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Boundedness of Total Cross-Sections in Potential Scattering
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Abstract. If a spherically symmetric potential belongs to the Rollnik class, i.e., if

1 = 77^2 J —i 772— d3xd3x'
(4π) \x — x\

is finite, the total cross-section is finite, and an explicit bound on this quantity can
be given in terms of/. We also investigate the case of non-spherically symmetric
potentials, and show that if / is less than unity, the total cross-section averaged
over the directions of the incident beam at a given energy is finite.

1. Introduction

Recently the question of boundedness of total cross-sections in potential scattering
has been re-examined byAmrein and Pearson [1]. These authors have shown that if
one can be satisfied by statements of the form: "the cross-section is finite for almost all
energies" it is no longer necessary to assume local regularity of the potential as was
done in some previous work on the subject [2], Crudely speaking, all the authors
[1,2] find that the cross-sections are finite if the potential decreases sonewhat faster
than \x\~2 at large distances (in the case of three space dimensions).

Here we want to use a method which, in its essence, is not new, and was applied 15
years ago to get bounds on the scattering amplitude itself [3]. This method is inspired
by the work of Froissart to obtain bounds on elementary particle scattering
amplitudes [4]. The general idea is that the partial wave amplitudes and cross-
sections for small angular momentum can be bounded by unitarity, while for large
angular momentum the Born approximation (or nearest singularity contribution in
the case of elementary particles!) gives a reasonable estimate.

It is not very difficult to see that the total cross-section, for spherically symmetric
potentials, calculated in the Born approximation, will be finite at all energies, except
possibly at threshold if the potential belongs to the Rollnik class [5], such that
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This is also true for non-spherically symmetric potentials, if one replaces the total
cross-section by its average over all possible incident directions of the beam.

These facts give a strong presumption that condition (1.1) might be the right one,
and this is what we succeed in proving in Sect. 2 for the case of spherically symmetric
potentials. Like in [1], (1.1) has the advantage of being an integral condition, not
necessitating local regularity. It has also the advantage of indicating rather precisely
what kind of decrease of the potential is sufficient. In particular the Sobolev
inequality

1= (4^2 i lV\fZ{p d*xd*xϊ<Ctl \V{xψH^, (1.2)

where C<1.63 [and, probably, (2/π)2/3 6 ) ] , indicates that / will be finite if V(r)
decreases faster than r~2(logr)~2 / 3~ ε, ε>0. In fact, direct examination of / after
angular integrations are performed, shows that / will be finite if V decreases like

r" 2 ( logr)- 1 / 2 ~ ε ε > 0 . (1.3)

In Sect. 3 we have tried to generalize our results to the non-spherically symmetric
case, and partially succeeded. In this case the value of the total cross-section depends
on the orientation of the incident beam and we shall consider only the total cross-
section averaged over incident directions at a given energy. We prove that this
quantity is finite if/, defined by (1.1) is less than unity. In that case the perturbation
expansion of the scattering amplitude is convergent and this is what makes the proof
easy. We think that the averaged cross-section remains finite even if / is larger than
unity but we have no proof of that statement.

2. The Case of Spherically Symmetric Potentials

For simplicity we set fc, centre-of-mass momentum, equal to unity, except in the final
inequalities on σtotal. The radial Schrodinger equation is obtained by projection over
a given angular momentum:

J KJr, r')V{r')u,{r')dr>, (2.1)
o

where

rr +i e1'1*-*'1
KJr, r') = - ί — J P,(cos θ)d cos θ, (2.2)

Z _ ! \X — X I

where

x x
= cos ϋ,

rr'

and

r = \x\,
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(2.3)

(2-4)

We shall try to get an inequality on j Vu2dr. To this effect we multiply (2.1) by
ι^,(r)|F(r)| and integrate:

f u)\V\dr = ju Λ o \V\dr + Jdrdr\(r)\V{r)\KJr, r>)V(r')u,{r>). (2.5)

We apply the Cauchy-Schwarz inequality to both terms in the right-hand side of (2.5)
and get

- ]/\drdr'\V{r')\{K^r'))2\V{r)\-]

We shall now relate the quantity

\\V(r)\{K^r')f\V{r')\drdr'

(2.6)

(2.7)

to /, and show that it decreases with /, so that for {large enough (2.6) allows to control
\u)Vdr.

We use definition (2.2) of K^ and apply again Schwarz inequality:

( 2 8 )

Inserting into (2.7) we get

J 4π 4π

Therefore, if £ > Lo such that

I = 2L0 + ί,

we get the inequality

:-x'\

2/+Γ
(2.9)

(2.10)
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is therefore bounded by

ίujo\V\dr

1 -

(2.12)

To get a bound on the total cross-section

4π
(2.13)

(here k has been inserted!), we can choose arbitrarily L, integer, larger than Lo, and
use unitarity for / ^ L - 1 and (2.12) for / ^ L :

4π
7 r < F

1 -

(2.14)

What is left is to estimate

We can majorize this sum by extending it from af = 0 to oo. Then

In the bracket we recognize the Born approximation for the full amplitude with the
potential \V\, i.e.,

x e
,i(k-k') jc

where |k| = |k'| = 1 and cos θ = (k kr). Hence

X-XΊ
(2.15)
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Fig. 1

Hence

4π
στ<

\JL>L0.
(2.16)

What is left to do is to optimize with respect to L for a given /. This will produce a
continuous function of/. For small / the bound behaves like (4π//c2)/, for very large /
like πI2/k2. The Fig. 1 gives the bound on k2σt/4π for / between 0 and 12. A uniform
bound, valid in 0 < / < o o is

k2σΊ

4π
(2.17)

To conclude this section let us indicate that it seems to us difficult to get a weaker
condition than the existence of /. Indeed if one compares the Born approximation
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expression of the cross-section and I one sees that the only majorization in (2.15) is the
replacement of (sin(fc|x — x'|))2 by 1. For large k (sin(fc|x — x'|))2 averages to j , so that if
/ diverges it is difficult to obtain a finite total cross-section, except if V has infinitely
many oscillations [7].

3. The Case of Non-Spherically Symmetric Potentials

Here it is much more difficult to take advantage of unitarity as we did in the case of
spherical symmetry. An extra complication is that, a priori, the total cross-section
depends on the orientation of the incident beam. Classically we see that a flat
reflecting disc will produce a large cross-section when it is perpendicular to the beam,
and zero cross-section when it is parallel to the beam. It will appear very natural to
consider here the averaged total cross-section

^ (3.D

The first thing we shall show, which is almost a repetition of what was done in
Sect. 2 is that στ(k), evaluated by using the Born approximation for the amplitude, is
finite if / is finite. Indeed:

[dΩk dΩk' eί(k-k'Hχ-χΊV(x)V{x')d3xd3x'
τ ' B o r n •* 4π 4π (4π)2

(3.2)

/ c 2 J V ' υ ( 4 π ) 2 | x - x T

4π

Now we shall try to find a situation in which the Born series for the scattering
amplitude is convergent, in order to take advantage of (3.2).

For technical reasons, we shall start with an exponentially damped potential Vε(x)
= V(x) exp( — ε|x|). For such a potential j | Vε(x)\dx is convergent if V{x) belongs to the
Rollnik class.

We start from the integral equation

j eik\x-x'\

< P M M = ψOk(x)- -^ί , χ / . Vε(x')ψkε(xf)d3xf, (3.3)

where

Following a procedure similar to that of Sect. 2, we multiply to the left by
ψ^ε(x)\Vε(x)\, integrate, and use Schwarz inequality. This gives

d3xd3x
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Hence, i f / < l , / ε < l , and

^f^. (3.5)

Here, we see why it was necessary to introduce a cut-off, to ensure the convergence
of the integral over \Vε\. This is because the quantity in the left-hand side of (3.5)
controls in fact the full forward scattering amplitude, including the real part, which
might become infinite in the limit ε->0, but in which we are not really interested. On
the other hand, fortunately, the denominator in (3.5) does not depend on ε.

Condition (3.5) allows us to show that the Born series expansion for ψ converges:

ψ = ψo + KV\po + ... +KVK. KVψt (3.6)

where K in x space is

0ik\x-x'\

\X-X'\ '

The last term can be bounded by

i.e.,

w-2

[f \K(x,xT\V(x')\d^V12 I ^ ' ( y X ] (3.7)

Hence the scattering amplitude

Tε = $ψ*k,(x)Vε(x)ψk(x)d*x (3.8)

can be written as

1

with

Hence if / ^ α < 1, Rn goes to zero for n-» oo, for ε fixed, arbitrarily small. The series
expansion of Γ(k', k) is therefore convergent. The total cross-section, averaged over
angles, is therefore given by

^ = 4 π ί ̂  d^t Σ τ-(k
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The general term of this double series is of the form

4π ,d3x1 d3xm d3y1 d3yn sink\xί—yί\

k2 J 4π ' " 4π 4π ' " 4π |x 1 — yx\

. (3.12)
1/1 ~/2l

It is easy to see that it is bounded by

4π
F

n ) , (3.13)

where

Hβ(χ,*') = - ^ I W / 2 j ^ i l^')l1/2.

However |Fε(x)|^|F(x)|, and

HE<H0 = H.

So if

lim (ΎrHN)N = a<l (3.14)
iV^ oo

the double series defining στ converges uniformly with respect to ε as ε approaches
unity. A sufficient condition for (3.14) is

< l . (3.15)

Indeed

Ύτ(HN)^Im (3.16)

Furthermore, we get a bound on σT which is independent of ε:

4π /
σ r < - ^ -=—. (3.17)

^2d-l//)2

Rigorous minded people might worry that even if lim στ is finite this is not a proof

that στ is finite. One can in fact use another trick which is to average the Schrodinger
equation, with ε = 0, over some small angular interval in k/fe. One can define ψk η and

V>OM a s

-ψk,(x)Θ
k k'

-cos??
2 π - • (3.18)

dΩk

J 2π

1 —cosΆ

k k'
JL 2

— cos?/

(3.19)
1 — cosίj



Boundedness of Total Cross-Sections 97

It is possible to show that (3.19) behaves like |x| ~x at large distances. Therefore, we
can repeat the previous argument to show that if /rgα< 1, the Born series for ψKη

converges, because J \ψOk η\
2(V)d3x contains an extra convergence factor l/(|x|2), and

is guaranteed to converge if V belongs to the Rollnik class. One can define a pseudo-
averaged cross-section

As 77->0 the integrand tends to the integrand appearing in the definition of στ

pointwise. However, the integral is dominated by an η independent integral and tends
to στ, which is indeed finite.

One can slightly improve condition (3.15). In fact, what is essential for the
finiteness of the cross-section is condition (3.14). It is easy to recognize, following the
Birman-Schwinger approach to the bound state problem [8], that (3.14) is nothing
but the condition for the absence of bound states with negative or zero energy of the
potential — |F(x)|. Indeed, (3.14) means that the largest eigenvalue of the positive
operator H is less than unity. So we get the following result :

if (i) V{x) belong to the Rollnik class,
(ii) — \V(x)\ admits no negative or zero energy bound state, στ(k) is finite.

We believe that the present results could be generalized and that the only really
crucial condition is the existence of I. Possible ways are:

1. Replacing the iterative solution of the Schrodinger equation by the Fredholm
method

2. Subtracting explicitly the bound states from the symmetrized kernel of the
Schrodinger equation (in the case of a purely attractive potential).
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