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Abstract. A modified soft mass renormalization scheme for 1/N expansion of
the three dimensional O(N)-invariant chiral field in the high- and
low-temperature phases, as well as at the critical point, is constructed, free of
infrared divergencies in each separate diagram. Generalized quantum chirality
identities for composite operators are derived, from which the renormaliza-
bility of the model follows. The approach formulated here is applied to a
rigorous analysis of the universal critical behaviour of the N-component chiral
field in three dimensions.

1. Introduction

In this paper we consider Euclidean chiral field n(x)=(n,(x), ...,ny(x)), xeR?
taking values on the sphere with the simple Lagrangian:

L =—3(0,n)?, (1a)
n3(x) = % (1b)

N
where n?(x)=(n(x),n(x))= ) nZ(x), [1: mass parameter, T: coupling constant
a=1

(temperature)].

The chiral field appears in various problems in different (Euclidean) spacetime
dimensions D. In statistical physics it describes the critical behaviour of classical
lattice Heisenberg model of N-component spins with O(N) invariant intersection
[1]. In field theory it is used in a series of models in the realistic case D=4, xe IM*.
The chiral field was first introduced [2] to describe the low-energy m-meson
scattering (non-linear o model). It was applied to construct an unfield model of
weak and electromagnetic interactions [3], to introduce mass of the Yang-Mills
field in a gauge invariant manner [4], and in models of extended particles [5-7].
Recently there has been an increased interest in the two-dimensional chiral field
model (xeIM? or R?) due to the existing similarities between it and non-Abelian
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gauge theories in D=4 [8]. The quantum chiral field in D=2 was studied quite
exhaustively. Its asymptotic freedom was discovered in [8] and renormalizability
within the standard perturbation theory in the coupling constant T was proved in
[9, 10] and of its 1/N expansion was shown in [11, 12]. Higher local polynomial
conserved currents [13, 141 as well as nontrivial nonlocal conserved charge [15]
were derived and the exact S-matrix was constructed [16]. The interesting
supersymmetric extension of this model was also examined [17].

The standard perturbation theory in T is nonrenormalizable for D=3,4 [18]".
A more relevant frame for the three dimensional chiral field theory is the
systematic 1/N expansion [12, 21]. 1/N expansion was applied to treat various
models (see, e.g. [22] and the references quoted therein). The chiral field in the
leading order of 1/N was considered in [9, 19].

In this model a phase transition of second order takes place: above the critical
point the theory is in a symmetrical phase and the correlation functions decrease
exponentially, below the critical point O(N) symmetry breaks and long range order
appears [9, 19, 21, 237]. In [21, 12, 24] it was proved that there are no ultraviolet
{UV) nor infrared (IR) divergencies in both phases and the number of counter-
terms was shown to be finite. The quantum analogue of classical nonlinearity
condition (n, n)=const (called quantum chirality), which is of fundamental
importance for the renormalizability was proved in [12,24]. Quantum chirality
implies that the only necessary renormalizations are coupling constant and wave
function renormalizations.

However, the problem of existence of a systematic 1/N expansion directly at
the critical point was not solved. This paper is aimed at constructing a
systematically renormalized solution for the Green’s functions of the chiral field in
D=3 in each order of 1/N, meeting the following requirements:

a) An unified (i.e., suited for both phases as well as for the critical theory) 1/N
expansion, free of IR divergencies in each separate Feynman diagram (in the
Goldstone phase and critical theory).

b) Each separate diagram in the critical theory is a continuous limit of the
corresponding diagram(s) when the mass m—0 in the high-temperature phase or
the order parameter f—0 in the low-temperature phase (i.e., a phase transition of
second order occurs).

Our purpose is achieved by applying a modified Bogoliubov-Parasiuk-Hepp-
Zimmermann-Lovenstein (BPHZL) renormalization scheme with soft mass and
additional IR subtractions [25,26]. Analogous approach was introduced and used
in conventional perturbation theory of several models with massless particles in
D=4:(p*)3 [25], non-Abelian gauge field in the usual vacuum [27] and instanton
[287 sectors; the Goldstons and Higgs models [25]; non-Abelian Higgs-Kibble
and Georgi-Glashow models [297. A beautiful feature of this scheme in that there
is no need of investigating the vanishing mass behaviour of the massive theory nor
of subtractions at non-zero external momenta.

The renormalization procedure accepted here is characterized by the fact that
the UV and IR subtraction degrees §(1) and g(4) of an one-particle irreducible

1 Therefore a double expansion in T and e=D—2 was suggested in [19] and numerical results for
the critical exponents in the leading orders [207] were found in good agreement with the experiment
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diagram /A are chosen the same in both phases, as well as in the critical theory.
Namely, 5(1) and g(4) are taken equal to their canonical values in the latter. Such a
construction is responsible for the successful realization of requirements a) and b).

To prove renormalizability in the scheme with “soft” mass renormalization we
derive in the framework of normal products formalism [30] (Sect. 3) the general
form of the quantum chirality identities for composite field of form [Q(n, a)n*] (x),
Q(n, 0)— O(N) invariant monomial in the chiral field » and in the auxiliary field o.
Thus, in the formal algebra of composite fields, besides the two usual types of
linear relations: i) normal product field equations [32,33]; ii) algebraic
Zimmermann identities (ZIs) [30]2, a new type arises; iii) generalized quantum
chirality identities (Sect. 3, Theorem 3.1).

Relations ii) and iii) [together with the Ward-Takahashi identities (WTIs) for
the spontancously broken O(N) symmetry in the low-temperature phase] lead to
the following important result: in the set of all (integrated over x) Euclidean and
O(N) invariant (compatible with WTTs in the lower phase) composite operators of
canonical UV dimension D=3 there are only two linearly independent ones:
§d&x AJ[(0,n) g (x) and [ d>xa(x)>. Only the first of them survives in the critical
theory.

This statement is equivalent to the renormalizability of the chiral field in 1/N in
the standard BPHZ sense [18,30]: in the effective Lagrangian of the high- and
low-temperature phases there are only two arbitrary finite counterterms (the
operators listed above), fixed by two physical normalization conditions-
normalization of the n-field and mass m (inverse correlation length) or order
parameter f (magnetization) normalization condition. As a result, the renorma-
lized Green’s functions are parametrized by m or by f, respectively, instead of the
“temperature” T, entering in the intial (nonrenormalized) Lagrangian.

The renormalization group (RG) equations and the WTIs for broken scale
invariance are used for the analysis of the scaling behaviour of the chiral field in
the critical region, in particular, for the construction of a well defined 1/N
expansion of resummed superrenormalizable “temperature” — and “magnetic-
field” perturbations on the critical theory, free of IR divergences in every separate
diagram.

The well known universality relations for critical exponents [35] hold in the
present approach. The critical exponents are expressed in terms of only two
independent parameters — the anomalous dimensions of the n- and o-fields in the
critical theory. The numerical results in the leading 1/N order coincide with those
for the O(N)-invariant lattice Heisenberg model [36].

In earlier works [19] the idea that the chiral field (considered in perturbation
theory in T or 1/N together with e=D —2 expansion) gives a better description of
the Goldstone and critical singularities than O(N)(¢?)Z_, model [37,38] was
suggested and exploited. In [39] another consistent approach to critical behaviour
in 1/N frame based on the solution of the Dyson-Schwinger set of equations for

2 In conventional models i), i) exhaust all independent hnear relations in the formal algebra of
composite fields [33, 34]

3 ¢ denotes Zimmermann’s normal product of UV and IR subtraction degrees § and g, “®”
means that vacuum graphs are omitted.
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the Euclidean noncanonically renormalized Green’s functions in massless O(N)-
invariant 2(¢?),_, models was elaborated.

A parallel of the present approach with [39] is established in [40] where
noncanonically renormalized 1/N expansion of massless O(N)(¢?); theory is
shown to have a well defined critical limit at the IR stable fixed point of the
renormalization group. This critical theory coincides with the critical theory of the
chiral field. Thus quantum chirality turns out to be an inherent feature of the
corresponding universal theory in three dimensions.

The plan of the paper is the following:

In Sect.2 the modified BPHZL renormalization scheme with “soft” mass is
described and the absolute convergence proof for the Green’s functions with
arbitrary number of composite operators (satisfying the IR convergence criterium)
is given.

In Sect. 3 the generalized quantum chirality relations for composite operators
are derived.

Section 4 is devoted to the proof of the renormalizability in both phases and at
the critical point.

In Sect.5 the existence of a second order phase transition in the sense of
requirement b) is demonstrated.

In Sect. 6 RG equations and WTIs for broken scale invariance in both phases
are derived.

In Sect.7 we construct IR finite 1/N expansion of “temperature” and
“magnetic-field” perturbations on the critical theory and analyze the critical
behaviour of the chiral field Green’s functions.

A brief review of 1/N graph technique is given in the Appendix.

2. Absolute Convergence of the Modified Soft Mass Renormalization Scheme in the
1/N Expansion

The renormalization procedure adopted in the present paper is an extension of
Zimmermann-Lowenstein soft mass subtraction scheme for massless theories
[25,26] to the case of (Euclidean) Feyman integrals containing unconventional
propagators, i.e., those of the auxiliary o-field (A.5) and (A.6), which are irrational
and transcendental functions of momenta and masses. The softness parameter s
(0<s<1) is introduced according to the rule: m—m(s)=sm~+(1—s)u, f2—sf>
(u-mass parameter). The main reason for the removal of IR divergencies turns
out to be the favourable low-momentum behavior of the g-propagator [cf. (A.7)].

We shall essentially use the notations and concepts of [41,25,26]. Following
general definitions (see, e.g., [26,42]), the canonical UV and IR degrees, d(y) and
r(y) of a one-particle irreducible (1PI) with respect to n- and o-lines graph
Y=y}, are written in the form:

d)=3-d,L,()=d, L0+ ¥ (dy=3), @1)
Ve?(y)
) =3=d,L0)~d L)+ Y dy=3). (22)

Yev(y)
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Here the following notations are used: y=y{{<, '—1PI diagram with L,(y) and
L (y) external n- and o-lines; ¥"(y)= g(y)U{V(Pa)}-set of all vertices of y : 7 ,(y)
—VMUV m.psizy-Set of Lagrangian vertices, V(P)-vertex of the composite oper-
ator P=P(n,0)(x):

vo(P)

Pln,a](x)=(1—s)s" ]_I (0g,m (x) 1_[ (083,0)( oy = ]_[ 0/0x,,, (2.3)

where v, ,(P) is the number of n, o-fields in P, ¢, h-positive integers. The canonical
uv and TR dimensions of P, d p and dp, are defined as follows:

Vn(P) Vo(P) _ _
=ct+h+ Y k+ Y pj+dy(P)+d,v,(P), (2.42)
i=1 i=1
Vu(P) vo (P)
dp=c+ Z ki+ Z p;+d,v,(P)+d,v,(P). (2.4b)

The canonical UV and IR dimensions of the n-, o-field, , , and d, ,»in accordance

with the large- and low-momentum behaviour of their propagators (A.7), are given
by:

d,=d,=1/2, d,=2, 46={§/z. (2.5)

[The relation for d, in (2.5) refers to the Goldstone phase and the critical theory,
respectively.] When only Lagrangian vertices are present in

72
Y= y(Ln a)( da'(n,Fs‘/z) -da(n Fst/2y— 3’ dnza {3 s resp.)
(2.1) and (2.2) simplify to:

d(y)=3—=1/2L,(y)—2L,y) (2.1)
)= {d(y)+ [ LN =1/2Le(y)>d(y) (low-temperature phase) 2.2)
d(y) (critical theory) )

where Lp(7)=|7 ", rsuz(y)] is the number of external (blind) F-lines, &, (y) — the
set of internal n-, o-lines of y, |.Z, ,(y)| — their number.

1t will be necessary to introduce noncanonical UV and IR subtraction degrees,
4(y) and o(y), constrained by the consistency conditions [26, 42]:

o) zd(y), 6(y) zd(y/{1}) + Z o(4);e(n) =r(y), e(y) =r(y/{A}) + Z o(4 (2.6)
where {A}={4,,...,4.} is an arbitrary set of nontrivial, mutually disjoint 1PI
subdiagrams of y and y/{4} represents the corresponding reduced graph.

The concepts of UV and IR degrees and formulae (2.1), (2.2), (2.1'), (2.2'), and
(2.6) are immediately generalized for an arbitrary connected graph.

Let us consider connected Green’s functions of the general type:

Lo

<H Q, H [P (n, O')](Xb)XnXd>,X 1_[ n, (x) X, = H o'(x;.’),
a=1  b=1

=1 2.7)
Q,= [d*x N [0,(n,0)](x),
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Fig. 1. a Graphical elements of 1/N expansion ; b “forbidden” subgraphs for ordinary Green’s functions
{X,X,>; ¢ finite counterterms vertices; d effective free ng-propagator (to lowest order in 1/N); e
effective Lagrangian vertices in the Goldstone phase (after effective summation in n-lines)

where ¢, =d, ,0,=dp, and 9, gcha, 0y >d p, are (noncanonical) IR and UV indices
of Q, and P,. The renormalized 1/N expansion of (2.7) is constructed according to
the rules of the 1/N diagram technique (Appendix A, Fig. 1) by means of the
Zimmermann’s forest formula [41, 25, 267, attributing to every connected graph
G=Gi, , of (2.7) the expressmn

A1) = m” Re((p°), (k)

R(p) (k) =Sg ¥, [T (=08 )I(U)=(1 -4 O) R,

UeZ g yeU

(2.8)

In (2.8) Z is the set of all G-forests U, I;(U) is the unrenormalized integrand,
in which the momentum of each line [ is a linear combination of {p*}, {k*}, a
suitably chosen basis of external and internal momenta of the smallest element 4 of
UJ{G} containing I; S, are substitution operators corresponding to U. The
subtraction operators attached to every 1PI graph ysygfzz L, are defined as
follows [26]:

— ) -1 ) - -
1,= ,Cé(y), o) — tp(yv’)sv + tle;(vy’)sy 1 1(1 _ tp(yv’)sy) — te(/) y_1 L+ (1 ten—1 )té(v) (2.9)

pY,s¥— 1) py sy

where ¢ | is the usual Taylor subtraction operator, and 6(y), o(y) satisfy the
mequehtles (2.6). A concrete choice for 6(y), o(y) will be made later.
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According to the combined power counting theorem [43] the absolute
convergence of Z({p®}) (for nonexceptional momenta {p°} in the Goldstone
phase and in the critical theory) is equivalent to the criteria:

deg, Re({p®}, (k°(u}, {v}, {p°D)}) +dim H <0, (2.10a)

deg, Rq({p°}, {kC({u}, {0}, {p°1)}) +dimH >0, (2.10b)

where H is an arbitrary hyperplane in the space of the internal momenta defined in
a suitable parametrization k¢=k%({u}, {v},{p®}) as v,=const, v;e{v} and

deg, fix, ), deg, fix,y) denote upper and lower degrees of a function f(x, y) with
respect to the variable x [43].

Let us introduce a class % of functions of momenta and of s(0<s=<1) having
the form:

A({p}, {u}, {v}55)[D,({p}, {u}, {0} 59)Dy({u}, {wh)] ™!
A({p}, {ul, {0 15)

= 3 Poupp((oh 140, 039 TT9 7 0, 0, )50
I 03 ()i, P TT0 ™ ) 035,011
=) P,A,B,
PRCSTREIE 2.11)

= H[9 ML}, {ul, {v})smls) ]""‘H[? (p({p}, {u}, {v}) s mls), sf)1™,
D, ((u}, (o)
= ﬂ@ (({u}, {v} s e )™ H[9 ({ud, {o}) s ¢;m)]

H[? (({u, {v}im, f?) ]”“H[? ({u}, (v} 0))™

where #,, , ., are polynomials; k,, kg, k., n,, ng, n,, ny, a, bi-positive integers; ¢;,c;
take values 0,1,2; I({p}, {u}, {v}) is a lmear combmatlon of {p}, {u}, {v}, Z,and ¥
are the propagators of the n- and o-fields (A.4)~(A.6). The class % has the following
properties:

i) % is invariant under multiplication by and differentiation in {p} and s.

ii) Each element of % has power asymptotic behaviour in |[({p}, {u}, {v})] for
large and small momenta {p}, {u}, with coefficients which are polynomials in s or
s—1.

The latter is due to the specific form of the o-propagator for D=3 (A.5) and
(A.6):

8l

0ot 64 16\ m2(s) .
arctgzm(s)} = 161]+ - m(s) + (n> TR 2), 2.12)
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It is convenient for the IR convergence to use the notion of augmented graph
G, corresponding to G [26]. G is formed from G by adding auxiliary fictitious lines,
starting at the external vertices of G and all ending at a new vertex V,,.

Theorem 2.1. (cf. [44, 26]). a) Suppose that for every set {y}={y;, ...,y.} of mutually
disjoint, nontrivial 1PI y,CG {y};zéG the IR convergence criterium is satisfied :

WG/{y})+ Z max {0, g(y,)} >0. (2.13)

Then {rdp®dk®Rg({p°}, {k}, s) is absolutely convergent for every se[0,1].

b) Let I be a 1PI graph such that for every set {y} defined in a), for which I" /{v}
does not contain any fictitious line of I', the IR convergence criterium (2.13) is
satisfied. Then %r({pr},s)=j'ﬂdkrRr({pr}, {k'}, s) is absolutely convergent ( for
nonexceptional {p"} in the low-temperature phase and in the critical theory).

The proof relies on the concept of forests Uy e % (or Uye Fp), complete with
respect to a hyperplane H (in the space of internal momenta of G (or I') and on the
decomposition [41]:

Rg=Y Rg(Up), Re(Up) = (1~ “) Yo(Up) (2.14)
Un
with the recursive definition of Y(Uy),ySG:

T, i UV H 7 (Ug)llH

2.15
otherwise , 2.15)

1—
YY(UH):I}—’(UH)SY Hf}’] YVJ'(UH)’ f}’j = {—’L’
J

Vi’

where Y(Ug)=y/{ys,...7.}, 7;Cy-maximal in Uy, and the symbols $(Up)VH,
P(Uy)||H mean that y is constant, respectively, variable with respect to H (see [41]).
Let us note, that all Y(Uy,) (2.15) belong to the class % (2.11). The purely
combinatorial part of the proofs of the UV and IR convergence criteria (2.10a) and
(2.10b) is readily adapted from that of [44, 26] to the present case, provided we
have proved the following inequalities:

deg, v, olt, Y] =deg, o Y, TUIH,
deg,[(1—1,) Y] deg, ., Y, —max {3(y), e(r)— 1}~ L /Uy H,
deg,[7,Y,]<deg, Y,, (Up)fH.

deg, v, ol7, Y,] S deg, ¥, +max {0(s), o(y)}, {U ) H ,
deg, ¢ -1[7, Y]z min{deg, , ;- ; ¥, deg, ¥,} + max (0, 0(»)} ,
deg,Y,, if FUnkH (2.17)
min{deg, ,» o, Y,—o(y)+1;deg, Y.}, if HUytH
deg, py,g-1[(1—7) Y12 deg, ¥, +max{0,0)}, if HUnfH.

(2.16)

deg 5, 7,12 |

(2.16) and (2.17) are directly verified using properties i) and ii) of % and properties
of the subtraction operator t, (2.9) (cf. Sect. 3 of [44] and Lemma 3.2 of [26]).
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Theorem 2.2. Euclidean Green’s functions (2.7) exist in each order of the soft mass
renormalized 1/N expansion, provided d, =3 (in the Goldstone phase and in the
critical theory).

Proof. As follows from Theorem 2.1 we have to verify (2.13) for each connected
graph G. When the new vertex V, belongs to some y;e{y;}{_, we assume for
definiteness, that it is y,. From (2 2) and (2.4b), after simple computation, we
obtain the following expression for #(A), A= G/{y}:

Y ode=3+ Y dp, =3+ Y d,,+3{BOo)—|ZLi)}

VE (4) V(Qa)e? (A) V(Pp)e?(A)

—d) {LG)=| L)} +B—d,) {L(G)=|L3(o)l} +d, Li(70)+d, L,(7o)

¢ 3,V
~ L 04 L) =d L) =3O} 410, ro= {0 Vﬁiﬁ
where d,=d 2 d dou, psi2) 1€ the canonical IR dimensions of the Lagrangian
vetices ¥, g(/l) B(y) is the number of composite operator vertices V(P,)belonging to
V(y); L1, p(7) denotes the auxiliary fictitious n-, o-, Pg-lines which are internal for
Yo if Voey0 1L, B(7o)l — their number, | n,a’B(yO)l_O if Voéy,.
Let us first consider the critical theory. In accordance with (2.2) and (2.6), we
choose (d, =1, d,=2):

o(y)=3— %Ln('))j) - 2La(7j)

(2.18)

0,....¢, Voo
£ Y @It T @3 ;
V<Qa>zel~tf(y> vwwze:vf(v) L ...e,Vo€Epg, 0(20)=0.
Then, if G is a nonvacuum graph: (L,(G), L,(G))=(0,0) and Gé¢{y} orif G=T is

1PI and {y} is such that I'/{y} contains no fictitious line of I, it follows from (2.18)
and (2.19) that:

(2.19)

r(A)+ Y max{0,0(y)}>0 if d, =3, a=1,..,A(A).

j=0

When G is a vacuum graph (G=G):
A+ Y max{0,0(y)} 23, if d, =23, a=1,..,4(4).
Jj=0

This completes the proof of Theorem 2.2 in the critical theory. We note, that
when ¢,=d, , 0,=dp,, V a,b, 0(y)=r().

To prove renormalizability of the theory in the Goldstone phase and the
existence of a continuous limit of both phases to the critical theory in the sense of
requirement b) of Sect. 1, the following choice of d(y) and ¢(y) is made in both
phases:

80 =3—%L—LFON 2L+ Y (6,=3)+ Y (6,-3),

V(Qa)e? () V(Pp)e? ()
(2.20a)
o) =3-3(LM-LEO) 2L+ Y (@=3I+ 2 (-3,
V(Qa)e? () V(Ppr)e? (»)
(2.20b)

in which L?(y) denotes the number of external n-lines carrying n,-tadpoles (i.e.,
(npy =L(n, F))-diagrams), L'?+0 only in the Goldstone phase.
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We note, that the choice (2.20a), when LP(y)=0 is in agreement with the
correct BPHZ renormalization scheme for theories with spontaneous symmetry
breaking in which the spontaneous symmetry breaking parameter
(n+Fy={npy+F is made soft: s'%((ny» + F) to ensure minimal UV subtractions
[34, 45, 46] (n+ F denotes the unshifted n-field operator).

When L,(y)—L¥(y) is odd the unrenormalized integrand I, contains a factor

sH2LEMTLEO) where Ly(y)+ LP(y) is also odd since L, () +LF(y) is always even. In
such cases, 5())) o(p) in (2.20a) and (2.20b) become formally halfintegers. Then, by
definition :

5(), 12 — (12 8- 1/2,e(0) - 1/2
ry(” el Y=g Ty(v) 12,00~ 1/2 (2.21)

By (2.21) factors s'/* move to the left of 7, in the forest formula (2.8) for all 1PIy for
which L, (y)—L7(y) is odd. Resulting subtraction indices &'(y)=3d(y)—3,
0'(y)=o(y)— % become thus integers. Hence, for such graphs y the IR behaviour of
the renormalized integrand is determined by ¢'(y) and the IR criterium (2.13) has to
be verified with ¢'(y), instead of g(y). To do this, we observe that the free effective
np-propagator between two vertices V[ —ion?]* is (Fig. 1d):
D7E(p? s mA(s); [25)=D(p* s m*(s) S (p* s m*(s)) LS (p* s m*(5)) + 5f > D(p* s m* ()]
222
Zye0?;0, f2)=(p* +16f2p)~". (222
Such lines as well as the corresponding graph will be marked by the superscript
“eff”. Thus effectively there are four kinds of Lagrangian vertices in the Goldstone
phase (Fig. 1e). Now we shall prove that the IR criterium (2.13) is satisfied for each
connected graph G (or 1PI graph I'*'f) when the choice (2.20b) is made with
account for the Definition (2.21). The IR canonical dimension of an effective
np-line computed in accordance with the low-momentum behaviour of @e“ (2.21)
is de"=1. Straightforward computation together with (2.5) (d,=3, d,=3 in the
Goldstone phase), gives for r(A°):
A= Y @ -3+ Y @3+ Y d
to (Aeft) VIQaleV (A°fT) VIPple? (Aff)

+ 3BT~ 1505 + AL 08+ L8 — LEGEh)*
+ 2L, (%) Z B8 + L 65) — LG5

2L, 05~ 3BOS) + LG L2050
+ Z{Leff(Geff) lgq eff())eff)l} +5{La(Geff) lgq(yeff)[} +7,
+ Z {Le“(’})e”)-*—Ltp( ~”)+La());ff)} —%Codd , (2.18)
j=1
L5+ LG5 ~ LGS
{ LS+ L (s — LP(s™) when it is even

J

LS+ Ly eff) Lﬁf’(yj”)%—l, when it is odd .

4  This is a demonstration of the Goldstone’s theorem: no particle corresponds to the ny-field
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In (2.18) di', dg', dy" are computed from (2.4b) with d;* instead of d, for all
effective np-lines, C,q is the number of 5%, j=1,. for which
L5+ L (5™ — LiP(y5™) is odd, all other notations are the same as in (2.18).
Slmple analys1s shows that if for some ye“ the corresponding number
L,+ L™ — L is odd, then L§" 21 or L’ =1. Indeed otherwise all external lines
of ye“ should end in (e3)-vertices (Fig. le), therefore G*''=y", which case is
excluded by the conditions of the theorem. Therefore, the last two terms in (2.18")
are always nonnegative. This makes (2.13) obvious for d, =3.

The requirement d, =3 of Theorem 2.2 could be weakened in the Goldstone
phase due to the more favourable (than in the critical theory) low-momentum
behaviour of the o-propagator:

Corollary 2.3. Euclidean Green's functions (2.7) with an arbitrary number of
insertions Q= j d>xa(x) exist in each order of 1/N expansion in the Goldstone phase.

Proof. It is necessary to show that the IR criterium (2.13) is satisfied for each G*ff
with o(y$"") given by (2.20b). This is true, if

3 Z {Leff effy }—f—Ltp(yjff)"f—L (yerf) Z (5" —3) = HCyq + A(ATY),

1y (ASTT)

(2.23)

where A(A°™) is the number of Q,-insertions in A contributed by the second
term in (2.18"), dp =3, d5'=3.4,7,3 for (e,), (¢,), (e3), (e,) — effective Lagrangian
vertices (Fig. 1e). o-lines of Q. -1nsert10ns could be coupled to the vertices of G*f in
the following ways: a) o-line €L (") for y§"e{y,,...7.}; b) o-linee £ (A")
coupled to ¥ [ —Lon*]-vertex of (e,) type; ¢) o-linee £ (A°F) coupled to (e, )-vertex
which in its turn could be coupled to (e,)-vertex €7 (7e“) (then the corresponding
nF-Iine is a tadpole, while in the interesting cases when L,,(yj”) L5y — LiP(y5™)
is odd at least one of the remaining L,(y{")-lines is effective), or to
(e4)-vertexe ¥ ,(A°).

In each case —F A(A") in (2.23) is canceled by the contribution of 3L ("),
def—3, and JLIP(y j), leaving thus (2.23) always nonnegative.

Analogous analysis proves:

Corollary 2.4. Euclidean Green’s functlons with  only one insertion of
Jd®xA3[Q1(x), where Q is a monomial in n® and (n.F) with do=3 as well as of
[dPx A3 [(n, F)21(x) exist in each order of 1/N expansion in the Goldstone phase.

3. Quantum Chirality Identities

This section is devoted to the proof of quantum chirality identities for the soft
mass BPHZL — renormalized 1/N expansion of the Green’s functions (2.7). They

are analogues of the quantum chirality condition in the usual renormalization
scheme [12, 24]:

N[P(n, o)n*](x)=const A [P(n, 5)](x),
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A" denotes Zimmermann’s normal product with canonical (minimal) subtractions
with “hard” mass.

As we shall see, in the present scheme additional terms appear in the r.h.s. of
this relation, due to the more complicated structure of the subtraction operator
e,

To formulate quantum chirality identities the concepts of factorized graph and
factorization of forests will be necessary (cf. also Zimmermann [30] and Lam [33]).

Definition 3.1. Let PQ beaformal product of two monomials P and Q of the type
(2.3). The graph I containing the composite vertex V[ PQ] is called P|Q-factorized
if there exist two subgraphs y*, 2 of I such that #(y7) (£(y9)) contains nonempty
set of P~(Q-)lines and no Q-(P-)lines, and Z(y")uL(y)=L(I'), L(y")nL(y9)=0,
V(Y (y9) = V[PQ] Such graph will be denoted I'=7"|y2 Let %, contain
all sets of I' =y”[y%-subgraphs (including the empty set 0).

Definition 3.2. The mapping 51)2:%}—»5'} is called P|Q-factorization if: i) for all
UeZpr, U={y,, ...V}, ¥ is not P|Q factorized, i=1,..,c, M(U)=U; ii) for
U= {yl, e Ve yjplykq,]p—l - L, k,=1,=, M}, y,is not P|Q-factorized, i=1, ...,c,
nE YL =1, e p=1 o Lo g=1, . My L Eh 92498 08,
MUY= {71, 0 P yp, e VEs y?, Y%} 1i1) MM(U) =0 for all other Ue ;. (including
U=0).

A special kind of Zimmermann’s normal product A2[P|Q](x) is introduced by
changing %, in the forest formula (2.8) into 9(F) for each P|Q factorized graph
TI.

Theorem 3.1. The following chirality identities are true for the Green’s functions
(2.7) (P is of form (2.3)) :

(N RLP(? +2(n, FsY2)]0X ) = 2705 m($)) S [PI(0)X )

. _3] 00, .
+(IZ’:”Z (—1) ( ) (u)</Vag++5i~33 {6(8 E o)) e L (x)XQ“>
£2 % dem )N TPICIR
j=1
SRSt Hie s [ GO (3.1)

{X(1), X(2)}

where for simplicity we consider only Green’s functions with integrated composite
operators

X= H 0.X,X,, 0, X,, X, are the same as in (2.7),

Ci)= [] Q.,ANC[1,A4],i=1,2, A(1)nA(2)=0,

ac A(i)

X7 0g(y)=X D@ C(1)C2)=X%Q =X,
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and Y ¢G) (x) is the normal product of the monomial :

2 L)
[TX200xX D00, X002 T 1, (x), XY= (00D,
i=1 k=1
VRN = — AP [ €O (A LPYO) DR D) !
{a(0)CQXDX PP X DX DX DY D] (x), (3.2)
oM=et+ ¥ (g=3dN=6+ ¥ (3,-3),
acA(1)v A(2) acA(1)vA(2)

2
o(V)=0(Y)— Y ([LO—L#O]% 4210}
i=1

2
F(V)=d(Y)— ¥ GILY~ L1 +2LY}.
i=1

L

2
The last sum in (3.1) runs over all possible monomials || X©(x)X%(x) for which
i=1
one of the inequalities: ¢'(Y)=0 and ¢'(Y)=1 is true, “~” denotes Fourier-
transform. Renormalized self-closed n-field loop 2°*(0;m?(s)) defined in the

Appendix (A.3) accounts for the ambiguity in the renormalization’.

Proof. To verify (3.1) we analyze all types of graphs contributing to the Lh.s. of
(3.1). They are plotted in Fig. 2. We shall consider only the high-temperature phase
and the critical theory (the situation in the low-temperature phase is strictly
analogous). The expression corresponding to I'; by (2.8) can be represented as the
sum:

Ry =R+ A+ AP+ RS . (3.3)

Here A{!) is the contribution of all forests Ue %, with at least one element ge U
such that one of the lines ;e #(g), i=1,2, while the other one does not (Fig. 3a).
AP) is the contribution of all forests Ue #. with at least one element ge U such
that both vertices V[ Pn?] and ve ¥'(§) and e £(§), i=1,2,3 (Fig. 3b). R?»l is the
contribution of all forests Ue % with at least one P|Q-factorized element
Y(S)=y"US, S=1,ul, (Fig. 3¢c). In all remaining forests U'e %, any element
yPe U’ such that ve ¥ (y**3) contains the lines I, i=1,2,3 (constituting the
graph y,). In all U’ the contribution of y, is —1 [cf. Definition (A.6) of the
g-propagator]. The result is topologically equivalent to I. However, the re-
normalized expression corresponding to it by (2.8) is:

—Rp=— Y [l(=1I(U)*—R,.

U'eW(Fr) yeU

Here M is a P|n>-factorization (Definition 3.2).

Analogously, graphs I'*"* in Fig. 2b give:

Rﬂpnz,g; = —Rr(mm“‘/l(rl(}%z,m +A(r2<)Pn’,Q> : (3.3)
5 As a y%-graph [Q-some monomial with x,(Q)=2], it is no longer “forbidden”. However, the

ambiguity, due to its renormalization is not fixed by the normalization conditions for the Green’s
functions (X,> (4.12) and (4.14), since there it is not allowed
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Fig. 2. All possible types of graphs giving rise to chirality identities (3.1)

Lemma 3.2. AY) =AYb ,=0.

Proof. Obviously, I', is a particular case of I'*"@) which, for shortness, will be
denoted I'"!. Consider the subset Z.(9)CFp, Frulg)={U,U contains an
element g with the property: g is maximal in U, for which [,¢.2(g), [, Z(g)}
(Fig. 3a). Let g=gul,. Then Fu(g)=F1u(9)uFru(9), Fiulg)={U,UeZFp.(g),
g¢U}. Hence:

AR =S Y, Y [T (=wS:drag)
g UeFT9) 1ng=0
2

A1 =1)8;[2,,(—7,(R)T}, (3.4)

and 9, is the propagator carried by the line /,. From (2.20) follows that
3(g)=9(g)+ 1, o(g) = o(g) + L. Since S;[,R,] is a polynomial in S and the external
momenta of g{p°} of order <d(g) the expression in the parenthesis is a sum of
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w>|

Fig. 3. a Forests contributing to A{; b forests contributing to AZ’; ¢ forests contributing to RS

terms of the following type (n, +n,+2k=<d(g)):

3

[ o
g (1 18- ) (L= (95 ) () (9 ) m?(5)+ )
or, equivalently:
dal 0@ F\N1 ( G\ 8g)+1—ni—n
Jm U= - ) 07" ()2 (L =g 71 )
k—1 k
|mK )P +mP(s)+ Y <r)m”(s) (m2(s)+ 12y, (3.5)
r=0

where we have used that [d*I(1—t%)[m*(s)+1*]"'=0 for d=1. This proves
Lemma 3.2.

Lemma 3.3. A=A, =0.

The proof completely resembles that of Lemma 3.2.
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Lemma 3.4. Let I'=7"|y9 is a 1PI P|Q-factorized graph. Then the following relation
holds :

1) RF=EW/PEVQ+(_TYPR?P)ﬁyQ_i_R“/P(—TYQRyQ)
+ Z [- 7, (R;» R )] Rr/r, 5
I“jCF,Fj=~;JP]yJQ
where the sum is over all yontrivial 1PI P|Q-factorized subgraphs I of I'. In the
conditions of i) also holds :

li) - TFR ( yPRyP)( yQR7Q)

_rr{ 2 [—rrj(R)&pRY]Q)]Rr,,J}—fr[RpryQ],

Iyer,r,=Plv2

Proof. It goes by induction. i) and ii) are checked directly when I' is 2 minimal
P|Q-factorized graph. i) is assumed to be true for all nontrivial 1PI P|Q-factorized
subgraphs I of I'. Taking —7, from Rr, we obtain all r.h.s. terms in ii) as well as
the term:

(1= )Sp (=T R ) (7,0 R )]

which vanishes since 6(I})=48(%)+45(y9).
Now we shall make use of the Bogoliubov’s form of the forest formula (2.8) for
R, and R, [18]:

Rr= er/m ﬂ (_T/IJle)°
{4} Jj=1

where summation goes over all partitions {A}={A,...,4.} of I' into sets of
nontrivial nonoverlapping 1P subdiagrams A; of I'. These partitions could be of
two types: ones which include one I;=7; ]yQ {2}, and ones which do not: {A}°.
Then:

er Z VVPMP} H (— TaPﬁaP)
o APcyP

IyQ/(;LQ) 1—[ (_ TAQRAQ)
2QcyQ

+ Z er/u)f H (“T}.PR}&P)(_TF}RTJ');PHQ(_IAQE),Q)’ (3.6)

r;cr{ay APcyP

APecyP e VIPQlg Y (A7), ¥7(29).

Accounting the identity: Irjp=Lreyry. 1Py 010y, @and the inductive
assumption ii) for I in (3.6) we get: ’

Rp= Lrjimy [1(- 1 R;r) Lyojzey [1(= e R;0)
(2P}, (2.2} AF 22
+ Z Z Iy H(—TAPR}J’ {“Tr Z [— Trk e PR/" o)]
r,cr (a7 I‘kcr

Re 1= mioRea) =35 "1 VIPQIE) . (3.7)
A
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The first sum in (3.7) gives exactly the first three terms in i), the second sum in
(3.7) coincides with the last term in i).

Corollary 3.5. Let G'"® is any graph containing the composite vertex V[ PQ]. Then :

Rowor=Rgma + Y, [—-‘CI‘J(RyiPRyJQ)]RG(PQ)/FJ’ ri=yjy?. (3.8)

G(PvQ)ij

In (3.8) R4we is calculated by (2.8), while Rgwmo is obtained from (2.8) in which
Fswa is changed by W Fgwa) (Definition 3.2). The sum runs over all 1PI
nontrivial P|Q-factorized subgraphs I';C G2

Application of Lemmas 3.2-3.4 and (3.8) implies the desired quantum chirality
relations (3.1).

As a simple illustration of quantum chirality identities (3.1) we give the result
for P=1 when there are no composite operators Q,, except finite counterterms:
iNa[dxo(x), —3b[dx N P[(0,n)*]g(x) (a=0 in the critical theory and in the
Goldstone phase, Sect. 4):

(MIPIXX,) =0, (A [n21(0)) = N[sF? +270;m*(s))]|,-, + Na,

n'=n+F is the unshifted (at its vacuum expectation value) field operator.

4. Renormalizability

In BPHZ framework ambiguity of subtractions (2.8) is accounted for by adding
finite counterterms to the effective Lagrangian of the theory (in the sense of
Zimmermann [30]). The structure of these counterterms is dictated by the
subtraction operators 7, and the symmetries of the model. All finite counterterms
have the form:

2,=[d*x N3[Q(n,0)](x), (4.1)

where {Q,(n,0)} is the set of all Euclidean and O(N)-invariant operators of type
(2.3) with canonical UV dimension Egagl In the Goldstone phase the require-
ment for O(N)-invariance is modified to a requirement for compatibility with
WTIs for spontaneously broken O(N) symmetry (cf. [45]):

Ly

0=[d*x () N3[Qulm, Ng)X,X, > == 3, LATQ,m,0)]6())
An(x})+s'2F )o/on (X)) — (ng(x) + s2F 2)0/on(x)} X, X >, 4.2)
Ix) = (14 b) {7 [n,(0,n5) — (0, n)n,1(x) +5"*(F,0,ny(x) — F 0, n,(x))}.

Here b is taken equal to the coefficient of the field-renormalization counterterm
(4.4) to assure correct normalization of the current f,‘f”. To check (4.2) quantum
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equations of motion should be used [33]:

0 6’?6:“_ 0L ot _ & _ [k,
el s g mien) =T S
“0(p0(x — x)< NQHQamr ™ 3[ 0P, .0, P(n,o)|(r )X 3 Palxa)
(1) 0+dq—r—3 0(8{‘;)1’1) Hr 41" fka 4 a
L,
Z (x = X)) (AR [P, )] (x) X0 (43)

X=X gaPalesa e P (e, J=X "0, (x)= [T A2 [P, ) )X, X,

Ll{ead 10 =— 3N 200,m o (X) = N/2N P [0(G 0)] g (0)— £ A m(sn*T5 ()

2 [o?+2(n, FsU2) T (x)+ 3.C, A3[Q,(n, 0)] (%),
(4.4)

where “|” in (4.3) indicates that the normal product is factorized (Definition 3.2), &
in (4.4) is the Fourier transform of the o-field propagator (A.5) and “+” reminds
that “forbidden” graphs (Fig. 1) are omitted in the corresponding normal product.
(Note, that there is no “x” in the counterterms A3[Q,(n,0)].)

The requirement for O(N)-compatibility of Q,, together with (4.3) and (4.4),
gives:

0 0

(n(x)+s'?F, )—m—(n,,(x)—l—s“zFﬂ)m

Hence, all Q (n,0) in (4.1) depend only on (n+s'?F)* and ¢ and can be
obtained from the corresponding counterterms in the O(N)-symmetric phase by
translation: n,—n,+s'?F, (cf. [23]). Therefore, we shall restrict ourself to the
of the high-temperature phase and the critical theory.

All possible counterterms Q,(n,0) in the high-temperature phase have the
form:

Q,n,0)=0.

Q,(n)=—3n’, Q,(n)=%5(n*?, Q5(m)=¢(n*)>,
Q.m=—31—=s)n*, Qsm)=—3(1—s)n*  Qgn)=54(1—5)(n*?, (45)
Q,(0)=N/20, Qg(n)=—3(0,n), Qo(n,0)=—3on>.

However, not all of them are linearly independent®:

6 Linear mdependence between composite operators .4 [Q,(n,0)] (x) will be understood in the weak
sense:

M

2, 0N TQn, 0)] (x)X, > =0

=1

only for o, =0, i=1,..,M
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Theorem 4.1. In the set of all Euclidean and O(N)-invariant (compatible with WTIs
for spontaneously broken O(N)-symmetry in the Goldstone phase) composite
operators NE[Q(n,0)]g(x) with 6,0<3, there are only two which are linearly
independent : o(x) and N[(,1)*] g (X).

For the remaining two independent counterterms (4.1) the following notation
is introduced:

Ao=N/2{dxa(x), A,=—3[dxNP[(0,n)]e(x). (4.6)

Proof. It relies on the two types of linear relations in the formal algebra of
composite operators: (a) algebraic ZlIs. [31] and: (b) quantum chirality identities
(Theorem 3.1).

Z1s for N[0, ]e(x), a=4,5,6 (4.5) are derived with the help of formulas (cf.
[25 42]) (Dd :td _tds , P= p555877555(’y)7QEQ(’)))):
(1 —s)f =(1— sfede, ypVIQ,], k=1,2, a=45,6,

e(l—s) =(1=s)ty e+ [(1—1g L )Dy JU =571, 93VIQ,],

4.7)
Dol —s) =(1—9) e 202+ [(L—1g 1) (D)~ Dy !
+2(1—s)(1 =232 D3] (1 ‘* 2*’“2), 72VIQ,].
Straightforward computation gives:
9
(N0, N ()X, = Y 00 {m/m) (N[O, 0)] (X)X, (4.8)

i*7

where the coefficient functions ¢

\az

of vertex (1PI) Green’s functions.
ZlIs for Q,, Q, are obtained with the help of the identity:

(mju), a=4,5, 6 are explicitely expressed in terms

‘E‘;’Q=Tf‘?~k’9_k+‘[5’g(1—T?_k’g_k), y2VIQ], ki=1,2,

(N5 ] g (x) Z 21.a(m/ W) CAF[Q,(n, 0)]g (X)X,
={] [n2]®(x)Xn> =0, 4.9)
(NP o ()X, > — (AT o ()X,

9
= \; 22.m/W) CAFTQ(1, 0)] o (X, -

Here coefficient functions g, (m/p), i=1,2, a=1, ...,9 are again expressed in terms
of 1PI Green’s functions. The first Eq. (4.9) vamshes due to the chirality identity
(3.9).

Now we shall make use of (3.1) for L, =0 and P=A[0,]¢(x), /3[Qo]e(x)
and A7[(n*)*] o (x), respectively. Note, that for all of them the first term in r.h.s. of
(3.1) is not present, since responsible for it 20 ; m*(s)) arises in counterterms as
(1 =11 9(0; m*(s))=0, because of (A.3) (counterterms are in so called in-
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termediate normalization [34]). The result reads:

(AN03]e (X)X, > = ; d3 /1) (NP0 X, (4.10a)
{N3Q6e ()X, =NC,{a(x)X,) . (4.10b)

Chirality identity (3.1) for A#2[(n*)*](x) gives rise to a new normal product
N Z[(1—s)n*] g (x), which is readily expressed with the help of (4.7) in terms of
N 2[(n*)*] 5 (x) and o(x). Finally

(AFLM) T ()X, > =d, o(m/p) (o(x)X,,) . (4.10c)

Coefficients functions in (4.10b) and (4.10c) are also given in terms of vertex
functions.

The linear set of Egs. (4.9) and (1.10a)~(4.10c) has a nondegenerate determinant
(at least in each order on 1/N) and, therefore, all /3[Q,(n,0)]g(x), a=1,...,9, and
N7 [(n*)*]g(x) are expressed as linear combinations of only two of them 2, 4.

The proof goes along the same lines in the critical theory and in the Goldstone
phase and is omitted.

Corollary 4.2. The theory in both phases as well as at the critical point is
renormalizable. The only independent counterterms will be denoted :

a) In the high-temperature phase : a(m, ) Ao =mad(m/p) 4, and bim/p)4,, A, and
A, are from (4.6);

(b) low-temperature phase: a(f?, u) Ay, =pa(f*/uw)4, and b(f*/w)A, ;

c) in the critical theory: b(0)4,.
Thus the effective Lagrangian (4.4) acquires the form:

Legslxsm, fip)= = (L+0)242[0,n) 1 (x)+ N2A3[0(G 1 0)]g (x)

—12/3[mA(s)n* T (x) — 1/24[a(n® +2(n, Fs'2)1%
+Na/20o(x). (4.4)
The last term in (4.4") is absent in case c).

Remark 1. The requirement for IR finiteness in the critical theory (Theorem 2.2)
restricts all possible counterterms (4.5) only to those with d, =3, whereby the
masslessness of the theory is assured (otherwise, resummation of a(u)4,-
counterterm insertions will lead to a massive theory, cf. Sect.7). The only
remaining counterterm is b(0)4, .

Remark 2. For the sake of rigour in the Goldstone phase, one should add and
substract in &, (4.4') the term (m, is arbitrary mass scale parameter):

FA2UmE -+ 2mo(u—mg) (1 —s)—my(2p—mg) (1 — s)*n*]% (x). 4.11)

The minis term (4.11), together with the term —1/2.473[(1—s)?u*n?]%(x)
gives a mass my(s) =mqys + (1 —s)p to the n- and o-propagators (A.4) and (A.5) and
the remainder in (4.11) is considered as an insertion in the Green’s functions, which
modifies the coefficients of the counterterms. After expressing the latter as linear
combinations of 4, and 4, according to Theorem 4.1, m, is safely set equal to
ZerO.
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Fig. 4. Possible (sub-)graphs for {(n)

To fix the two finite counterterms in the high-temperature phase physical
normalization conditions are imposed :

I®Op2m e =0, T'*p*;m,p)l,.e = —(u>+m?), (4.12)

where I'®? is the O(N)-invariant part of the two point vertex function of the n-
field (I"*® is 1PI with respect only of the n-lines). Counterms a(m, ) and b(m/y)
are determined by (4.12) recursively in each order k of 1/N by:

8m? a*m/p) = —m?/(m? + u?) IO (p? ; m, w)] 2 = o — p?/(m*+ 11?)
P m, )y — — e, (4.13a)

b m/p)=(m? + 1)~ LIO(p? s m, w2 o — IO 5, )] 22 2] (4.13b)

Here IT=1"?%+(1+b)p? is the contribution of all nontree graphs of ">, [T® is
its k-th order in 1/N, eventually containing insertions of a” 4, and b 4,, of order
Isk-1.

Physical normalization conditions in the Goldstone phase read:

Cnpy=0, IV 2, 1)l ,=— 12, (4.14)

the lower index “L” denoting projection along isodirections orthogonal to F. The
first condition (4.14) implies: a(f?/u)=0. Indeed, a tadpole {n,y-graph with no
ady-insertions could possibly contain as subgraphs the graphs plotted in Fig. 4a.
However, the analysis of the behaviour at zero momentum in the limit s—1 of the
external 9-, 2%+~ and 9, -propagators and the attached to them 1PI coefficient
functions (determined by the subtraction operators (1—t!), and (1—1%?),
respectively) shows that the latter vanish. The counterterm a4, contributes to
{ngy-graphs only in the form of the subgraph in Fig. 4b.

The second counterterm b(f?/u) can be expressed in terms of nontree
contributions I, to I'>? in each order k of 1/N:

O y=u" 2 L (0?5 f2 1)l o — e (4.15)

The single counterterm b(0) in the critical theory (Remark 1) is fixed by the
normalization condition:

rom?; Wlyes e =—p2, bYO)=p2090p*; W], (4.16)

The critical theory is conformally invariant (after summing up all orders of
1/N). This was proved in [40] by means of explicitely constructed “improved”
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quantum conserved stress-energy tensor :

0,,(x) =(L+b(0) A/F[(9,n, 0,n)] (x) = 1/26,,,(1 +b(0) + 1) A [(@0,1)*] (),
where the constant r, arises in the ZI:

NP =) n?] () =1, A0, (x)
in the critical theory.

Remark 3. In the case L, +0 in the Green’s functions (2.7), chirality identity (4.10a)
is modified, due to the nonvanishing contribution of the contact terms (third sum)
in (3.1), and reads:

o

(N3 on?] ()X, X, > =NCH{o(x)X, X > +2 LZ Se—x) X, X,y (4.10a)

i=
Hence, an additional finite counterterm —1/2C[A}[on*]g(x)d>x=CA, arises
in the Green’s functions <{X,X_>, (L,,L,)=%(0,0). It can be fixed by imposing
normalization condition, analogous to the one in the noncanonically renormalized
O(N)-invariant (¢?); model [39,407]:
[;z(ﬂz’l)(pla P2 s m, Au)ls.p.ul = <O‘(O)ﬁa(p1)ﬁﬂ(p2)>lpl|p% =p%=p;,p2 =pu2 =- 5rzﬁ (417&)
in the high-temperature phase and the critical theory, and in the Goldstone phase:
Flz’l)(pl,pz; m, ﬂ)'spu25<0—(0)ﬁa(p1)ﬁﬁ(p2)> _5;ﬁ’ (417b)

where “1” again denotes projection along isodirections orthogonal to F.

1PI —
|p%=p%=l>npz=u2 -

5. Critical Limit of the High and Low-Temperature Phases

The physical normalization conditions (4.12) and (4.14) lead to reparametrization
of the theory in both phases: instead of the initial parameter — the “temperature” T,
the Green’s functions of the chiral field depend on m (the physical mass), respec-
tively on f [the physical (spontaneous) magnetization] [23]. Therefore, we have
to verify that the limits m—0 and f—0 in all orders of the renormalized 1/N
expansion correspond to the critical limits T—-T,+0 and T—T,—0, respectively,
ie., to the limit to the renormalized theory at the critical point, which is
constructed independently by means of the 1/N diagram technique with m=f=0
[cf. (A.4) and (A.5)].

First we consider the high-temperature phase. It is clear from Theorems 2.1
and 2.2, that each renormalized diagram, without finite counterterm insertions
ady, b4, has a well defined limit when m—0 to the corresponding diagram of the
critical theory (m=0). To analyze the remaining graphs we shall use the following:

Lemma 5.1. a®(m/u) = O((Inm/uy?), ii_r;(l) b®(m/ 1) = bP(0),

where the latter coincides with (4.16)7.

7  Here and in what follows z will denote powers of logarithms, whose explicit values are not essential
for the present discussion
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The proof proceedes by induction in orders of 1/N with the aid of the formulas
(4.13). Assume that the lemma holds up to order k— 1. Then the first term in (4.13a)
and (4.13b) I1™(u? ; m, p) contains only b*(m/u), @*(m/u) with k' <k—1 and thus
it converges continuously to the corresponding one of the critical theory. Indeed,
we only need to show that all graphs of IT®(u?; m, p) with at least one ma(m/p) 4-
insertion vanish in the limit m—0. The latter graphs are of the form®-

lo lo
m?le ﬂl Zz("ﬂ(m/,u)g?r(z’lﬂ)(u2 ;0,..,0;m, u), '21 kj<k—1. (5.1)
j= ji=
Applying to (5.1) Weinberg’s power counting theorem [47] about asymptotic
behaviour of diagrams in the momenta and/or other dimensional parameters
(generalized to the case of the soft mass BPHZL renormalization scheme in the
Appendix of [40]) and accounting for the inductive assumption, we have:

lo
elom®e [ a%Aem/p) Ry, , (%30, ...,0; em, )~ conste(Ine)
j=1

R, WP[e750,..,05m, we) X, e(lne) const——0. (5.1)
Consider now the second term IT%(—m?;m, u) in (4 13a) and (4.13b). Again
with the help of Weinberg’s theorem we obtain [, =0, Z kj<k—1):

Jj=

21, < ~(k; 2,2, ) ~
(me) ;1;11 a*em/uw) Ry, (—&*m*; 0, ...,05em, 1) ~
conste*(Inef Z,, , (—m?;0,...,0;m, u/e) X 2(Ingy” const—-0

and, therefore, I%(—m?;m, u)=O0(m*(Inm/u)’) which completes the proofofthe
lemma.

It is now clear that each diagram with an arbitrary number of b4, insertions
has a limit in m—0 to the corresponding one of the critical theory and at the same
time each diagram with at least one a4, =mad -insertion vanishes at the critical
point:

Ly

(em)?'= [T a®Xem/w Ry, , ., ({p}, (g}, {0} em ) =~

i=1

const(lns)zm£3'1/2""”““‘5‘—35&”’“:3»0. (5.2)

In (5.2) the rules for determining the asymptotic power:

deg, Zp, . ((p/e}, {a/e}. (O m,pwfe) S[3—1/2L,~ L]~ 1

were used (cf. [47], Sect. V).

In the low-temperature phase, quite analogously, each renormalized diagram
with L. =0 (L, is the number of external blind F-lines) in the critical limit f—0
goes over into the corresponding one of the critical theory. Moreover, we have:

8  We use the notations:

‘%[‘(LN,LO)E%F[L")L")({p} 5 {q} s m, :u)’ {P}E{Pp '~~>pL"}’ {q}E{qla cey ‘ZL,} jgﬁ_ I, )~@§"P)
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Lemma 5.2. }in}) b®(f2/1)=b"™(0), the latter coinciding with (4.16).

The statement of this lemma is a particular case of the following:

Proposition 5.3. Each graph of the low temperature phase with L, >0 vanishes in
the critical limit f—0.

Proof. First we consider an arbitrary 1PI graph T, (tp Lo with Ly(I')=1. As it was
pointed out after (2.21), the corresponding factor s'/* moves to the left in the sum
over I'-forests for %, with 0, ¢ changing to (integers): &' =6 —3, ¢’=g—1. Hence,
an external F-line can be treated as an external np-line with zero momentum.
Making use of the power counting rules [47] we obtain in the limit f—0:

§2 1y, . ()0, {0} 6% 1) 3, conste!? (Inef—0.

Now consider I, ,  with Lp=2. For every 1PI graph ACI'; , containing only
one vertex V[(n, F s” o] the corresponding factors s!/? “commute” with the
subtraction operators t, according to (2.21), and for all yS I, ) containing both
vertices V[(n, Fs*/?)a] we apply the ZI:

é(v) e(v)s_sfé(v) 1,e(n—1 +Dg(v) 1 (1 — oM —1 e - 1) (5 3)
y 5 . .

7,87 —1

Thus we have [2,, 2, — the same as in (4.5)]:

0
_ 2
%T(LA.La =/ %F?Ln 12,Lo) + Z (é; ‘%V(a,m)

Ry
p*=0""I(wL,,L_)/7@4,0)
v@,0CIL, L,y sv=1

+ Y o %

7(6,00C (L, Lo)

R . (5.4)

p?=0"I'(L,,L,)/76,0)
sv=1

7(6,0),

In (54) I'§, +, 1, is topologically equivalent to I, ; , whose external F-lines are
conmdered as external ng-lines at zero momenta, and all subtraction indices 6(4),

o(d), AST? (L. +2.1,) correspond to the canonical choice (2.20). The sums in the r.h.s.
of (5. 4) run over all subgraphs of I'; ,  containing both external F-lines. Using
the identity: d/dst>2=1°"1¢" 16/65 ‘the forest formula (2.8) and the explicit
expressions for the n- and o-propagators (A.4) and (A.S), we obtain:

(005 =Njf? Z@M ol =0 A, p=0’

(5.5)

Y4, 0))

3/= 1
2, =[x N1 =s*]g(x),

where the sum in the r.hss. of (5.5) runs over all lines [;€ Z,(7, ), in which the
aggregate: Nf?9 117 ;m*(s),sf%) x D(I7 ;m*(s)% (I} ;m*(s),5f?) is inserted (see
Fig. 5). As a result of the ZI (4.7) the last term in (5.5) acquires the form:

ap2a . a 24

= - R

7(4,0)|pY =0 Y2, 1) [|PY =0 7(4,00/7(2,)[p7 =0

. ds

V=1 72, 1)C ¥(4,0), VIQalev2, 1) s7=1 sv=1

25
+ Z "@YM, nlpY= 0‘@}'(4,0)/}’(4, »ip?=0 (56)
7(4,1)C 7(4,0),VIQaley(a, 1) V=0 sv=1
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2% (1-5)
P P
i .—p——. —_—
as
2;L2(1—s)

EU
:
:

Fig. 5. Differentiation of 2(p?; m*(s)) and %(p*; m*(s),sf2) in s

and, finally, it reduces to graphs with 2, ={d>x A }[(n*)*]g(x)-insertion. Note,
that all coefficients in the square brackets in the r.h.s. of (5.6) remain finite when
f—0 because of the substitution s=0.

Now applying Weinberg’s theorem to all terms in the square brackets of the
r.hs. of (5.4) and taking into account (5.5) and (5.6) we find that they all have
logarithmic asymptotae: O((In f?/u?)) and that is why the whole # with
L.=2) vanishes at the critical point.

The proof for L, =3 proceedes exactly along the same lines by reducing I, |
to a graph without external F-lines with the help of successive application of (5.3)
and using Weinberg’s theorem afterwards.

Fatyep §

6. RG Equations and WTTIs for Broken Scale Invariance

In the derivation of RG equations and WTIs for broken scale invariance in the
high-temperature [ Callan-Symanzik equations-(CS)] and in the low-temperature
(“Goldstone-limit” equations (GL), cf. [45]) phases we shall follow the method of
differential vertex operations [48]. The standard scheme is based on: (1) re-
normalized action principle, (2) integrated bilinear equations of motion, (3)
Zimmermann identities. For the chiral field model one has to add: (4) integrated
quantum chirality identities.

Proposition 6.1. The renormalized action principle in both phases as well as at the
critical point holds in the following form :

0 Oa ob

{u%—uaﬁo—uadl—2umﬂ4—2u(u—m)ﬂs}<XnXa>=0, (6.1a)
0 Oa db 5

{ma—m—ma—mAO—ma—mAI—Zm 2, -2m(p—m)2,
+2m(u—m)!25}<XnXa>=O, (6.1b)
2 6 2 8b 1

f af—z—‘f -afTAI'I‘EfA3 <XnXa>=O’ (610)

where fAy={d>x N3 [a(n, Fs'?)](x).
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Fig. 6. Additional forests arising in the proof of the action principle

The proof is based on standard graphical arguments and the forest formula
(2.8) [48]. We take, for instance, (6.1b) and consider an arbitrary connected graph
G of <X, X > with k,, k, insertions of ad,, b4, respectively. From (2.8) we have:

Se Y. Tl (=78 [1 2(7;m%s)
ZLn(G)

UeF g AcU

0
R.=(— )V @I+£°G)| N~ 126
mam G ( )

0a i db -
11 @(lf;mz(s))](kam—é’—ﬁak“ 1b"+kbm%a"“b"b 1)

Z4(G)
+akeb*| Y (—2smm(s) D(1 ;m*(s))
Ln(G)
+ ) (— ngonzy’(lf;mz(s))) Y12 ;m(s), 0)”. (6.2)
2,6)
The first term in the parenthesis of (6.2) gives rise to — mé—a— Ay— mg?— A4, in (6.1b),
m m

and the terms (—2smm(s)) [2(I?;m?(s))]* represent a part of the corresponding
graphs with 2,,2,,2, insertions in (6.1b). The remaining part of the needed
graphs is obtained by analyzing the last sum in the rhs. of (6.2). Indeed,
representing mad/om Y(lf ;m?(s)) as a triangle subdiagram we observe that in order
to get the correct 2,, 2,, 2, insertions we have to add now forests, containing
elements g with the property: (x)V e 77(g), [; £ Z(9), c=1,2 (see Fig. 6). The set of
all relevant forests reads: 7| ) { Z4(g)}, where Z4(g) is the set of forests containing

at least one element with proi)erty () and g is the maximal one among the latter
(cf. the proof of Lemma 3.2). To each such g we relate g=gu{l j,c}fz , (see Fig. 6)
and denote the subset of #4(g) in which all forests contain the corresponding g by
F(g). Thus, the contribution of all new added forests | | #(g) to Ry is:

g9

SeY Y T (=1,8)16;{(1—=1)S,(—2msm(s)Z, 2,)(—1,R,)}, (6.3)

g UeFglg) Ang=0
Adg

where 9, , are the propagators associated with lines [; , ¢=1,2 in Fig 6.
According to (2.20) §(g)=0(g)+ 1, o(g)=0(g9)+1 and that is why, in complete
analogy with the case of Lemma 3.2 [cf. (3.4) and (3.5)], the expression in the
parenthesis of (6.3) (after integration in the loop momentum [;, Fig. 6) vanishes.



BPHZL Renormalization of 1/N Expansion of the Chiral Field 239

The proof of (6.1a) is strictly analogous and that of (6.1c) is straightforward.
The bilinear integrated quantum equations of motion [cf. (4.3)] look like:
{A+b)A, +(u—m)* 25+ 2m(u—m)2, +m* 2, + A, +5f A,
+3L,} <X, X,>=0. (6.4)
Taking into account Theorem 4.1 and (4.10a’), in the high-temperature phase
(f=0) (6.1a), (6.1b), and (6.4) give three equations for two linearly independent
vertex insertions 4,, 4,, and in the low-temperature phase (m=0) (6.1a), (6.1c), and

(6.4) lead to three equations for 4, 4,. As a result, in the first case the RG and CS
equations arise (L,+0):

0

{ﬂ@ +LnCn(M/u)+LgCa(m/u)} X,X,»=0, (6.5)
0 0

it e Ll + L ) —matf 20| XX =0, (69
u m

and in the second case one obtains the RG and GL equations:

0

b = 2P0 o + L0+ L L0 X, =0, (65)

0 0
{u—a; g +ann(f2/u)+qud(fz/u)Jr(%+Vn(f2/u))f4'3} X,X,5=0. (67)

For the vertex functions I'EnL<) [ >2 all Egs. (6.5)6.7) are the same with the
only change: L,— —L,, L — — L_. Substituting in (6.5)—(6.7) the normalizations
conditions (4.12), (4,14), and (4.17) we obtain simple expressions for all coefficient
functions, e.g., for the anomalous dimensions {, and {_ of the n- and o-fields:

Cum/p) = p? (@ +m?) " (14 0/0p> T3 O) ., _ 2 (6.82)
2L, mJ 1)+ L, mf ) = 2430 O T D) (63b)

In complete analogy with the case of noncanonically soft mass renormalized
O(N)-invariant (¢?)3 model [40] one obtains in the limit m—0 or f—0:

Lulm/p) =y, (m/p) = O(m(lnm/p)*),  { (m/p) =7 (m/p) = O(m(inm/py),
mo(m/ ) = O(m(lnm/py),
L2 =y =0 f2/p), L2 /) =2,(f%/1)=0(f(ln f2/u)).

Therefore, in the critical limit all differential equations (6.5)~(6.7) coincide:

{u% +L,,c,.<0>+La¢,,(0>} XX, =0. 6.5")

7. Critical Behaviour and Universality of the Chiral Field

In this section we shall describe briefly the critical behaviour of the chiral field in
the framework of the soft mass BPHZL renormalization approach.
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—( >—

Fig.7. Graphs contributing to 7

The RG equations at the critical point (6.5”) are just the dilatation WTIs
[46, 407. In particular, the two point vertex function together with the normali-
zation condition (4.16) acquires the well known scaling (conformally invariant)
form:

r®Op2 ;= — @) " p*) 7", n=2L,00).

The evaluation of the critical exponent # within the 1/N expansion according to
(6.8a) (for m=0) gives in the leading order (see Fig. 7) the answer: 7V =8/3n*N,
which exactly coincides with the corresponding result for the N-component lattice
Heisenberg model [36].

A characteristic feature of the BPHZL framework is that the physical
normalization conditions (4.12) and (4.14) introduce as independent parameters
the physical mass m and the physical spontaneous magnetization f in the high-and
low-temperature phases, respectively, instead of the “temperature” T'itself. That is
why, in order to establish all scaling laws and to prove the validity of the
universality relations between critical exponents, one has to introduce “tempera-
ture” and “magnetic-field” perturbations on the effective Lagrangian of the critical
theory [(4.4), with m=f=0] (cf. [34]):

Lol t, Hy= £(x;0,0, 0} — N/2 pta(x) + (H, n(x)). (7.1)

Here t(~(T—T)T,” ') describes small deviations from the critical temperature T,.
Of course, such supernormalizable perturbations do not exist as insertions in the
conformally invariant chiral field Green’s functions at the critical point, because of
the IR divergencies, increasing with the number of insertions [cf. (2.2), (2.6), (2.12)].
We shall formulate a simple resummation procedure for (7.1), which does not
change orders of 1/N, ending up with a well defined 1/N expansion of the perturbed
theory, free of IR divergencies in each separate diagram (cf. with the case of the
soft mass noncanonically renormalized O(N) invariant (¢?)Z model [40]).

For the sake of rigour, one first considers the “temperature” and “magnetic
field” perturbation in the high-temperature phase, i.e.:

Loy, H) = 2,0 (x5, 0, 1) — N/2 pto(x) + (H, nlx) (7.1

Following the standard procedure [34,45] after the shifting n(x)=n(x)+F
[F?=Nf? F= {n(x)>y ~true vacuum expectation value in the presence of the
insertions — N/2 put{ o(x)d3x, {(H,n(x))d*x)], the new theory is reparametrized in
terms of [ instead of H. The function H=H(m, 1, f) is determined by the
condition of absence of a-tadpoles ({7(x)), 7=0) recursively in orders of 1/N. The
partial resummation of (7.1), which does not change the orders of diagrams in
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Fig. 8. Graphs contributing to v(!

1/N, is described equivalently by the following effective Lagrangian
(m(t, f;s)=m(s)+4dns(tu+12)):

D oilcsm, f, uty=—1A+b(m/p, 2/, )N 3L 71V o ()~ 5N 3 [mP (2, [35)n2]% (x)
— L 3o +2(n, Fs'?)1%(x)+N/2a(m, . t, f)o(x)
HIN (G o)), (7.2)

where the new finite counterterms a,b are explicitely determined as functions of
the old ones a,b (in the /N expansion). Thus, the only problem which might arise
in the limit m—0 is that of the IR finiteness of a(0, , ¢, f) and b(0, t, f2/p).

The proof of the existence of ’Li_r}r(l] E(m/,u, tf 2/u) and liir(x) a(m, u, t, f) is not
difficult and we omit it here (for the soft mass renormalized O(N) (¢?)2 model
see [40]).

Thus the physical mass mg, (i) corresponding to the “temperature”-

perturbed critical theory (7.4) (m=f=0) is well defined and obeys the RG
equation:

0 0
fis ~ =200 =0,

m_. . (u, t)=const utt O~

phys

wherefrom one obtains the second independent critical exponent v=(1—{,(0))" *.
Taking into account (6.8a) and (6.8b) (for m=0) straightforward computation (see
Fig. 8) (making use of, e.g., the methods for conformally invariant integration [50])
gives in the leading order of 1/N: {{V(0)=v"= —32/37?N, which exactly agrees
with the corresponding calculations for the lattice classical Heisenberg model
[36].

Exactly along the same lines one can consider “temperature”-perturbation of
the Goldstone phase, ie. deviations from the critical theory from below (when
f—0). The corresponding effective Lagrangian, describing the partial resummation
of the “temperature” insertion ut4, looks like (7.2), but with other counterterms
a(wt,f), b'(f*/ut), which are IR finite. Here f ceases to be the physical
magnetization (for ¢+0), unlike the case for f in (7.2).

The simple proof of the existence of }i_r}g) b'(f?/u, t), }iﬁxg) a'(u, t, f) proceeds in
complete analogy with the case of O(N) (¢*)Z model [40] and is omitted.
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Fig.9. Graph giving rise to contact terms in the chirality identity for
§ x0T (x)a(x ] a(x) a(x5))

In partlcular the physical magnetization f,, (1) for f=0(F ,  =<nd, F
onys) 18 well defined and obeys the RG equation from which the critical
exponent [ emerges:

{ﬂaﬂ—u L0t = +C (0)}fphys(#»f)=0»
D

Syt ) =consti 2, B=(+ L, O) (1 -, 0)  =4v(1+7).

From here on by means of standard technique [34, 50, 46, 38, 517 based on the
RG equations (L,=*0):

2 o ,
s~ o 5~ L0 L2 ) -0

LA (g0, u,t, f)=0

whose validity is proved rigorously in the present approach all scaling laws, e.g.,
the global Kadanoff’s scaling [35]:

F(Ln,LU)({Kp}’ {rq}; 0, 1, f)= K3~ In(1/2+84(0)) ~ Lo(2 +L5(0)
TEE({p}, {q}; 0, s trc™ (75, frem (HHanOn),

and universality relations (for D=3 and N components) among critical exponents
are established to hold.

For instance, for the specific heat Cy,_,=const(0?0> F)|, _, (ZF : free energy),
due to the arising of additive contact terms in the chirality identity (4.10b) (see
Fig.9) for L,=0, L, =3:

JBPx{AN PP ] g () olx ] ol(x) o(x5))

3

Z dsy (/) <A,0(x) a(x3) a(x5)) — C 5 (m/ ) d(x| — x3)d(x; ~ x5)
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one encounters an additional term linear in ¢ in the scaling law:

3C
C,_,=constt *— 3¢ =2-3
H=0 1+a v

where the constant C, is expressed by C,(0).
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Appendix
Diagram Technique of 1/N Expansion

Here we briefly remind the diagram technique of 1/N expansion [21,24]. The
(unrenormalized) generating functional for the Euclidean Green’s functions of the
chiral field is:

Z(J)=const | [ Tdn(x)5(n*(x)— u"/T)exp | d>x[ — 1/2(0,n)* +(J, n)]
=const [ [ [dn(x)da(x)exp [ d*x[ —1/2(0,n)* = 1/20(n* — ™/ T) +(J, n)]
=const | [ [ dny(x)do(x) exp{N A, [o,n;]+ A,[0,n,3J1}, (AD)

where in the last line the following notations are used (F-fixed vector on S¥™1):

n=n,+|/NnF, J=J +J,F, (n,F)=J,F)=0, |/Nny=(nF),
Je=WU.F), F?=1,

A,[o,ng]=—1/2TrIn(—= O+ 0)—1/2 [ d*x[(0,n,)* + o(np— w/T)],

AsLone: J1=1/2TrIn(= O+ 0)+ 12 [ dxdyJ () (= O +0) " (x, 1))
+ /N [ dxJ o(x)ng(x),
and the integration over n (x) has been taken.

1/N expansion of (A.1) is equivalent to the expansion around constant saddle
points of A4,[o,n;]:0Y=m? and n{Y =f. The equations for these are:

WT—f*=2(0;m*)=0, m*f=0,

d3p eipx dsp

@(X, n12): j‘(zn):{ m2+p2 = j(27‘c)3

P> J(p?; m?). (A2)

The first Eq. (A.2) is not well-defined. To give sense to it we replace 2(0;m?) by the
renormalized with “soft” mass and minimal subtractions 270 ;m?(s)) O<s<1
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m(s)y=sm~+(1—s)u:

a3k

T w9 = 55

(A=) (m*(s)+ k)™t =s(u—m)/An+ ayu/4r, (A.3)

where a, is an arbitrary constant accounting for the ambiguity of the subtraction.
The renormalized thus Eq. (A.2) have three types of solutions:

1. O(N)-symmetric (high-temperature) phase solution: T>T,, f=0,
m=4m(T, ' =T 1Y), T.=4n(a,+ 1)~ 1.

2. Spontaneously broken symmetry (Goldstone, low-temperature) phase so-
lution: T<T, m=0, f2=(T =T, ).

3. Critical theory: T=T,, m=f=0.

We note that a, corresponds to a finite renormalization of the critical
temperature T,. The phase transition occurs in each order of 1/N. In 1) and 2) the
“temperature” T is transmutated to the parameters m and f, respectively.

The graph elements are depicted in Fig. 1. The expressions for the n- and o-field
propagators (with “soft” mass) Z(p?; m?(s)) and %(p?; m(s), sf?) are:

D(p*; m*(s))=(m*(s)+p*) ", (A4)
G(p* s m*(s),s?) =[L(p*: m*(9) +sf > D(p*; m*(s))] ', (A.5)
2. 2 d3k 2 2 2 2
S5 M) =112 s ) + K m(5)+ (o~ )
_ - Ipl
= (8x|p)) 1arctgzm—(s).

(A.6)

The asymptotic behaviour of the propagators (A.4) and (A.5) is characterized by
the upper (deg, ) and lower deg, ;, degrees [43]:

deg, D =deg,, 9=-2, deg, G=1, deg,, 9=13, (AT)

where deg, ., refers to the Goldstone phase and the critical theory, respectively.
Figure 1b lists the (sub)graphs “forbidden” in the diagrams for the Green’s

functions without composite operator insertions Q(n,¢). However, they are

allowed when Q(n, ¢) containing either of n2, on® or o(n, Fs~/?) are present.
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