
Communications in
Commun. Math. Phys. 69, 209-236 (1979) Mathematical

Physics
© by Springer-Verlag 1979

Boundary Conditions and Mode Jumping
in the Buckling of a Rectangular Plate

David Schaeffer1* and Martin Golubitsky2**
Department of Mathematics, Ή u k e University, Durham, NC 27706, and 2 Arizona State University,

Tempe, AZ 85281 USA

Abstract. We show that mode jumping in the buckling of a rectangular plate
may be explained by a secondary bifurcation - as suggested by Bauer et al. [1]
- when "clamped" boundary conditions on the vertical displacement function
are assumed. In our analysis we use the singularity theory of mappings in the
presence of a symmetry group to analyse the bifurcation equation obtained by
the Lyapunov-Schmidt reduction applied to the Von Karman equations.
Noteworthy is the fact that this explanation fails when the assumed boundary
conditions are "simply supported".

Mode jumping in the presence of "clamped" boundary conditions was
observed experimentally by Stein [9] "simply supported" boundary con-
ditions are frequently studied but are difficult - if not impossible - to realize
physically. Thus, it is important to observe that the qualitative post-buckling
behavior depends on which idealization for the boundary conditions one
chooses.

Mode jumping [9] is perhaps the most noteworthy feature of experimental studies
of the post-buckling behavior of plates. As is well known, a rectangular plate can
support a number of different buckled configurations these may be distinguished
by their wave number, by which we mean the number of zeroes of the (normal)
deflection function along a line parallel to the leading direction. Experiments [9]
have shown that the wave number need not remain constant as the load is
gradually increased past the buckling load rather there are special values of the
load parameter at which a sudden and violent change in buckling pattern occurs.
The new mode typically has a wave number greater than the old mode by unity.

A spring model proposed by Stein [8] offers an attractive explanation of this
phenomenon. As observed by Bauer et al. [1] secondary bifurcation often results
from splitting a double eigenvalue by perturbation; in the spring model mode
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jumping could occur [1] when the primary solution branch lost stability through
such a secondary bifurcation. Whether or not mode jumping actually occurs
depends on the value of certain parameters. In [4] we analyzed the most general
form of reduced bifurcation equations for a rectangular plate at a double
eigenvalue, consistent with the symmetries of the von Karman equations (or any
other plate theory). It follows from this analysis that the spring model already
exhibits (essentially) all possible behavior of the plate, and moreover that whether
the plate exhibits mode jumping is determined by two dimensionless parameters
which - using the terminology of singularity theory - we call modal parameters.
Calculations by Matkowsky and Putnik [6], Chow et al. [2], and Magnus and
Poston [5] cast doubt on this explanation of mode jumping. These authors
analyzed a simply supported plate governed by the von Karman equations and (in
our language) found that the modal parameter values were such that mode
jumping would not occur. However simply supported boundary conditions are
hard to achieve experimentally, and in fact Stein [9] suggests that clamped
boundary conditions would be the most accurate approximation for the loaded
ends. Therefore, in this paper we analyze a von Karman plate subject to these
mixed boundary conditions - clamped at the loaded edges, simply supported at
the unloaded edges - and we find that here mode jumping does occur. (For
comparison we also consider the case of simply supported boundary conditions on
all four sides.) Of course, given the many doubts surrounding the von Karman
equation, the most important result of this paper is perhaps that even the
qualitative behavior of a buckled plate may be changed by the choice of boundary
conditions.

The reader should be warned that the calculations outlined in Sect. 8 are long
and tedious. However, the fact that these computations are made without the use
of a computer is a simplification when compared to other work in this area.
Moreover, our choice of boundary conditions made this simplification possible
and this choice was prompted by physical considerations alone.

1. The Experiment of Stein and Its Mathematical Idealization
Let us begin by a description of Stein's [9] apparatus. In Fig. 1 we have indicated
part of a large plate divided into 11 panels, each 4.71" by 25.36". The division is
performed by knife blades located on either side of the plate, as shown in the end
view. The knife blades prevent any normal displacement while (in principle) not
inhibiting motion in the plane. Actually one is interested in the buckling of just a
single panel, but having many, more or less identical, adjacent panels provides an
experimentally feasible way of achieving simply supported boundary conditions
along the unloaded edges. All measurements were performed on the center panel,
which for theoretical purposes is treated as being embedded in an infinite periodic
array of such panels.

In the experiment, when the load was first increased beyond the buckling load,
the initial configuration of the plate contained 5 buckles. This pattern persisted as
the load was gradually increased until a load approximately 1.7 times the
buckling load was passed, when the plate jumped suddenly and violently to a new
configuration with 6 buckles. Further increases in the load led to jumps to states
with 7 and 8 buckles, and eventually to the complete collapse of the plate. These
latter jumps occurred after the plate had begun to deform plastically and are not
discussed here - we consider only the jump from 5 buckles to 6.



Mode Jumping in the Buckling of a Rectangular Plate

LOAD

211

SIDE
VIEW

—4.71 -—

25.36

END
VIEW

V V

LOAD

V V V

Δ Δ Δ Δ
Fig. 1

Fig. 2

For computational convenience in our theoretical analysis we choose a length
scale so that the plate has width π and length Iπ. Thus the undeformed plate is
parameterized by

The plate is subjected to a load λ applied to the ends through a rigid yoke as
indicated in Fig. 2. The von Karman equations for w, the z3-deflection of the plate,
and φ, the Airy stress function, are as follows

(1.1)
A 2w = [ 0 , w] — λwZίZί

A2φ= — ^[_w,w^\.

Here A2 is the biharmonic operator in the plane and

[M, υ\ = uziZivZ2Z2 - 2uZίZ2υzιZ2 + w Z 2 z Λ i 2 i (1.2)

the subscripts indicating differentiation. We analyze two sets of boundary
conditions for w, namely

w = wN = 0 on ends (clamped) Ί

w = Aw = 0 on sides (simply supported)/

w = Aw = 0 (simply supported all around). (1.3ii)

(The subscript N indicates differentiation in the normal direction.) We are most
interested in (1.3i) as it seems to be the best approximation for Stein's experiment
(We quote: "The plate was subject... to 'flat end' loading which results in almost
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complete clamping of the loaded edges."), but we also consider (1.3ii) for the sake
of comparison. In both cases above we take

φN = (Aφ)N = 0 (1.4)

as the boundary condition for φ this differs somewhat from the usual choice, and
we explain our reasons in Sect. 2.

The paper is structured as follows. After discussing the boundary conditions
for the von Karman equations in the next section, we give a variational
formulation in Sect. 3. The eigenvalues and eigenfunctions for the linearized von
Karman equations are computed in Sect. 4 along with a description of the relevant
symmetries for this problem. In Sect. 5, we use results from Sects. 3 and 4 to
compute the Lyapunov-Schmidt reduction to lowest order. The results from
singularity theory [4] which form the basis for the rigorous analysis given here are
sketched in Sect. 6. The main result is that all small perturbations of the von
Karman equations near a double eigenvalue consistent with the symmetries of
Sect. 4 may be described - in an appropriate qualitative sense - by the addition of
just one more parameter. As a consequence the whole perturbed bifurcation
problem can be given an explicit normal form from which computations about
secondary bifurcation may be made. The diagrams showing how mode jumping
may be accomplished are also given in this section. The modal parameters for the
two choices of boundary conditions are computed in Sects. 7 and 8. Finally, in
Sect. 9 we show that the aspect ratio / may be taken to be the one non-modal
perturbation parameter.

2. Boundary Conditions in the von Karman Equations

We have discussed above the two choices (1.3) for boundary conditions for w along
the loaded ends. The simply supported boundary conditions for w along the sides
were chosen for the following reason. The end view of a typical cross section of the
plate after buckling is indicated in Fig. 3. Assuming the center panel is embedded
in an infinite periodic array, the displacement w is an odd function under reflection
across either side of the panel, so

w = wNN = 0 on sides.

On adding a second order tangential derivative to wNN = 0 we obtain Aw = 0, as
taken in (1.3).

Fig. 3

The boundary conditions for the stress function are more subtle, perhaps
because φ is a derived quantity in the theory. In the remainder of this section we
indicate explicitly the hypotheses under which (1.4) follows from the equations of
continuum mechanics. The reader prepared to accept (1.4) may omit this section
without loss of continuity. Most interestingly we found that the boundary
conditions (1.4), which we consider most realistic for the experiment, actually
simplified the calculations as compared to the more customary choice φ = Δφ = 0.
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Consider a three dimensional solid occupying a region U in its undeformed
position. For the rectangular plate

A deformation of the solid is a map Φ:Ϊ7—>IR3. The principle unknowns in
continuum mechanics are the three components of the displacement u = (uvu2,u3)
defined by

, (2.1)

where z = (z1,z2,z3). The strain tensor is defined by

u: 3 dzj duλ

t+M4 (22)

The stress tensor σtj is determined from the strain by some sort of constitutive
relation. For the problem at hand the strains are small and Hooke's law is
considered sufficiently accurate. Thus, stress and strain are related linearly by

where E is Young's modulus, v is Poisson's ratio, and <5 7 is the Kronecker notation.
Of course (2.3) may be inverted to give σ as a function of ε. Finally the equilibrium
equations are

where the tilde indicates variables expressed in the deformed coordinates resulting
from the transformation Φ. Equation (2.4) represents a system of three equations
for the three components of u.

The derivation of the von Karman equations from (2.4) is based on two
approximations which, moreover, are intertwined in a subtle way. First, it is
assumed that the plate is very thin (i.e., /z<^l), and second, it is assumed that
deflections are small with the z3-deflection (u3) predominating. This derivation,
rather heuristic in character, is carried out in Chap. V of [10], for example, and
yields the PDE

Zl2W = [(/>, w ]

( 2 5 )

where w = u3. We mention here that the Airy stress function φ(zί,z2) is defined by
the relations

0 = < 7 1 1 , ώ =—GΛ o, ώ = ( j τ τ , (2.6)
Z2Z2 1 1 ' τz\z2 1 ^ ' rzίZί 11^ \ /

where the bars indicate averages over the thickness of the plate. For example,

1 h
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Since φ is defined by second order differential equations we may without loss of
generality assume

φZί(0,0) = φZ2{0,0) = 0 = lφ. (2.7)
Ω

The relations (2.6) and (2.7) provide the basis for the choice of boundary
conditions for φ. Below we shall omit the bars in (2.6) - indeed to lowest order in
the thickness parameter h all quantities are independent of z3 and thus equal their
averages.

The approximations indicated above mean that a number of terms in (2.2) are
negligibly small indeed to this level of approximation we have

ίdu1 du2 du3 du3

2 U 2 8Zl

+ dzxdz2

1 ίdu1
812 2 U

We now analyze the boundary conditions for φ, first along the loaded end of
the plate given by z1 =0. Those boundary conditions which seem the most relevant
here are

- ^ - = 0 and σ12=0 along z 1 = 0 . (2.9)
dz2

For imagine the experimental configuration of Fig. 4 in which the plate is
compressed by some supporting structure. We suppose that the bar in the
supporting frame is rigid, so that whatever compression of the plate occurs will be
uniform along the edge. This condition is expressed by the equation

=0 on z 1 =

The other boundary condition in (2.9) expresses the condition that there is no
friction between the plate and the compressing bar, the plate is free to slide along

the length of the bar. In the following lemma -— and -r— denote normal and
cN oT

tangential derivatives.

Lemma 2.10. The boundary conditions (2.9) imply

— I — = 0 and — ( A φ ) = 0 along z 1 = 0 . (2.11)

Proof. Observe that u3 = 0 along z1 = 0 as u3 = w in the von Karman equations and

w vanishes along all edges for both our choices of boundary conditions. Since - —

is a tangential derivative, —^- = 0 on zί=0.
ozΊ
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Now by (2.3) ε 1 2 and σ 1 2 are proportional, and by (2.9) both vanish on zx = 0.
Thus we may use (2.8) to modify the first equation of (2.9) to read (note the
interchange of indices)

^ • = 0 and σ 1 2 = 0 on Zί=0. (2.12)
ozί

On taking the tangential derivative - — we find
δzδz2

= 0 and σ12 = 0 on Zί=0. (2.13)
oz1oz2

Now (2.8) implies that

2u? 2 1 4 )
oz1 dzίoz2 cz2 dz1δz2

As —— = 0 o n z 1 = 0 w e replace (2.13) with
όz2

Gi2 = 0=

dhλ o n Z i = o . (2.15)

In view of Hooke's law (2.3) we are led to the boundary conditions

δ
σί2 = 0=—(σ22-vσ11) on zλ=0. (2.16)

0 2 ί

Note that σ3i is assumed to be zero in the approximations made to derive the von
Karman equations.

Using (2.6) we may write (2.16) in terms of φ obtaining:

ΦZίZ2 = Q = ΦzlzlZί-vφZίZ2Z2 on z 1 = θ . (2.17)

The first equations of (2.11) and (2.17) coincide. Moreover φZίZ2Z2 = 0 on z 1 = 0

since - — is a tangential derivative, and it follows that
cz2

JL(Aφ) = 0 on Zl=0. (2.18)
czx

This proves Lemma 2.10.
We claim that (2.11) is also satisfied along the sides of δΩ. Recall from Sect. 1

that the boundary conditions along the sides are manufactured by assuming
periodic behavior in the z2 variable. This periodicity for the stresses leads to

on the sides as σu is even with respect to reflection across the lateral boundaries
while σ 1 2 is odd. By (2.6)
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on the sides. On omitting the redundant middle equation we obtain boundary
conditions equivalent to (2.11).

Lemma 2.19. Let φ(z1,z2) = φ(z1,z2) + \λz\. Then φ and w = u3 satisfy:

^ w = - A w *^ ] . n Ω

Δφ=-\\_w^

with boundary conditions

! £ = 0 and -£r=Aφ = 0 on dΩ (2.21)
ON ON

Note. This is the form for the von Karman equations which was described in
Sect. 1.

Proof. It is trivial to see that φ satisfies (2.20) as φ satisfies (2.5). By (2.11)

— (Aφ) = 0 on dΩ (2.22)
oN

and φ satisfies the same boundary condition as it differs from φ by a quadratic
polynomial which is annihilated by the third order operator in (2.22). It follows

from (2.11) that - — is constant on each of the four sides of dΩ, although the
cN

constants could be different on the different sides. With the normalization (2.7) we
have

γ-=Q on zx=0 and z2 = 0 (2.23)

while

— = C l on z 1 = / π and ~^=c2 on z 2 = π . (2.24)

It remains to determine cx and c2. Observe that

(2.25)

φZ2(0,π)-φZ2(0,0) = jφZ2Z2(0,z2)dz2.
o

Applying (2.7) and (2.6) we have

lπ

φZίilπ,0)=lσ22{z1,O)dzί=0

(2.26)
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the latter equalities coming from the total compressive force exerted on the plate.
Note that the total force - described by the integrals - is given even though its
distribution is not. Thus c^=0 and c2= — λ. Equation (2.24) leads to (2.21) on
recalling the definition of φ. The proof is complete.

For the remainder of this section we describe - though not in detail - other
possible choices for boundary conditions for the von Karman equations.

If, in Fig. 4., the plate were welded to the compressing bar, the appropriate
boundary conditions would be:

^ = 0, u2 = 0 on the ends. (2.28)0, u2

dz2

This is a physically consistent boundary condition which, however, does not seem
to be expressible in terms of the stress function φ, at least not without the use of
pseudodifferential operators. It also seems less appropriate for Stein's experiment.

FORCE PLATE ~=f PLATE

BAR'

Fig. 4 Fig. 5

A different experimental arrangement is depicted in Fig. 5. Here the compres-
sive force is administered by a large number of smaller forces applied locally, each
at the control of the experimenter. (By fixing the force one looses control over the
displacement.) Idealizing one imagines that the force density is prescribed all along
the boundary.

In view of the relation

f>Σσ;,», (2.29)
j

this boundary condition leads to the prescription of σxι and σ 1 2 and thus by (2.6)
to the prescription of φZίZ2 and φZ2Z2> On integrating the tangential derivatives, one
obtains φ and φN on the boundary. In other words this configuration leads to
Dirichlet boundary conditions. Although conceptually possible, experimental
realization of these boundary conditions might prove difficult.

A common boundary condition [2,5,6] used for φ is

φ = Aφ = 0 on dΩ. (2.30)

This boundary condition implies that

ΦZίZί = ΦZ2Z2 = Q o n dΩ (2.31)

which is equivalent - by (2.6) - to

σ : i = 0 and σ22=0 on dΩ. (2.32)
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As noted above in (2.29) σίί is related to the z1 component of the external forces
and may therefore be prescribed. However, σ 2 2 is related to the stress transmitted
within the plate parallel to the edge. It is a non-trivial question in control theory to
decide whether one can achieve an arbitrary profile for σ 2 2 by operations
performed at the boundary of the plate. Certainly prescription of σ 2 2 is an
unphysical boundary condition.

3. A Variational Formulation

In this section we show that solutions of the von Karman equations with
boundary conditions (1.3), (1.4) may be characterized as stationary points of the
potential

V(w)=^\\Aw\\2-^\\wJ2+^\\AN

1lw,w^\\2, (3.1)

where || || indicates the L2 norm and A'1 is the generalized inverse of the
Laplacian with Neumann boundary conditions. The domain of V consists of
functions in ̂ 2{Ω) (i.e., two derivatives in the L2 sense) which satisfy either

w = wN = 0 on ends, w = Q on sides, (3.2i)

w = 0 all around (3.2ii)

according as (1.3i) or (1.3ii) is desired.
One can easily eliminate φ from the von Karman equations with boundary

conditions (1.4), regarding w as given one determines φ by solving

A2φ= — i[w, w] on Ω
(3.3)

= 0 on dΩ.

Indeed (3.3) is a boundary problem associated with A2,, the square of the Laplace
operator on L2(Ω) with Neumann boundary conditions, so we may write
φ= — ̂ Aχ2[w, w]. [AN has a one dimensional kernel spanned by the constants.
The generalized inverse A'1 is defined by the requirements

A'11=0 and ^A~1fdx = 0 for /eL2(ί2).]

The equation for w may therefore be written

z l 2 w = - λ w z i z i - i [ ^ 2 [ w , w ] , w ] . (3.4)

Suppose w is a stationary point of V with either (3.2i) or (3.2ii) defining the
domain. Regardless of boundary conditions we certainly have dVw ζ = 0 for all test
functions ζe@(Ω). A simple calculation shows that

dVw.ζ = (Aw,Aζ)-λ(wZί,ζJ + ±(A-1[w,wlAN

1lwΛ-]), (3.5)

where (w, v) = \uv dz denotes the L2 inner product. [Note that the third term in
Ω

(3.1) is homogeneous of degree 4 and differentiation brings out a factor 4.] We now
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integrate by parts in the sense of distributions in (3.5) to obtain

dVw ζ = (A2w + λwZίZι+±[A-2tw,wlwl0. (3.6)

In the case of the first two terms the integration by parts is justified because
ζe3)(Ω\ while for the third it may be justified by shifting the bounded, self-adjoint
operator Δ^1 to the other factor and then appealing to the following lemma with
/ = j~ 2 [w,w] . Since (3.6) must vanish for all ζe@(Ω), we conclude that (3.4) is
satisfied in the weak sense. However (3.4) is an elliptic equation, and it follows that
the equation is also satisfied in the classical sense.

Lemma 3.7. ///, w, ζe34?2(Ω) and ifw, ζ vanish on dΩ, then

]fdz. (3.8)

Remark 3.9. It may be seen as follows that the integrals in (3.8) are meaningful. The
bracket operation involves second derivatives of its arguments, which for Jή?2

functions contributes products of L2 functions. On the other hand, by Sobolev's
lemma in two dimension, an jf2 functions is continuous and therefore bounded.
Thus the triple products in (3.8) are integrable.

Proof. First suppose that f,w,ζ are smooth. Ignoring the possible boundary terms
in an integration by parts we find that

the latter equality being the result of cancellation. It remains to show that the
boundary terms vanish. In the first integration by parts the boundary term is

Ω

where the two component vector Q is given by

Q = K 2 Z 2 C Z 1 - w z l Z 2 C Z 2 , w z i z i C Z 2 - w z i Z 2 C z l ) .

On a portion of the boundary where iV = ( 0 5 + l ) both terms in the second
component of Q vanish, since w z i z i and ζzi are tangential derivatives and both w
and ζ vanish along the boundary. Similarly for the case N = (± 1,0). Thus the first
integration by parts contributes no boundary term. In the second integration by
parts, the boundary integral contains a factor of ζ and therefore vanishes.

We have verified (3.8) when /, w, ζ are C00. In the general case consider
sequences fn, ww, ζn of smooth functions which converge to the appropriate
functions in the J*f2 norm. We claim that the integrals in (3.8) are continuous with
respect to this convergence; indeed this follows from the observations of
Remark 3.9. Thus (3.8) extends to the limit functions, and the proof is complete.

We now consider the role of boundary conditions. In case (3.2H) the domain of
Fis

):w = 0 on δΩ}. (3.10)
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Suppose weX is a stationary point of V. Since weX the first boundary condition in
(1.3ii) is satisfied automatically. To verify the second we again integrate by parts in
the relation dVw - ζ = 0 for ζeX. Keeping track of the boundary contribution of the
first term in (3.5) we find

s ( 3 n )

Since Eq. (3.4) is satisfied, the inner product in (3.11) vanishes. Likewise the second
term in the boundary integral contributes nothing since ζ, which vanishes on dΩ, is
a factor. Thus we have shown that

\ Aw-^dS = 0 for all ζeX,
SΩ 8N

from which it follows that Δw vanishes on dΩ, as desired.
The consideration of the case (3.2i) is no more difficult. Along the ends of dΩ

the boundary conditions w = wN = 0 are satisfied automatically by the choice of the
domain of V, while along the sides the boundary conditions may be verified as
above.

4. The Linearized Problem

The principal result of this section concerns the linearized version of (3.6) with
clamped boundary conditions, namely

zιZί=0 in Ω

w = wN = 0 on ends (4.1)

w = Aw = 0 on sides.

We show that the smallest eigenvalue of (4.1) is double if and only if / = |//c(/c + 2)
for some positive integer k and that, in this case, the two eigenfunctions are given
by (4.14). For completeness we also derive the known result that with simply
supported boundary conditions the smallest eigenvalue is double when
/= |/fe(fe+l), the eigenfunctions being given by (4.20).

Letting w = f(z1)g(z2) one obtains

= 0 (4.2)
/ / 9 9

with boundary conditions

/(0) = f{lπ) =/'(0) =/'(Zπ) = 0, (4.3a)

0(0) = giμ) = 0"(O) = g'\π) = 0. (4.3b)

We may satisfy (4.3b) by choosing

g(z2) = sin (mz2) (4.4)
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for some positive integer m. Moreover the choice m = 1 leads to the smallest value
of λ in the bifurcation calculation below, so we only consider this case. Thus

/ [ 4 ] + (A-2)/" + / = 0. (4.5)

Observe that when λ ̂ 4 the solutions to (4.5) have a non-oscillatory character
and it is impossible to satisfy the boundary conditions (4.3). For λ > 4 the solutions
have the form

A cos (azί) + B sin (az1) + C cos (bzj + D sin (bzj, (4.6)

where

M= \ -r-λ. (4.7)

The boundary conditions /(0) = //(0) = 0 imply that / is a linear combination of

φ = b sin (αzx) — a sin (bz^ and ψ = cos (az^) — cos (bz j . (4.8)

In general it is somewhat tricky to find conditions for when Aφ + Bψ is an
eigenfunction. However, we are interested in the case when the first eigenvalue is
double so we assume that both φ and ψ are eigenfunctions. In that case

φ(lπ) = ψ(lπ) = ψ'(lπ) = O (4.9)

must be satisfied. Note that φ' = abxp so that φ'(lπ) = 0 is automatic.
Equation (4.9) imply

a=-v b=-lψLt (4.10)

where k and n are positive integers. From (4.7) we obtain

a2 + b2 = λ-2, b2-a2= γλ2-4λ. (4.11)

Elimination of λ yields

ab = l. (4.12)

Thus

l=]/k(k + 2n). (4.13)

Since we are interested only in the first bifurcation we assume that n = 1 in
(4.13). The eigenfunctions for this problem are

- r - s i n - - -s in — M sin(z2)
V ' X " (4.14)

/ IkzΛ /(fc + 2)zΛ\ . . ,
w 2 = cos —— —cos — L sin(z2).

Next we compute the eigenfunctions for the von Karman equations with
simply supported boundary conditions. We wish to find solutions to (4.2) where
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both/and g satisfy (4.3b). Again only solutions /(z1) = sin(αz1) are consistent with
these boundary conditions. Similarly for g. Thus the eigenfunctions have the form

sin - z j sin(mz2) (4.15)

with the associated eigenvalue being

(4.16)

As λ is increasing in m the first eigenvalue for a given I is when m—\ so (4.16)
implies

(4.17)

Note that λk has a unique minimum at k = / when k is viewed as a continuous
parameter. Thus the only way for the first eigenvalue to be a double eigenvalue is
for

with fc<Z<fc + l. This happens precisely when

Z=|/fc(fc+l). (4.19)

Of course the two eigenfunctions are

Ik \
w 1=sin(yz 1 jsin(z 2)

V (4.20)
. (k+1 \ . , .

w2 = sin I —γ~ zγ sm(z2).

We end this section with a discussion of symmetry for the eigenfunctions given
in (4.14) and (4.20). There are three obvious symmetries present in the von Karman
equations for a rectangular plate, one of which acts trivially. First, buckling up and
buckling down have the same potential energy [see (3.1)]. So this induces a
symmetry on the eigenspaces which is given by

{wvw2)-+(-wv -vv2). (4.21)

Second the equations are invariant under the mapping

z^lπ-z,. (4.22)

This also induces an action on the {φ,ψ) eigenspace W. For both (4.14) and (4.20)
the action is given by

(φ,ψ)-*(-lf^(φ,-ψ). (4.23)

The equations are also invariant under the reflection z2->π —z2, but all eigenfunc-
tions in question are invariant under this transformation and no new information
is obtained.
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Thus we may assume, by a reordering of w1 and w2 when k is even, that there
is a Z 2 φ Z 2 group action on W where the first Z 2 component acts by (4.21) and the
second by

(wvw2)->(wv-w2). (4.24)

5. The Lyapunov-Schmidt Reduction

Proposition 5.15 constitutes the main result of the present section. This pro-
position gives the bifurcation equations to lowest order after the Lyapunov-
Schmidt reduction has been performed. Note that the constants α, fo, c, α, and β in
(5.17) have been defined previously in (5.13).

In Sect. 3 we showed that the von Karman equations have a variational
formulation

dV=0, (5.1)

where V: X x IR->IR and X is the Banach Space (3.10). We may write (5.1) as

Φ(w,λ) = 0 (5.2)

where Φ:XxIR-+X* and

Jζ). (5.3)

The calculations of Sect. 4 show that for certain specified lengths / of the plate the
smallest eigenvalue λ0 is a double one thus in such cases

dimkerdΦ( ,,ίo) = 2. (5.4)

It is also the case that the dimension of coker dΦ(0, λ0) =X*/range dΦ( , λ0) is two.
The Lyapunov-Schmidt procedure is a way, using the Implicit Function Theorem,
of obtaining a mapping

G:R 2xIR-^IR 2 (5.5)

such that G(x, λ) = 0 parameterizes the solutions to (5.2). Here the domain IR2 is the
kernel and the range IR2 is the cokernel of dΦ( , λ0).

The procedure is simple let Q be a complementary space to K = KerdΦ and let
E :X* —orange dΦ be a projection with kernel K. The Implicit Function Theorem
guarantees the existence of a mapping

β (5.6)

such that

E'Φ(k+W(k,λ),λ)ΞΞθ, (5.7)

where keK. Let

G(/c, λ) = (id - E) Φ(k + W(k, λ\ λ). (5.8)

This G is the mapping described in (5.5). As P^is only defined implicitly the explicit
computation of G is impossible. However we shall show that to the lowest non-
vanishing order, W drops out of this computation.
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Let (x,y) be the linear coordinates on K given by wx and w2 [thus the
coordinates of xwί+yw2 are (x, y) where wx and w2 are the eigenfunctions
obtained in Sect. 4]. In these coordinates (5.8) may be rewritten

G(x, y9 λ) = ((Φ(χ W l + yw2 + W\ wx)9 (Φ(χ W l + jnv2 + PF), w2)). (5.9)

If we define

V(x, y, λ) = 7(xWi + yw2 + W(x, y, λ\ λ) (5.10)

then

oy)

We claim first that the Taylor expansion of V has the form

..., (5.11)

where the dots indicate higher order terms in x, y, λ. Note that here λ is assumed to
vary with λ0 as origin. We further claim that through terms of the order retained
(5.11) V coincides with

V(x9y9λ)=V(xw1+yw29λ)9 (5.12)

from which W has been omitted entirely. This latter claim follows from the fact
that at x = y = 0, λ = λ0

In conjunction with (3.1), (5.12) leads to the following explicit formulas for the
coefficients in (5.11):

(5.13)

β=\\*iJ2

where A^1 is the generalized inverse described in Sect. 3.
We prove the first claim as follows. Observe that the reduced potential function

is invariant under the action of Z2@Z2 on K described at the end of Sect. 4; that
is,

V{x9y) = V{-x9y) = V(x9-y). (5.14)

This fact is guaranteed as the full potential function Falso satisfies this invariance
property [7]. As a result the only possible non-zero terms in the Taylor expansion
of Fare ones which are even in x and y separately. Thus the form of (5.12) is the
most general possible at a double eigenvalue considering the action of this
particular symmetry group. Of course this observation could have been obtained
by direct calculation!
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Proposition 5.15. The reduced form of the von Kάrmάn equations may be given the
form

μ =

v =

2c

b

2a

a

a

T

., (5.16)

where

(5.17)

Remark 5.18. For reasons which will be discussed in the next section, μ and v are
called modal parameters. They determine the qualitative nature of the actual
bifurcation which occurs.

Proof The preceding discussion shows that

G(x, y, λ) = (Aax3 + 2bxy2 - 2aλx, 2bx2y + 4cy3 - 2βλy) + ... . (5.19)

Note that appropriate scaling of (5.19) specifically let

x=\ r*Lχ and y=\/^-y (5.20)
y 2a ]/ 2c

and divide the first coordinate of the result by α / — and the second coordinate by
|/ a

β\— leads to (5.16). Note that α, c, α, and β are all positive so the square roots
]/ c

are real. Of course multiplying each coordinate by a constant and scaling does not
change the qualitative nature of the bifurcation diagram G = 0. This will be
formalized in the next section. We will also discuss why the higher order terms in G
may be neglected.

6. Results from Singularity Theory

What we describe here are results developed in [3,4] for bifurcation problems with
symmetry which are applicable to the problem at hand. By a bifurcation problem
we mean an equation

G{x9λ) = 0 (6.1)

where G: IR" x R-»1RW is the germ of a mapping defined near the origin. Let Γ be a
subgroup of the orthogonal group O(n). A bifurcation problem with symmetry group
Γ is a bifurcation problem G satisfying

) = yG(x9λ) (6.2)
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The preceding analysis of the von Karman equations yields an example,
namely,

G(x, y, λ) = (x3 + μxy2 - /be, vx2y + y3- λy), (6.3)

where the symmetry group Γ is Z2®Z2.
Two such bifurcation problems G and H are called contact equivalent if

G(x, λ) = T(x9 λ) H{X(x, λ\ Λ(λ)) (6 .4)

w h e r e — ( 0 ) > 0 , d e t ( d x X ) ( 0 ) > 0 , a n d f o r e a c h ( x , λ ) T ( x , λ ) is a n i n v e r t i b l e n x n
0 A

matrix. The problems are Γ-equivalent if the associated contact equivalence
preserves the symmetry group that is,

(6.5)

The scalings used at the end of Sect. 5 are specific examples of Γ-equivalences.

Note. No two bifurcation problems of the form (6.3) are Γ-equivalent unless the
corresponding modal parameters μ and v are identical. Basically this means that
no further scaling is possible.

Definition 6.6. A bifurcation problem (6.3) is non-degenerate if μ φ l , v φ l , and
μvφl .

One should see [4, § 4] for a more motivated description of non-degeneracy.
We will show that the bifurcation problems obtained from the von Karman
equations are non-degenerate. For now we describe some results.

Proposition 6.7. Let G be a non-degenerate bifurcation problem of type (6.3). Then a
bifurcation problem with symmetry group Γ = Z2®Z2 of the form G plus higher
order terms is Γ-equivalent to G.

Proof Lemma 4.13 of [4].

This proposition justifies the neglect of the higher order terms in the
Lyapunov-Schmidt reduction performed in Sect. 5.

μ-0

Fig. 6

2

μ-\

1

z / = l

μι/=\

We now analyze the kinds of bifurcation diagrams associated to nonde-
generate bifurcation problems. Note that the degeneracies μ = l5 v = l, and μv — \
break the first quadrant of the μv-plane into six regions shown in Fig. 6. As shown
in [4], if one chooses two pairs (μ l 5 v1) and (μ2, v2) in the same region of the μv-
plane than the bifurcation diagrams obtained by setting (6.3) equal to zero may be
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mapped one onto the other by a homeomorphism of the form (X(x, y, λ\ Y(x, y, λ\
Λ(λ)). So all diagrams associated to one of the six given regions are topologically
equivalent even though there are differential obstructions to contact equivalence
(namely, the modal parameters). For all intents and purposes in applications, these
regions yield equivalent bifurcation problems. Moreover, interchanging x and y
shows that the diagrams in regions 3 and 4 as well as those in regions 5 and 6 are
essentially contact equivalent, the equivalence being orientation reversing. With
the boundary conditions that we have chosen to analyse, the von Karman
equations always yield μ greater than one. So we restrict our attention to regions 1,
3, and 5. Much of what has been stated here is implicit, though not proved
rigorously, in the work of Bauer et al. [1].

A consequence of the unfolding theorem - which is the most powerful theorem
in singularity theory - is that one can classify all small perturbations of non-
degenerate problems (6.3) up to Γ-equivalence by the addition of just one new
parameter that is, in addition to the modal parameters discussed above.

Theorem 6.8. Let H(x, y, λ) be a bifurcation problem with symmetry group Γ
= Z2@Z2. Suppose that H is a small perturbation of a non-degenerate problem (6.3)
with modal parameters μ0 and v0. Then H is T-equivalent to

F{x, y, λ, σ) = (x3 + μxy2 - /be, vx2y + y3 - (λ + σ)y), (6.9)

where (μ, v, σ) is near (μ0, v0,0).

Proof See (4.4) of [4],

The role of σ, as will be seen, is to split the double eigenvalues into simple
eigenvalues. As such it is not surprising that it may be identified with Z, the length
of the plate, which accomplishes the same task for the von Karman equations. This
will be proved in Sect. 9.

The qualitative nature of the bifurcation diagrams associated to (6.9) when
(μ, v) are in regions 1, 3 and 5 are shown in Figs. 7-9 for σ < 0 and σ>0. Branches
which are stable and unstable are indicated by s and u in these figures. The
important observation is that when σ < 0, quasi-static variation of λ will produce
no transition between modes in region (1), smooth transition between branches (or
modes) in region (5), and a necessity for mode jumping in region (3). The major
point of this paper is that different boundary conditions for the von Karman
equations yield bifurcation problems (6.3) with modal parameters in different
regions of the μv-plane. In particular, as will be shown, simply supported
boundary conditions yield modal parameters in region 1 while clamped conditions
yield modal parameters in region 3.

To explain the derivation of Figs. 7 through 9, note that setting (6.9) equal to
zero yields the equations

x = 0; y = 0, (6.10a)

y = 0; χ2 = λ, (6.10b)

(6.1OC)

= λ. (6.10d)
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σ < 0 σ >0

Fig. 7 R E G I O N I v > \

Fig. 8

σ < O

R E G I O N 3 ι/<\ , μ v > \

σ > O

(b)

σ < 0

(b)

σ >0

Fig. 9 REGION 5 z/<l , μ.v<\



Mode Jumping in the Buckling of a Rectangular Plate 229

The first three equations have real solution branches in all cases, while the last
equation has no real solutions when σ > 0 and v < l . Moreover (6.10d) may be
placed on the figures by noting where the secondary bifurcations occur when
branch (6.10d) intersects branches (6.10b) and (6.10c). In particular, secondary
bifurcations which occur along branch (6.10b) occur at

λb = σ/(v-l). (6.11)

7. Calculation of Modal Parameters for the Simply Supported Plate

Recall that ΔN is the Laplacian with Neumann boundary conditions. The
eigenfunctions of ΔN are given by

cos(yz 1 jcos(nz2) (7.1)

with eigenvalues

In order to compute the modal parameters for the simply supported plate one
must compute a, b, c in (5.13). Thus one needs:

A = Δ-χ[wl9w1]; B = Δ-χ[w1,w2]; C = Δ^1lw29w2], (7.3)

where Δ^x is the generalized inverse of ΔN defined in Sect. 3. This is easy if one can
write [WjjVVy] in a double Fourier cosine series with terms given by (7.1). A
computation, involving the trigonometric identities

2sinw smv =

2 cos u cos v = cos(u — v) + cos(u + υ)

2cos2t/= 1 +cos(2w)

2 sin2 u = 1 — sin (2w),

and the eigenfunctions (4.20) yields

ί^jcos(2z2)
(7.5)

fej +cosί^jcos(2z2)

2(2fc + l ) 2 - l — V

r-ί

1 /2/c + l \ ,Λ ,
cos —j— Z l cos(2z2)

(2k + 2
cos —-—
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Next compute from (5.13) and (7.5) that

a = 256 (fc+1)2

256 k2

_ k2

ft_(/c+l)2

1 Al2

Now compute using (5.17) that

(fc+1)2

V = 6 +

(2(2/c+l)2

l

(2(2/c+l)2

( 7 ' 6 )

>3

(7.7)

It follows that for any k, the bifurcation diagram is qualitatively similar to a
problem in region 1 of Fig. 6 when simply supported boundary conditions are
assumed.

8. Calculation of Modal Parameters for the Clamped Plate

The first step in these computations is to compute A, B, and C from Sect. 7 with the
eigenfunctions associated to the clamped plate:

w 1=0(z 1)sin(z 2) and

where

± k + 2 . (kzΛ

= t/;(z1)sin(z2)5
(8.1)

and (8.2)

(k + 2)
= cos\-z1j -cosI

See (4.14). In Sect. 7 we saw that the double cosine series expansion of [wf, wj] was
rather simple, consisting of just a few non-zero terms, so that the computation of
A, B and C was easy. For the eigenfunctions in (8.1) this cosine series for [w l5 w2]
has an infinite number of non-zero terms, so we use a different technique.

Notice that in (7.5) A has the form

), (8.3)
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where j A = 0 B and C have similar structure. It turns out that this is still true for
Ω

the A, B, and C of this section. Observe that if we find a solution in the form (8.3)
then we are finished as zl^1 restricted to functions with mean zero is injective.
Consider further that the image of A^1 satisfies the Neumann boundary con-
ditions so that in (8.3) we have

A\ (0) = A\ (Iπ) = A'2(0) = A'2(lπ) = 0. (8.4)

Given the form (8.3) one sees from (5.13) that

-j πl -j πl

πl o * x 2πl 0

i πl i πl I A Γ \

i

the last equality being a definition.
Observe that [w^vvy] has the form (8.3). In fact

K , w j = - (φφ» + {φ')2) + cos(2z2) {φφ» - (φ')2)

K , w2] = - i ( 0 > + 2φ V + φψ") + C O S (

2

2 Z 2 ) ( 0 > - 2φ'w' + 0φ/r) (8.6)

[w2, w2] = - (ipi/;" + 0//)2) + cos(2z2) (i/jφ" - (y/)2),

whereas applying the Laplacian to (8.3) yields

AA = Af[+ {A"2 - 4A2) cos(2z2). (8.7)

Similarly for ΔB and AC. Clearly (8.6) and (8.7) yield six second order ODE's in the
unknown functions Ai9 Bb and Cf. It is particularly easy to solve the equations for
Av Bv and C 1 ? the answers being

B^-^+βo (8-8)

where α0, jS0, and y0 are constants of integration. The other constants of integration
are seen to be zero from the Neumann boundary condition (8.4). From the definition

π

of Δ^1 we have § A = 0 which implies that \Aί(zί)dzί=0. So αo, β0, and y0 are
Ω 0

determined by

]A1dz1 = ]Bίdz1=)cidz1=0. (8.9)
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Thus

(k-\- 1Ϊ2 + 1α ; β = °; y ^2k2
( 8 1 0 )

Using (8.2) and the trigonometric identities (7.4) one can compute (8.8)
explicitly we tabulate the results in (8.12) using the notation

z = zjl9 (8.11)

A *±?±?cos(2z) + ί*±

2k 4 ^ ^ (8.12)

-isin((2fc + 4)z)

)z)

-Jcos((2/c + 4)z)

Now, using (8.5), one computes (noting that fc=l is special)

5 5 fc + 1 2

C l = Ϊ6 ^ w h e n fe = 1^

Next we wish to compute Λ2, B2, and C2. The second order ODE's given by
(8.6) and (8.7) no longer have such an easy solution as in (8.8). One now has to
compute explicitly with (8.2), the RHS of the equations being given by:

"-{φ')2=- ^ ^ ^ ^

^ A ^ n ( 2 z ) (8.14)
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The ODE's have the form ^ - 4 , 4 2 = ( 8 . 1 4 ) . The solutions are (where m = 2k2

+ 4fc+l)

k + 2 k + 2 k + 2
cos((2/c + 2)z)

=psin(2z)-gsin((2/c +2) z)

where

fc+1
2/cm

A
a n d

sinh((2z-π)i)

cosh(π/)
8 1 5

C 2 = - - c o s ( 2 z ) - —
2 2m

Note that the constants of integration have been chosen so that the boundary
conditions (8.4) are satisfied.

One may now compute using (8.5) and (8.15) that

(/c + 2)2

16k2 3+ AAπr

1
1 H

k2(k + 2)

3 3 3

1
m2

(8.16)

where

To obtain this estimate observe that

+ i. + f_ |
2 π/ o

E=-
πl 0

Next change the variable of integration z1 to z; note that /(z), sin(2z); and
sin((2/c + 2)z) are all odd with respect to the point z = f observe that |/(z)| <e~2lz

on (05f), and use | s in |<l to obtain:

/c + 2 2r
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It is now routine to obtain the estimate for E in (8.17)
Combining (8.13) and (8.16) yields (for fc^2)

1 2 2 (/c + 2)2 (/c + 1)2

2 k k2 16k2m2 2k4-

( 8 1 8 )

Moreover a simple calculation directly from (5.13) yields

α _ (fc + 2)2

Proposition 8.19. The modal parameters μ and v fall in region 3 of Fig. 6. In

particular μ>\ and — < v < 1.

The result is obtained by using the following estimates when k = 2

4 5 4 6.3
h- \{ IT IT

tx lx IX tx

. 2 7 „, . 2 9

k Ak k Ak

0 < 1 6 c < l + -r^.

Note that showing that v> — is equivalent to showing that b2 — ac>0. Using the

estimates one obtains the result for k = 2 and explicitly checks that when k = 1 the
result is also true. In fact for fc = l , μ = 1.0857 and v = 0.9715.

9. Length is the Unfolding Parameter

In Sect. 6 we described results from singularity theory [4] which enabled us to
classify all small, symmetry preserving perturbations of the von Karman equations
near a double eigenvalue by the addition of one new parameter σ defined in (6.9).
We now show that for clamped boundary conditions the aspect ratio / of the
rectangular plate is a physical realization of σ.

Let

L=l-^> (9 !)

where l0 is the aspect ratio at a double eigenvalue so /0 = ]/k(k + 2) for some
positive integer k. We will show that, to first order in L9
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As the coefficient of L in (9.2) is always positive we see that / is the desired
realization of σ. (A similar calculation for simply supported conditions could also
be given.)

We now sketch the steps necessary to prove (9.2). The implicit function
theorem which gives the existence of the Lyapunov-Schmidt reduction also
guarantees that the resulting reduced equation G varies smoothly with L. This,
along with the fact that L preserves all symmetries in the problem implies, as in
(5.11), that

where

V(x, y, λ, L) = ax4 + bx2y2 + c / + (d - aλ)x2 + (e - βλ)y2 + ... (9.4)

and ... indicates terms of higher order in x, y, λ. Here a, b, c, d, e, a, β all depend
(smoothly) on L. Moreover, at L = 0, d = e = 0 while the remaining variables equal
their respective counterparts in (5.11). The scaling of (5.20) shows that to first order
in L one has

where ... indicates terms of higher order in x, y, λ, L. Moreover, μ and v are as in

(5.17) and

do = —-{0); eo=-^-(0); and λ = λ - L . (9.6)

We claim

d0 = — 12Aω1 + λoωl9 -
3 2 w l j

1 ' (9.7)
I d2 \

eo= —[2Δ + λ

where ωvω2 are the eigenfunctions (8.1) and λ0 is the applied force at the double
eigenvalue. Thus by (4.11), we have

Assuming this claim one makes a calculation involving integrals of the type
considered in Sect. 8 to obtain

rfo = 0 and eo=-A^^-]2. (9.9)

y '

Finally (9.2) follows from the observation that

μ dz1
2k{k + 2) '
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We now prove the claim. The basic idea is to first change variables so that the
von Karman equations are computed on a common domain for all L. Let

(9.11)

(9.12)

(9.13)

Consider the change of variables

(zvz2)^(mzvz2) of Ωlo^Ωt,

where m = l/l0, the potential function (3.1) has the form

V(ω,λ,m)=-
m

d2ω
2 δzj

d2ω

dz2

2

1 dω

m dz1

+ β(ω),

where Q is a quartic expression in ω. As Q only effects the quartic terms in (9.4) it
does not enter the calculation of d0 and e0. dV

Observe that m—l=L. Thus to compute -r— at L = 0, we need to compute
oL

dω

dz,
(9.14)

Of course, the evaluation of d0 and e0 is at λ = λ0. As in Sect. 5 the calculation
of G to lowest order does not involve the implicitly defined function P^[of (5.7)]. So
the Taylor expansion of V to lowest order is the same as the Taylor expansion of

V(x, y, λ, m) = V(xω1 + yω2, λ, m). (9.15)

Using (9.3) and extracting the coefficient of x2 and y2 from (9.15) and (9.14) yields
(9.7) as desired.
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