively defined as follows: it is the class of all
functions f(x,y) which are graded with respect to x, and asymptotically governed

9 See Proposition 1.2



202 J. Bros and M. Manolessou-Grammaticou

by the following sequence {αj :

We shall prove:

Lemma B.2. /// belongs to a class sd%'σ'ω\ then its Taylor rest g = {l- td

(x))f is
a graded function with respect to x; it is asymptotically governed by a sequence
{ctn} which is defined (for every integer n ̂  0) by the following formulae:

nifSφRq

(y)andSeω:

an(S) = oc(S)-n (B.44)

IfScR*y)andSeσ:

αn(S) = α(S)-sup(M+l) (B.45)

IfS φ Uq

yy Sφω and π(S)eσ

an(S) = sup [α(S), φ(S) )-n\forn^d (B.46)

an(S) = oc(S)forn>d (B.47)

IfSφuy)9Sφωandn{S)φσ

otn(S) = sup[a(S\ α(π(S)) + d-n\for n^d (B.48)

φ) = a(S)for n > d (B.49)

IfSczUq

iy)andS£ω

an(S) = oc(S) (B.50)

Proof We shall first prove t h a t / e ^ o ) .
Let us consider an arbitrary sequence of vectors L 1 ? . . . ,Lm(m^ N) in

®iχ,y) a n d ^ e associated nested subspaces S.= {L1 9...,L.}, with l^j^m. We
/ m \

look for a Weinberg type majorization (1.1) for gl ^L.^ . . . . / | m + C (when

ηί>0,...,ηm>0, and C varies in a compact set W).

With the sequence L 1 ? . . . ,Lm are associated the two following integers h and

Z ( l g M ^ m ) :

ft is such that : V/ < ft, S. cz Uq

y)

and Vy ̂  ft, S. ĉ  R^

/ is such that 1 0 : Vj < /, S jέω,

and V;^/, Ŝ .e ω.

Then two cases occur and have to be studied separately:

a) / < ft. Then we have (property b) of the set ώ)

10 The existence of such an / is assured by the properties of the set ω (see Definition lc)
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for j<l , Sj cR*y) and Sβσ

for / ̂ j < ft, Sj cz nq

(y) and SjEσ

forj ^h , Sjφ Uq

y) and Sjβω

Let us apply Lemma B.I to the graded function/; it tells us in particular that

geAfα)\ where the index α(α) satisfies (in view of (B.2)'-(B.3)'):

for Sj c Uq

yy Sjβσ : α(β>(S,) = α(S.) -d-ί (B.52)

forS^R*, , , S.Gω: gfi*\Sj)= sup [α d + 1(S')] + d + 1 (B.53)
{S' S'

But in the latter case the relation S' >- Sj implies S'eω (indeed S' => S' n (R }̂ =5
Sjn (R }̂ = Sh_ 1 and since Sh_1eω,Sfeω). So we always have: ocd +1 (Sf) =
α ( S ' ) - d - 1 and α(S/) = α(π(S/))=α(π(SJ.))= α(S7.). It follows that (B.53) can be
replaced by

j α(Sj). (B.53)'

b) / ̂  /i. Then we have:

f o r ; < λ : Sj czU*y)9 Sjφσ

for h^j<l: SjφR*y)9 Sjφω

for j^l : SjφUq

yy S.eω

Let us then use directly the formula which defines g:

g(x, y) =f(x, y)- Σ /x

(v)(0, y)xv (B.54)
|V, = 0

and let us apply Lemma 1.1 and Propositions Lib) and 1.2b) to each term in the
d

summation ]Γ of (B.54).
|V| = 0

We then obtain that each function f<v)(0,y)x

v belongs to a class Afv>) such that:

α(S.)

S;) = αV|(π(S.)) + |v|

If Sj φ Rfrt, Sjeω gfiθ(Sj) = α |¥|(π(Sp) + | v| = α(S.)

Then we apply Propositions 1.1 (a) and c)) to the sum of all the terms at the

right-hand side of (B.54). As a result, we obtain that geAψb)) where the index α(f))

satisfies the following conditions:

α(S) (B.55)

p = sup lαiSj), α(π(Sj)) + d\ (B.56)
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^\Sj) = sup [α(S.), α(π(S.))] (B.57)

α(S,) (B.58)

By comparing formulae (B.51) and (B.55) (resp. (B.53)' and (B.58)), we see that
when a subspace S can belong to both types a) and b) of sequences Lί...Lm,
one always has α(α)(S) = ocφ\S).

So we have proved that g satisfies all the Weinberg type majorizations (1.1)
of a class A^°\ if one defines α0 through the following conditions:

If S c Uq

(yy Sφσ : αo(S) = α(β)(S) = gcφ){S) = α(S)

If 5 c n*yy Seσ : αo(S) = α(fl)(S) = α(S) - J - 1

R«y), S£ω, π(S)<βσ:

αo(S) = α^(S) = sup [(α(S), α(π(S)) + d]

These conditions on α0 coincide with those of formulae (B.44) to (B.50) in the
case n = 0.

It remains to be checked that for every derivative operator Dv

x with | v | = n > 0,
Dv

xg belongs to A"N

n, with ccn defined by formulae (B.44)... (B.50).
The case n > d is trivial, since then: Dv

xg = Dxf. The case 1 ^ n ^ d is treated
by using formula (B.42), which allows to repeat the argument given above (case
n = 0),/being simply replaced by Dv

xf and d by d — n. The detailed estimates of
the an(S) which yield formulae (B.44) ...(B.50) are then straight-forward and left
to the reader.
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