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Abstract. We consider continuous weak solutions of the Euler-Lagrange
equations associated with the Euclidean ^-dimensional 0(N) nonlinear
σ-model. We show for arbitrary N and arbitrary d that such solutions with
locally square integrable gradient are real analytic.

1. Introduction

We consider solutions of the J-dimensional (d^2) Euclidean 0(N) non-linear
σ-model, i.e. stationary points of the Lagrangian

L(n)= Σ Σ0Λ)2 = W (1-1)
< x = l 1=1

d
where δ = - — , and neJR? satisfies the constraint

n2 = \n\2 = (n,n):= £ nf = l. (1.2)
ι= i

Stationary points n of L such that L(n) is locally L1 are (weak) solutions of the
Euler-Lagrange equations associated with (1.1)

Jni + Lίφ^O / = 1 . . . N . (1.3)

(A detailed proof of this fact along the lines of the usual variational argument has
been given in [1] where also the class of variations was specified.)

Since the left hand side of (1.3) is an elliptic operator, one may expect weak
solutions to show some regularity, i.e. to be Ck (k times continuously differentiable)
for some fc. There is an extensive literature on elliptic regularity, and we quote only
some results relevant for (1.3):

In 1929, Lewy [2] gave a lucid proof of Bernstein's theorem that in two
dimensions (d = 2), every C3 -solution of a nonlinear elliptic equation with analytic
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coefficients is, in fact, real analytic. Three years later, Hopf proved [3] the
corresponding result for C2-solutions in any number of dimensions. Finally,
Petrowsky [4] generalized Hopfs result to systems (N>1) of elliptic partial
differential equations; for a recent proof of Petrowsky's result, see [10].

All of this work concerns classical solutions. The first result on weak solutions
was proven by Morrey [5] who showed that, in two dimensions, any Holder
continuous solution of (1.3) is C2 (and hence analytic). Though his results apply to
slightly more general elliptic systems, too, the method of proof does not generalize
easily to higher dimensions. The next step was taken in the late fifties and
culminated in the result of Ladyzhenskaya and UraPtseva ([6] see also the earlier
work quoted therein on which they rely): Any bounded, locally square integrable
solution of a single elliptic equation is analytic. Note that the corresponding result
for systems of equations is false: For d = N(>2\ (1.3) has the weak solution
n = \x\~1x.

Under the additional assumption that |n|<l, Hildebrandt and Widman
proved in [7] that any bounded locally square integrable solution of the system
(1.3) is Holder continuous, for d — 2 (which implies analyticity by Morrey's result).
Note that the assumption |n|<l is incompatible with (1.2). The result in [7] was
generalized in [8] to any number of dimensions. It is again inapplicable because of
the assumption \n\ < 1 furthermore, for arbitrary d, we have been unable to find in
the literature the generalization of Morrey's result that Holder continuity implies
analyticity.

Thus, no regularity result known to us seems to be directly applicable to the
system (1.3) with condition (1.2). As the example given above shows, one cannot
expect arbitrary bounded solutions of (1.3) to be analytic. We will show, however,
the following theorem in Sect. 4:

Theorem. Let n be a continuous solution of (1.3) fulfilling (1.2), and let Vn be locally
square integrable. Then n is real analytic.

2. Lp-Properties of the Gradient

As a first step in proving regularity, we show in this section that the gradient of
weak solutions of (1.3), i.e. of vector functions n fulfilling

f dandaφddx = J (Vn)2nφddx (2.1)
Ω Ω

(summation convention!) for all regions Ω and all test functions φe<$(Ω\ is in
Lfoc(Ω) for every p^ 1, provided n is continuous. As Vn was initially assumed to be
locally L2, this is an improvement only for p>2. We will use (1.2) as it simplifies
the proofs and mention only that the regularity results would hold without
assuming it. We will estimate Vn by approximating it by difference quotients
defined as follows :

Choose an orthonormal basis {ea} of IRd and put, for any function / on lRd and

(2.2)
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where we introduced the translation operators

« = ! . . - < * . (2.3)

We note the formula on "summation by parts"

ί LΔa(h)ngddx = - J/[zlα( - %] A (2.4)

for /e^'(IRd), 0e®(Rd), and the product rule

A a ( f . g ) = fAy(g} + (AJ)Eag. (2.5)

The next, well-known lemma relates difference quotients and derivatives :

2.1. Lemma. Let ΩeIRd be a region and Ω' strictly interior to Ω. Suppose feLp(Ω)
and 1 <p< ΌO.

(i) // dJeLp(Ω\ then AΛ(h)f is strongly bounded in LP(Ω) for small he JR.
(ii) // Aa(h)f is strongly bounded in LP(Ω\ then (5α/eLp(£2), and ΔΛ(h)f converges

strongly in LP(Ω) to dj, for fc->0.

Proof, (i) it follows from

ΔΛ(h)f = h^]dJ(x + teJdt (2.6)
o

by using the triangle inequality as generalized to integrals that

Λ(i)dJ\\LP(Ω,^ \\dj\\ LP(Ω}

for all h such that x + heaeΩ if xeΩf.
(ii) Since

\\(Eβι)-l}f\\LP(Ω}^K\h\

with K independent of h, the distributions The@'(Ω) defined by

Th(φ) : = h ~ 1 J [(£β(Λ) - l)fjx)φ(x)ddx

obey the estimate

where q~ 1 = 1 — p~ \ by the Holder inequality. For /ι-»0, Th converges on ®'(Ω) to
T = daf, by (2.4), and the limit distribution obeys again

\T(φ)\^K\\φ\\Lq(Ω}.

Hence, T can be uniquely extended to a continuous linear functional on Lq(Ω] and
is thus in LP(Ω\ by the duality of Lq(Ω) and LP(Ω) which proves dJeLp(Ω}.

To show the strong convergence, note that (2.6) implies

)g sup
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which tends to zero by the strong continuity of the translation operators in
Lp(Ω). D

We will later want to insert into (2.1) as test vectors φ functions of n which are
not known a priori to be in 2. But note that any weak solution of (1.3) fulfils (2.1)
with φeHl(Ω\ i.e. with functions φ which are, together with their derivatives, in
L2(Ω) and vanish close to the boundary of Ω. To be precise, define the || H^-norm
by

II*: = W 2 + Σ \\BΛφ\\2.
α = 1

Then H\(Ω) is the completion of S>(Ω) in the || H^-norm. We have the following
estimate :

2.2. Lemma. For any continuous solution n of (2.1), (1.2), any yeΩ, and any ε>0,
there is a ball Kρ(y) around y of radius ρ = ρ(ε) such that

J (Vn)2ξ2ddx^ε j (Vξ)2ddx
KQ(y) Kρ(y)

forallξεH2(Kβ(y)).

Proof. Choose as a test vector in (2.1)

φ(x}: = In(x)-n(y)~]ξ2(x)

and use the continuity of n to fix ρ such that

4\n(x)-n(y}\<4δ2<l

for xεKρ = Kρ(y). Then

J (dan,dan)ξ2ddx=-2 J (dΛn,n-n(y))ξdΛξd*x
β K-Q

+ j (Vn)2(n,n-n(y]}ξ2ddx.
κe

Hence

ί (VnΠ2ddx^δ\2- j \dan \ξdaξ\ddx+ J (Vn)2ξ2ddx
Kρ I Kρ K ρ

where we used (1.2). But

and therefore

(1-2(5) j (Fn)2ξ2ddx^δ j (Vξ)2ddx
Kρ K.Q

from which the statement follows if δ is chosen such that

ε = δ (ί-2δΓ1 D
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As a preliminary step, we prove

2.3. Theorem. Let n be a weak continuous solution of (2.1) which fulfils (1.2). Then

(i) FheL4(Ω');

(ii) dadβneL2(Ωf) l^a.β^d

for all precompact regions Ω strictly interior in Ω.

Proof

1. Choose a unit vector eβ and insert into (2.1)

φ:=Aβ(-h)ψ

where ψeHl(Ω) and \h\ is so small that φ^H\(Q}. Then use (2.4) to get

ί (Aβdan)dΛψddx = f Δβl(Vh)2n]ψddx .
β r?

Now put

ψ:=(Aβn)ζ2

with ζe#ι(Ω). Since Aβ commutes with δα,

j (F(^))2ί2A:g ί |(^[(N2n],zi^)|ί2Λ
β β

+ 2l\ζd,ζ(dΛΔβn,Δβn)\<ϊlx. (2.7)
β

For the second integral we use Young's inequality

2\a\\b\£δ\a\2 + δ-1\b\2 (2.8)

(valid for all <5>0) to bound the integrand by

We choose 2δ < 1 for later purposes to get

(1 - δ) J (r(Aβn))2ζ2ddx g δ~ 1 ί (z^

.(Eβn, Δβn)ddx + j (?n)2(Δβn)2ζ2ddx (2.9)
Ω

where we used the product rule (2.5) for the first integral on the right of (2.7). In the
second integral of (2.9), we use Young's inequality again to bound the integrand by

CW(V))2 + δ~ ' ί(Eβ
so that

(1 - 2(5) J (r(Δβn))2ζ2ddx ^ δ ~ 1

β β

}^/J«)2C2Λ. (2.10)
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2. To estimate the second integral on the right of (2.10), we use Lemma 2.2. Fix
a point y e Ω and choose ε > 0 so that βεδ ~ l + 2δ < 1 which is possible since 2δ < 1.
Replace, in Lemma 2.2, ξ by ψAβn. Then there is a ball Kρ(y)cΩ so that for all

J (Vn)2(Δβn}2ιp2ddx^z J \_V(ιpΔβn)]2ddx

^2ε J [(Vιp}2(Δβn}2 + ιp2(V(Δβn))2^ddx. (2.11)

This takes care of the terms not containing the translation operator £. To estimate
the translated terms, note that (1.3) is translation invariant; hence, Lemma 2.2
holds for Eβ(Vri)2 as well with possibly a different circle K (y\ and (2.11) remains
true if (Vn)2 on the left is replaced by Eβ(Vn)2 and integration extending over Kμ.
Put <7 = min(μ,ρ). Then choose ψεHl(Kσ) in (2.11) and ζ = ψ in (2.10):

(l-2δ-6sδ~1} J (Vn)2(Δβn)2\p2ddx<>δ-\V + fa) f (V\p)2(Δβn)2ddx. (2.12)

Choose ψ= 1 on Kλ(;y) where λ<σ. Then, since FheL2(Ω), the integral on the right
in (2.12) is bounded independently of /z, by Lemma 2.1(i). By the same lemma, Δβn
converges almost everywhere to Vn so that Fatou's lemma implies \Vn\e L4(Kλ).
Since yeΩ was arbitrary, the precompactness of Ωf implies \Vn\e L4(Ω').
Furthermore, (2.10) shows that all second derivatives dadβneL2(Ωf). Π

We are now ready to prove the announced //-properties :

2.4. Theorem. Let i2elRd be α region, and Ω' a precompact region strictly interior to
Ω. Assume that the gradient Vn of any weak continuous solution is in L2

OC(Ω). Then
for any p^\.

Proof

1. By the last theorem we may replace φ in (2.1) by dβφ for any φeH^(Ω) and
integrate the first term by parts :

$dΛdβndΛφddx+ J (Fn)2ndβφddx = Q . (2.13)
Ω Ω

Now choose ΛΓ>0, define

and insert into (2.13)

φ:=(bNγdβnζ2

for an arbitrary integer s and ζeHl(Ω). Taking into account

because of (n, n)= 1, this yields, if we sum over β,

Σ ίί [(dΛdβn)2b%ζ2 + (dadβn, dβn)sbs

N~ *dabNζ
oi,β\Ω

(2.14)
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Use (1.3) in the last term; for the second term, note that δabN is non-zero only if
(Frc)2<; JV, i.e. if bN = (7n)2 so that, for those points,

dJ>N = 2(dadγn,dγn). (2.15)

This yields

Σ (W2fe2 + ̂ n^i'
Λ (2.16)

Ω Ω α , / ϊ Ω

where we used Young's inequality for the third term in (2.14).
2. We now fix a point yeΩ and a number 0<(5<min {s~1,2~1(l — ε)}. By

Lemma 2.2 we can find a ball Kρ(y) so that

J (Fn)2ξ2ddx^δ J (Vξ)2ddx (2.17)

for all ξeHftsg. We replace ξ by £3,n so that

j |Ph|4ξ2Λcg2δ f
Ke Ke

and choose

Kρ a, β

- N4 κρ κρ

In the second term, (Vri)2 can again be replaced by bN because of the support
properties of VbN. Choose ζ = η in (2.16) and insert the last inequality into it,
transferring the first two terms to the left :

ί Σ(3«δ/,n)2ftV^^(l-e-25)-1(e"1+2δ) f (^)2(^)2^dx.
Kρ*,β Ke

We have dropped the second term on the left containing \VbN\2 since it is positive
(s<(2sΓl).

3. We use the same procedure as in 2 to estimate the integral of (Ϋri)2bs

N. Insert

[Kβ

where we used, on the support of 7bN, Eq. (2.15):
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Now replace s by s + 1 and use the inequality proven in 2 :

f (Fn)2bs

N

+ίη2ddx^2ε f bs

N

+1(Vη)2ddx + K^ε f (Vη)2(Vn)2bs

Nddx
Λ ρ K.Q Jίρ

dx. (2.18)

4. From the last inequality we conclude by induction that | Vn\k exists for all k.
This is true for k ̂  4, by the last theorem. If it is true for k one can take s = k — 1 in
(2.18) and let jV-»co in the right hand side to bound the integral on the left
independently of N. Fatou's lemma then shows that J \Vn\k+1ddx exists. Since

κe(y)
yeΩ was arbitrary, the statement follows. Π

We remark that Theorem 2.4 can be proven rather quickly md = 2 dimensions
by appealing to the Sobolev inequality (see Theorem 3.5.5 in [5])

\\LP(ΩΊ + £ \\dan\\LP(Ω,} (2.19)
α=l /

which is valid for 1 rgp<J, - = -- -. Apply (2.19) for d = 2 and p<2 to dβn and

then use Lemma 3.2 (ii) below (which will be proven independently of
Theorem 2.4) together with Theorem 2.3 (ii) to conclude that dβneU(Ω'} for

- = -- - and all p with l^p<2, i.e. dβneLr(Ωr) for all r, l^r< oo.

3. Differentiability of Weak Solutions

In this section we show that all distributional derivatives of a continuous solution
n of (2.1) are infinitely often differentiable. It is enough to prove, for all k, that the
derivative of order k is locally L2 it is then, in particular, locally L1 so that, by
integrating locally over IRd, the derivative of order k — dis continuous (in fact even
absolutely continuous).

We will even prove that all derivatives are in L(Ω),

L(Ω):= Π AW (3-1)
1 <p< oo

for any region ΩeIRd. Since (2.1) relates //-properties of Vn and n to those of An, we
will have to estimate second derivatives in terms of An. This can be done by using
the known //-properties of Riesz transforms Ra, α = 1 ... d. For fe L2(Rd), their
Fourier transforms are defined to be

α = l,. ,d. (3.2)

One can then show that Ra is, in x-space, defined on all Lp spaces for 1 < p < oo,
i.e. for L(Rd), and is a map into:

3.1. Lemma. For α///eL(IRd),

(3-3)
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For the proof, see p. 59 of [9]. The proof is not difficult, but lengthy, and uses
interpolation : By Fourier transformation, Rα maps L2 into L2 and, in fact, L2^ into
L^ (where / is in the weak Lp space L^(μ) for a measure μ if

for all ί > 0). One then shows that Ra maps L^ into L^ and uses the Marcinkiewicz
interpolation theorem to conclude that Ra is bounded as a map from Lp to Lp for
1 <p<2. By duality, the same is true for 2<p< oo. An immediate consequence is

3.2. Lemma, (i) For all l^α, β^d and fe® (Rd),

(ii) For α// l^α, β<>d,feLp(Ω) with Vf, AfeLp(Ω\ and any strictly interior
precompact region Ώ C Ω,

f\\LP(ΩΓ (3.5)

Proo/
(i) As one can immediately show by Fourier transformation,

so that (i) follows by the previous lemma.
(ii) By regularization and (i), (3.4) extends to all /such that Zl/eLp(IRd). Now

replace / in (3.4) by f χ where χe@(Ω) fulfils O^χ^l and is identically 1 on
a. G

This is enough to prove

3.3. Theorem. Assume that n is a continuous solution of (2.1) with locally square
integrable gradient, and that n obeys the constraint (1.2). Then all distributional
derivatives of n are locally square integrable (and hence infinitely often
differ entίable).

Proof. Choose a point yeIRd and consider a ball K2R(y] of radius 2R around y. We
will show that all derivatives δ α ι . . .δ α k n are in L(KR(k)(y))^L(KR(y)\ for
JR(fc) = (1 + fc~ 1)jR5 by induction on fc. By Theorem 2.4 this is true for fc = 1. Suppose
it is true for fc. Consider an index set / : — {α1? . . ., α k _ 1} of fc— 1 indices (empty for
fc= 1) and write

for short. By the product rule

(3.6)

where ̂  denotes the sum over all partitions of / into three sets L, M, N, and
are combinatorial factors arising because we don't require the partitions to be
ordered. The right hand side of (3.6) contains at most fc derivatives of n and is
therefore in L(KR^k)(y)) by the induction assumption and Holder's inequality. Thus,
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Δ(dIn)eL(KR(k)(y)\ and, by Lemma 3.2 (ii), d Jd βd pe L(Ω') for Ω' strictly interior to
KR(k)(y). Choosing Ω' = KR(k+1)(y) shows that all derivatives of order fe+1 are in

L(KR(k+1)(y))lL(KR(y)). D

4. Analyticity of Solutions

To show the analyticity of solutions of (1.3), one can proceed in at least two ways :
The first method consists in extending (1.3) (or associated equations) into the

complex domain; this was done in [2, 3, 5].
The second method consists simply in obtaining bounds for successive

derivatives; this has been exploited in [4, 10].
We will follow the second method and just quote a result of [10] as we have

not found a significantly shorter proof of analyticity. This result seems to be the
farthest reaching and even gives uniqueness results in case successive derivatives
grow faster than allowed by analyticity. We define growth classes as follows :

Let Mn be a sequence of positive numbers. Then a function F : C°°(D)-> C where
DclRv is open belongs to the class C{Mn;D} if to any closed subset D0cD there
exist constants H0, H with

\djF(x)\^HQHJMj9 xeD0 (4.1)

where we used multiindex-notation (djF = dj± ...d{vF',j = s£jf). Note that C{nl;D}
is the class of functions analytic in D.

In [10], general elliptic systems of the form

Φ,(x;w, Pw, F2w, ..., F2mw) = 0 xeΩcIR d ; weIRN; / = ! , . . .,ΛΓ (4.2)

are considered, (where e.g. V2u stands for the tensor with components SΛιdβku\ and
the following theorem is proved :

4.1. Theorem. Let u(x) be a real solution of the elliptic system (4.2), let ΩclRd be
open and let E be some open set containing

Ev : - {u(x\ Fiφc), . . ., F2mu(x)/xε Ω} .

Assume that

(i) <^eC{Mn;£2x£} (4.3)

and that the Mn satisfy the monotonicity conditions

(ii) Γ WM^I ΛM,,; O ^ f ^ n , πeN (4.4)

for some A>Q.
IfueC2m+a(Ω\Q<ot<l,thenueC{Mn_2m+1;Ω} (where M _ f : =1 /or ieNj.

Proof. Theorem 1 in [10]. Π
In the case of the system (1.3), m= 1 and

Φz(n, Ph, V2ri) = Δnl + (Vri)\
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so that Φ{ is analytic and hence of class C{n I Ω}. The constants Mn — n I satisfy the
monotonicity conditions (4.4) with A = l. We even know that neC^(Q}. By the
theorem the solution is in the class C{(n— 1)1 Ω] and hence (real) analytic there.
Furthermore, n obeys the estimate (4.1) so that the nearest complex singularities
must be at least at a distance H'1 from Ω [where H depends on n and on the
closed subset ΩQCΩ for which (4.1) holds]. This proves

4.2. Theorem. Let n be a weak continuous solution of

obeying

(n, n) = 1 ,

and assume VneLfoc(Ω). Then n is real analytic, and n can be continued analytically
into |ImzJ<C where C depends only on n and on the distance of Rezz to the
boundary of Ω.
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