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Abstract. For any time-symmetric asymptotically flat initial slice with an
apparent horizon, the associated four-momentum measured at spatial infinity
is shown to be future-directed and time-like.

I. Introduction

Associated with any asymptotically flat space-time at spatial infinity there exists
the notion of the total four-momentum, which is called Arnowitt-Deser-Misner
(ADM) four-momentum [1-3]. If the asymptotically flat space-time is regular
initially and matter fields are physically reasonable, one expects the ADM four-
momentum to be future-directed and time-like. This idea goes under the name of
the positive mass conjecture (at spatial infinity) [4].

Recently, important progress has been made in this problem by Schoen and
Yau [5], who showed that the ADM four-momentum is future-directed with
respect to a regular maximal slice whose positive-definite metric satisfies a certain
asymptotic condition. However, their proof fails to resolve the full conjecture
because of two somewhat related reasons: First, as York [6] pointed out, their
asymptotic condition on the positive-definite metric of the slice is too restrictive
from the physical point of view. For the Schwarzschild solution, although their
condition is satisfied on a t — const surface, it is not satisfied on a boosted
asymptotically flat slice. Second, note that even though the existence of a regular
initial slice is assumed in the positive mass conjecture, singularities are allowed to
develop in the future of the slice. This could cause additional difficulties in
establishing the existence of a regular maximal slice. Even if one could overcome
these difficulties, the proof of the conjecture requires one to show that the four-
momentum is time-like as well as future-directed. Only when the four-momentum
has no spatial component with respect to a maximal slice, (e.g., when the slice is
time-symmetric) is the positivity of energy, i.e., positivity of the time component of
four-momentum, sufficient for the proof of the conjecture.

The full conjecture, thus, being still open, we would like to present another line
of proof for a time-symmetric slice. In contrrast to Schoen and Yau's, our proof
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does not require such restrictive asymptotic conditions on the metric. Its other
advantage is that energy can be shown to be positive even for time-symmetric slice
which is singular inside an apparent horizon [7].

II. Positive Mass Conjecture

In this section we review the positive mass conjecture. For a space-time which
represents an isolated system, one can define the total four-momentum of the
system. In particular, the ADM four-momentum [1-3] is defined for space-times
which are asymptotically flat at spatial infinity.

A space-time (M, gab) is said to be asymptotically flat at spatial infinity if there
exists a coordinate system (t,x,y9z), with ranges, — oo<ί<oo and r>r0, where
r = ]/x2 + y2 + z2 and r 0 is a large positive constant, so that with respect to this
coordinate system the metric and the stress-energy tensor, Tab, satisfy the
following properties: The metric can be written as gab = ηab + kab, where
ϊ)ηab= -datdbt + daxdb + daydby + dazdbz, ii) the components of (rfc), (r2dk) and
(r3ddk) have (finite) limits as r goes to infinity keeping the ratios (ί/r, x/r, y/r, z/r)
fixed such that (t/r)e(-1,1), iii) the limits, lim(rfc), \im(r2dk\ and Γim(r3δd/c),
depend smoothly on the direction defined by the ratios, and iv) the components of
(r4T) and (r5dT) have limits which depend smoothly on the direction.

Let τ be a smooth scalar field on an asymptotically flat space-time, with
everywhere time-like gradient, and suppose the gradient has a (direction-
dependent) limit as r goes to infinity. Let ξa be a unit vector field on an
asymptotically flat space-time so that the limit of ξa exists and does not depend on
the direction. Then, the ADM four-momentum, Pα, of the system observed with
respect to a slice, τ = const, is defined as a linear mapping from the space of (lim ξa)
to the reals in the following way [3],

P"(lwaξa)=liml-±-) J (rCb<«rbrdξaxc)dA, (1)

where Cabcd is the Weyl tensor of space-time, τα is the unit vector normal to the slice
τ = const, and ra is the unit vector field normal to the surface r = const in the slice,
τ = const.

The idea of the positive mass conjecture is that this definition of total four-
momentum is reasonable in the sense that Pa is future-directed and time-like if "the
matter fields on M is physically reasonable and M is not too badly singular". Some
conditions like these are clearly needed since the Schwarzschild solution with
negative total mass is asymptotically flat (at spatial infinity). The conventional way
to formulate the conjecture precisely is to impose suitable conditions on an
asymptotically flat slice [4]. The slice, defined by τ = const, is said to be an
asymptotically flat slice if the limit of daτ does not depend on the direction and
(ddτ) has a direction dependent limit [3]. Then, the conjecture can be stated as
follows:

Conjecture. // the stress-energy tensor satisfies the dominant energy condition [7] in
an asymptotically flat space-time at spatial infinity, and if M admits at least one
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asymptotically flat slice Σ which is topologically R3, then the ADM four-momentum
Pa is future-directed and time-like, and vanishes if and only if the space time is the
Minkowski space.

Since Pa is conserved, in the sense that the mapping from (lim£fl) to the reals
does not depend on the choice of the slice [2, 3], it is sufficient to show the validity
of the conjecture on the #3-slice Σ whose existence is assumed in the conjecture. In
this way, the problem is reduced to a study of the initial data of Einstein's field
equation.

On the asymptotically flat slice Σ, defined by τ = const, let E denote the total
energy defined by

E = P (lim τa) = Jim ( - - U j {rC"Mrbfdiaic)dA . (2)
o π y r = Const

τ = const

Since the 2-surfaces, defined by r = const on Γ, approach a metric 2-sphere as r
goes to infinity, E can be rewritten in the form (which we shall use in the following
sections)

2 V dA, (3)
r — const
τ = const

where R and p are, respectively, the intrinsic scalar curvature and the trace of the
extrinsic curvature pab of the integration surface considered as a submanifold of Σ,
and φ = (DarDbrqab)~112 where qab is the metric of Σ induced by gab. A similar
expression to that of (3) was first given by Geroch [8]. Note that the integral of
rip — 2/(rφ)~]2 does not contribute to E, since the integration surfaces approach a
metric 2-sphere so that Iimr3[p — 2/(rφ)]2 = 0. The equivalence of this expression
to (2) can be shown [9] using this freedom of adding terms which do not
contribute to E and the following identity

(T ^(ab + f ψ ) ( 4 )

where pab is the extrinsic curvature of Σ as a submanifold of space-time and pab is
the extrinsic curvature of the integration surface as a submanifold of Σ. All terms
on the right hand side of the above equation, except the first one, do not contribute
to E, (note pab = O(l/r2) for an asymptotically flat slice [1-3]).

Suppose an asymptotically flat space-time admits a time-symmetric asymptoti-
cally flat slice Σf. Then, with respect to this slice, Pα(lim£α) = 0 if (lim£α) is
orthogonal to (lim τα). Hence, the only thing we have to show in order to prove the
positive mass conjecture for such a space-time is that E is non-negative and
vanishes if and only if the data on Σ' are those for Minkowski space. In the rest of
the paper, we shall deal with the conjecture with the simplifying assumption that
such a time-symmetric slice Σ' exists in the future or past of the K3-slice Σ. We note
that such a slice Σ' could be singular, since the initial data on Σ could develop
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hypothesis [10] implies that any singularities on Σ' will be surrounded by
apparent horizons. If this hypothesis is right, then the positive mass conjecture and
the conservation of the ADM four-momentum predict that E is positive for such a
slice Σ' with an apparent horizon. Since whether this prediction is right seems to be
interesting, we shall deal with this question explicitly in next sections. The
modification of our argument for a time-symmetric (or maximal) slice with R3-
topology is not difficult.

III. E is Non-Negative for Time-Symmetric Data

Let I be a time-symmetric, (i.e. the extrinsic curvature pab of Σ vanishes),
asymptotically flat slice with an apparent horizon H, that is, with a minimal
2-surface with spherical topology [11]. Even though Σ could be singular inside H,
outside H we assume Σ is regular and the region outside H is diffeomorphic to R3

minus a ball.
Now, the conditions of the positive mass conjecture imply the following

properties of Σ: The constraint equations of Einstein's equation and the dominant
energy condition for the matter field imply that

R = 16πT«bτaτb + pabpab-p2^0, (5)

where R is the scalar curvature of the positive definite metric qab of Σ. (Note that
for a maximal slice we still have R ̂  0.) Next, the asymptotic flatness of the space-
time and of the slice Σ imply that the metric qab of Σ has the following asymptotic
properties: There exists a coordinate system (x, y, z) in which qab can be written as

qab = δab + Kb> w h e r e i) δab = 8axdbx + daydby + dazdbz> { i } t h e components of (rh),

(r2dh\ and (r3ddh) have limits as r goes to infinity keeping the ratios (x/r, y/r, z/r)
fixed, iii) the limits depend smoothly on the direction defined by the ratios, and iv)
(r^R) and the components of (r5dR) have limits which depend smoothly on the
direction.

We now show that for such an asymptotically flat slice Σ with an apparent
horizon H, E is positive.

Let / be a positive solution of Laplace equation

DaDJ=0 (6)

with the boundary conditions, f=f0 (where f0 is a positive constant) on H and
/ = 0 at infinity, where Da is the covariant derivative with respect to qab. Such a
solution exists [12]. Let the flux integral of Daf over a 2-surface, which encloses H,
be ( — 4πe). We define a positive scalar field r' by

r' = e/f. (7)

Due to Coulomb-type behavior of / in the asymptotic region, this r' can replace r
in the energy expression (3). From now on we shall drop the prime on r'.

Let W(c) denote the following integral

Ί, dA

(8)
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over the 2-surface (e/f) = r = c, where c is a constant. Let ίc denote the set of points
on which r = c. When ίc does not contain critical points of r, i.e., the points at
which (Dar) vanishes, tc is a sub-manifold of Σ and W(c) is well-defined. In
particular, W(c) is well-defined for large values of c, for / (hence r also) has no
critical points in the asymptotic region. Further, we note that lira W(c) = E. The

idea of our positive mass argument is, then, to establish the following theorem by
examining the rate of change of W(c) with respect to c.

Theorem. Let Σ be a time-symmetric, asymptotically flat slice with an apparent
horizon H. Let the region outside H be diffeomorphίc to R3 minus a ball and R^O
there. Then lim W(c) is positive.

In this section, we shall first establish this theorem for the special case where
Laplace solution / has no critical points. The generalization of the proof for /
with critical points will be carried out in the next section.

When r does not have any critical point, the computation of dW/dc is rather
straightforward. We first observe that the Lie-derivative of p along φfa is given by

&-Φ9P = ~ \ΦvahVah ~ i # 2 - DaDaφ + ±φR-±φR, (9)

where Da is the covariant derivative with respect to the intrinsic metric qab of the
integration surface. Since (1/r) satisfies Laplace's equation, we have

(10)

Now, using (9), (10) and Gauss-Bonnet theorem, we have

2 -^-\r\dA
dc rφ2 φ

3 / ~ 2 ) 2 2 (~ 2

2 \ rφ) \ rφ

dΛ. (11)

Since each term of the integrand is non-negative we have dW/dc^O. However, on
the apparent horizon where p vanishes, W>0. Therefore, we have E— FF(oo)>0.

In general, once we know that the integral of (2R — p2) over a certain 2-sphere
in Σ is non-negative, e.g., a very small sphere for an K3-slice Σ without a minimal
2-sphere, we can conclude that E = W(oo)^0.

Note that in the computation of (11) we did not use the fact that all /c's are
2-spheres for r without critical points. Hence, even for a regular £c which may be
topologically different from a 2-sphere we still have dW/dc^.0.

IV. Case where Harmonic Function / has Critical Points

In this section, we generalize the argument of the previous section to the case when
/ has critical points. This will be done in two steps. First, we shall deal with the
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simple case where the solution / is strictly nondegenerate. Then, we shall deal with
degenerate solutions. A function / is said to be strictly nondegenerate iΐDaDbf has
an inverse at the critical points and if f\p=¥f\q for every pair of critical points p and
q [13].

A. Case of Strictly Nondegenerate Solution f

Assume the solution / is strictly nondegenerate. As before, let r denote e//. Since /
is positive the critical points of / are the same as those of r. Then, as immediate
consequences of / being a solution of Laplace's equation, we have the following
properties of the level surfaces ίc [14]. If ic does not contain any critical point of r,
I\ is a 2-sphere with a finite number of handles which encloses H. Also, each ίc

encloses those with lower value of c.
Near H, each ίc is a 2-sphere. Let c1 be the smallest value at which fc has a

critical point, say q. In terms of the normal coordinate, x\ centered at q the
nondegenerate function r can be written as [13]

r = c 1 + s i j x
ι V + O(|x i |3)9 (12)

where stj is traceless symmetric matrix which has an inverse.
We now examine how W(c) changes across cι. That is to say, we compute the

difference between W(cιΛ-)= lim W(c) and W(cx—)= lim W(c). Recall that
c-> x i + c-*ci —

W(c) is defined for ίc with no critical points as

W{C) = Tβπ f r A d A + ϊ < ^ 7 ̂ DarDbr)dA - ^ f 2p(qabDarDbr)^2dA . (13)

The difference due to the first term of the right hand side can be obtained using
Eq. (12) and the Gauss-Bonnet theorem. The Eq. (12) implies that £c changes from
a 2-sphere to a torus across c1 ? hence we have

lim \rRdA= lim {rRdA-iπc^ (14)

The change due to the second term is zero, since the integrand

(2r-1qabDarDbr) = O(\xί\2)

near q. The integrand of the third term is odx'Γ1), hence the change due to this
term is also zero. Therefore, we have

W(cί+)=W(c1-)-C±. (15)

In general, W(c) decreases by cjl if the number of handles increases by one and
W(c) increases by (c/2) if the number of handles decreases by one, across critical
value c .

Let W(c) denote [P^(c) + c/2Jnumber of handles of Q\ Then, the above
observation can be stated as W(c) does not change across critical value cv

Furthermore, since we found in the previous section that dW/dc ^ 0 for /c's with no
critical points, we have also dW/dc^.0 for such /c's. Hence, W(c) is a never
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decreasing function of c. However, near the apparent horizon H and in the
asymptotic region, we have W= W. Therefore, from the monotonic property of
W(c) and the positivity of W on H we can conclude that W(oo)>0.

B. Case of Degenerate Solution f

Finally, we deal with the case of a degenerate solution /. In a neighborhood of H
and in the asymptotic region, / has no critical point. Let ψ be a smooth function
which is 1 in those regions and the interior of the support of (φ — 1) includes all
critical points of /. Let / denote a function outside H defined by

f=ψf+{l-ψ)v, (16)

where v is a nondegenerate function. From Morse theory [13,15] we have that for
any small positive ε there exists v close enough to / such that / is strictly
nondegenerate and

|/-/|<ε, \DaDaf\<ε. (17)

We use such / to define r as before, i.e., r = e/£, where (— 4πe) is the flux integral of
Daf. The idea of the proof is, then, to choose ε small enough so that the additional
negative contributions to E, due to the fact that (1/r) is no longer a Laplace
solution, can be made arbitrarily small.

If the level surface ύ\ of r does not contain any critical point, then ίc is a (or
several) connected piece(s) each of which is a 2-sphere possibly with handles. Let q
be a critical point with critical value ct. In terms of the normal coordinate, x\
centered at q, the strictly nondegenerate r can be written as

r = ci + sjkx
jxk + O(\xf), (18)

where s is a symmetric matrix which has an inverse. Note s does not need to be
traceless. Hence, the point q could be either a local minimum or maximum.
Further, even when s has an indefinite signature as before, the number of
connected pieces in ίc could change across ct.

We first classify critical values as follows: Let "J" denote the indefinite
character of s and "D" denote the positive or negative definite character of 5. Let o
affixed to / represent the property that the number of connected pieces does not
change as c increases across c . Let + ( —) affixed to / or D represent the increase
(decrease), by one, of the number of the connected pieces as c increases. We, then,
have five types of critical value, Io, J + , /_, D + , and D_.

Each of these has the following properties:
Type Io: Critical values appeared in the strictly nondegenerate solution / were

all of this type. The only topological change in έ\ is the number of handles in /c. If
the signature of s is ( + , - , - ) then W(ci + )=W(ci — ) + ci/2, andif ( + , +, - ) then

ci + )=W(ci-)-ci/2.
T y p e / + : T h e s i g n a t u r e of 5 is ( + , — , — ) . F o r c of this type, W(ci + ) = W{ci —)

φ.
Type /_ : The signature is ( + , + , — ) . For c of this type, W(ci + )=W(ci — )

Φ.
Type D+ : The signature is ( + , + , + ) , that is, q is a local minimum. We have

, + )=W(ct-) + φ.
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Type D_ : The signature is ( — , — , — ) , that is, q is a local maximum. We have

W(ci + )=W(ci-)~ci/Z
If c is small, £c is near H and is a 2-sphere. As c increases £c could become

several connected pieces each of which is a 2-sphere with handles. Suppose for
cn < c < (cn + δ), I\ becomes a 2-sphere again, for the first time. Such cn always exists
since ic becomes a 2-sphere in the asymptotic region. For simplicity, we assume
that there is no more critical points for c greater than cn. (If there were more critical
points, then repeating the following argument until c crosses the largest critical
value we can conclude the same.)

As for the strictly nondegenerate solution /, let W(c) denote \_W(c) + c/2
(number of handles of *fc)]. Note that the number of handles of £c changes only
across critical values of type Io. When it changes W(c) changes in such a way that
W(c) does not change. Next, accounting the change of W(c) across critical points of
type J + J J_, D + , and D_ and using the rate of change of W{c) given by (11) for ίjs
with no critical points we have

(19)

where c 's in the series are all of the type J + , I _ , D + or D_.
The integral of the above inequality can be made as small as one wishes by

choosing ε of Eq. (17) small enough, thereby, making |D2(l/r)| sufficiently small.
We shall shortly show that the possible negative contribution from Σ( ± c ) can be
made as small as one wishes by choosing ε small enough1. Once this has been done
we can conclude W(oo)>0.

Consider, now, the series of critical values of type / + ,/_, D + 9 and D_. We shall
pair these critical values such that the possible negative contribution from each
pair is very small. First, for brevity, a connected regular 2-surface in ίc which
encloses H will be said to be in the main sequence, S. Choosing ε small enough we
can assume that c increases as we move outward from a surface in S, and that each
ίc without a critical point has one and only one connected 2-surface in S.

Consider the surface Γ(Γ) oΐ^Ck+δ (£Ck-δ) in the main sequence S, where ck is a
critical value. Let d (dr) denote the shortest distance from a point of Γ (Γf) to Γ' (Γ).
If both of Max d and Max d' do not go to zero as δ goes to zero, we shall say S is

discontinuous at ck. Note that at a critical point c{ of type Io, S is not
discontinuous.

Suppose S is discontinuous at ck. Then, the critical value ck should be of type
/+ or /_. Suppose ck is of type / + . Then the level surface ^Ck + ε should have a
connected surface Γ which does not belong to S and whose interior has a local
maximum point q with critical value, say ct. These two critical values appear in
Σ(±Ci) as ( + ck) and ( — ct). We evaluate (ck — ct) as follows: Let ρ denote (e/f).
Then, since / is a positive solution of Laplace equation, the maximum principle

1 It looks plausible that for any small ε one can find a strictly nondegenerate / such that Eq. (17) is
satisfied and / has critical points of type Io only. If this can be established we will not need this
additional piece of argument
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[12] applies to /, hence to ρ also. Recall that r = e/£ Using these facts and
\f—£\<ε, we obtain

(ck + ε)-ct= Uck + ε) - maxρj + maxρ-ρ\q + [ρ|β-cj

(20)

where M is a positive constant determined by the maximum value of (e/f) in the
support of (ψ — 1). Hence, choosing ε small enough, the possible negative
contribution to E from (ck — ct) can be made as small as one wishes.

Suppose ck is of type /_. Then, ^Ck_ε has a connected surface which does not
belong to S and whose interior has a local minimum point q with value, say ct. By
similar argument as for the case of / + , we conclude the possible negative
contribution from ( — ck + ct) is very small.

Next, let Sq denote the sequence of regular connected 2-surfaces of €c each of
which is not in S and encloses the local maximum (or minimum) point q, whose
critical value we just paired. This Sq could be discontinuous at a critical value, say
cs. This cs is again of type I+ or /_ . If cs is of type I+, there is a regular connected
surface in ^Cs + ε which does not belong to either S or Sq and whose interior has a
local maximum point q' with value, say cr. These critical values appear in the series
Σ( ± ct) as (+ cs) and (— cr\ and the possible negative contribution from (cs — cr) is
again very small. In case cs is of type /_, there is an associated minimum point q'
with value, say cr, and the possible negative contribution from ( — cs + cr) is also
very small.

We ask if any of S, Sq, and Sq, is discontinuous at a critical value other than
those already paired. If so, we repeat the above described pairing with this new
critical value. When all the sequences so far considered are not discontinuous at a
new critical value, the sequences leave no open region outside H. Hence, all critical
points of type I + , /_, D + J and D_ are paired. The possible negative contribution
from each pair can be made as small as one wishes by choosing ε small enough,
hence we conclude E is positive.
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