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Abstract. We show that, in the φ\ theory, the physical mass and the two-body
S-matrix are Borel summable in the coupling constant λ at Λ = 0.

1. Introduction

In this paper we show that in the φ\ theory the following objects are Borel
summable in the coupling constant at zero: (i) the momentum space analytic
functions for every complex momentum in an open set containing the Euclidean
points (ii) the physical mass and the field strength renormalization constant (iii)
the two-body 5-matrix in the elastic region. The proofs of (i) and (ii) have been
written so that they extend straightforwardly to the case of φ\ with the help of the
cluster expansion as given by Magnen and Seneor [14] and Burnap's work [3]. By
contrast, the proof of (iii) uses the analyticity in the coupling constant of the
irreducible kernels, known for the even φ\ theory from Spencer's analysis [16]. It
could be extended to non-even φ\ theories by using the work of Koch [13]. The
method extends to the massive Sine-Gordon model [9], where it yields analyticity
in the coupling constant around 0. The principle of the method is clearly present in
[9].

The Schwinger functions of the φ\ theory are given by

= Jim N \Λ, λ, ) . .φ(xn) exp -λ\:φ\x):d2x (1)

where dμζ is the Gaussian measure with (bare) mass ζ1/2 and : : denotes Wick
ordering with the same mass. N is the obvious normalization factor. For Λ ^ O
sufficiently small and C>0 sufficiently large the theory is known to exist [11]. Its
physical mass will be denoted m(λ, ς), and the first threshold above it, 2m'(λ, (). The
natural scaling law

Sn{ρx1,...,ρxn,ρ ) = Sn(xv ...,xn,λ,ζ)
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holds in the sense of tempered distributions for all n and all ρ > 0 and is also
satisfied by the truncated Schwinger functions Sζ(xl9 ...9xn,λ,ζ).

Our starting point is the following known theorem:

Theorem 1. 1. [8]. Let the unit of length be fixed. There exist constants ε>0, M > 0 ,
τ 0 > 0 and, for each integer n^2, constants Cn, Bn, and some U norm \\ \\{n) such that,
for each /e^QR 2 "), all aeWL2{n~l\

/ s v f ,,τ, ,,,,,, ^ w , m

can be extended to a function of λ and ζ, holomorphic in the domain

μ i μ | < ε , R e Λ > 0 } x { C | | A r g ( ζ - M 2 ) | < τ o } , (4)

continuous on the boundary, and bounded there in modulus by

/ | , . . . , | α I I _ 1 | ) ] . (5)

2. [11, 16]. Furthermore, for real ζ^M2 and any ^ 0

> ^ , there is an η>0 such
that O^λ^η implies

\m{λ, ζ) - |/C I < δo]/ζ , m'{λ, ζ) - |/ζ + δo]/ζ > 0 . (6)

The Fourier transform of S^ will be denoted

Sΐ(pί9...,pn,λ,ζ]

= ( 2 π ) " 2 " J e x p ( i f Pjx)jSB

Γ(x,,...,xn)dx 1..xlxn.

It is easy to derive from the first part of Theorem 1 that there exist, for each n,
constants C'n>0 and v Π ^ 0 such that, for every (λ9ζ) in (4), S^(pl9 ...,pn) can be
extended to a holomorphic function of pl9...,pn, (with pί + ... +pn = 0), in the
domain

X \lmPj\<Rε\/ζ-Bn\ (7)
7 = 1

and satisfying there

d]]Sτ

n(p,λ,ζ) <C:+ \r\f [Re ] / £ - £ „ - * £ |Imp, || (8)
dλ

(we assume, of course, Re ]/ζ >Bn).
In a theory such as P{φ)2, φ\ > (for real coupling constants) the Schwinger

functions are naturally related to a set of time-ordered functions [6, 7]. The
relation is:

where Hn(kl9 ...,feΠ), the "momentum-space analytic function", is holomorphic in
the "axiomatic domain". This domain contains the Euclidean points. In theories of
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the type of P(φ)2, φ\, the same holds for all derivatives in λ, ζ. The scaling property

Hn(K lO = ρ2in-1)Hn(ρKρ2λ,ρ2Q, (9)

combined with (7) shows that for ρ > 1, Hn is holomorphic in

k,λ,ζ °|2 + |Imίc)|2)1/2<RelΛ-2Bπρ-1,

where it satisfies, by (8),

(10)

(11)

We want to extend the analyticity in λ by using complex scaling. For this
purpose, we first observe that the domain (10) contains

k,λ,ζ
7 = 1

|/cJ |< |ζ | 1 / 2 cos(τ 1 /2)-2 J B,ρ- 1 ,

for any τ 1 satisfying 0 < τ 1 < τ /

1 , where τ\ is defined by sin(τo — τf

1) = ρ~2 sinτ0

(<sinρ~ 2 τ 0 ). For ρ^2, we find τ\ >3τo/4. As a next step, we fix 1^(0,3τo/4) and
we define ρ(τ1) = max{2, Bn{Msm(3τ1/2)sin(τί/2)yί} and w(τ1) = ερ(τ1)~2. Then
one checks easily that with ρ = ρ(τ1) the domain (10) contains

7 = 1

\kj\<\ζ\ίl2cosτl9

|λ |<M(τ 1 ),Reλ>O,|ζ |>MMArgζ|<τΛ,

and there

FίV
<(r!) 2 C B (τ 1 ) Γ + 1 ,

A complex scaling with parameter ρ2

analytic in the domain

(12)

(13)

+ ίτ!/2) (using (9)) shows that Hn is

{

\λ\<u(τ1),\Argλ\<{π + τ1

(14)

and the bounds (13) continue to hold.
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2. The Two-Point Function

Let F(k2,λ,ζ) = H2(k, — k, /,, ζ) denote the propagator of the φ\ theory, i.e., for

real Euclidean p, with p 2 = (p0)2 -f- (p1)2,

This is a holomorphic function of k2, A, ζ in J^2( τi) Additional information is
provided by the spectral analysis of [3, 11, 16] in the P(φ)2 and φ\ theories:

For every ρ > l , for real ζ>M2/ρ2 and 0^λ<ερ 2, — F is holomorphic in

k2 in the cut plane

Q) = {k2|k2 Φm2{λ, C) and k2φ4m'2(λ, ζ) + R + } .

Since, by Theorem 1, the mass is a continuous function of λ,ζ, we obtain a more
useful description as follows: Let ζ0 be fixed real and > M 2 . For fixed τx and 0 < σ
< 1, it is possible to find K0(τ ι, σ) and u(τ 1,(r)< u(τ 1) such that, for 0 < λ < u(τ x, σ),
ζ 0 —X 0 (τ 1 ,σ)<ζ<C 0 + X0(τ1,σ) the domain & contains

ζ o , , 1 (15)

with

(ζoσ) = {zeIR|ζo(l-σ)^z^ζo(l+σ)}
(16)

If we also choose K0{τvσ) such that |ζ — ζ o | <K 0 (τ 1 ,σ) implies ]ζ |>M 2 , |Argζ|
<τί/2 and |ζ |cos 2 τ 1 >R(τ 1) = ζ 0(l — 2τ2), then ^f2(

τi) contains

\ζ-ζo\<Ko(τvσ)}. (17)

We now perform an analytic interpolation between this information and (15),
i.e., an analytic completion of the union of the two corresponding sets. The
analytic interpolation between (17) and (15) is reduced to a semi-tube problem by
the conformal maps:

λ'(λ) = ~ (21 n) \og{A ~ι-Λ\Λ = [λ/u(τ t, σ)]π/(τ 1 + π ) ,

which maps {/| \λ\<u(τl9σ), |ArgA|<(π4-1^/2} onto the strip {A'| llm/.'l < 1}? and

ζ'(ζ) = (2/π) log[(K0 + ζ - ζo)/(Ko - ζ + ζ0)]

which maps the disk {ζ| |ζ — ζ o | <K 0(τ 1 ?σ)} onto the strip {ζ'| | Imζ ' |< l } .

Let h be the function, defined and continuous on C, with Ogj/i g l , taking the
value 1 on

{/c2[ |/c2|^JR(τ1)}9 (18)

the value 0 on y(ζo,σ)uΓ(ςo, τ j , and harmonic elsewhere. The solution of the semi-
tube problem is the domain:

{k2, Λ, ζ\ |Im/'(A)| + |ImC(OI <h(k2)}. (19)
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For sufficiently small σ, the length of the "little cut" y(ζΦ σ) becomes small and its
influence on h can thus be made arbitrarily weak: h can be thought of as the
electrostatic potential produced by conductors (18) and y(ζo,σ\ Γiζ^τ^ re-
spectively at potentials 1, 0, 0; as the size of conductor y(ζo,σ) shrinks, so does its
capacity. More precisely, let h be the function continuous on (C, Org/iίgl, taking
the value 1 on (18), Oon Γ(C0, τx) and harmonic elsewhere. Clarly h — h^O. For any
fixed τ 1 ? for any fixed compact K, not containing ζ0, for any μ >0, there is an η > 0
such that, for all σ<η and all zeK, h(z) — h(z)<μ. (This can be explicitly checked
with the help of a conformal mapping.) In particular, for any fixed τ 1 ? it is possible
to find a contour ^ ( τ j , surrounding ζ 0 and intersecting the real segment [ — / ^ τ j ,
R(τJ], and an open neighborhood K ^ ) of ^ ( τ j , such that ( ^ K ^ ) and, for all
zeK{τλ), h(z)>h(ζo) — τ2

v Then it is possible to find η(τ1)>0 such that, for all
σ<η(τ^ K{τ1)ny(ζ0,σ) = &, and, for all z in X( τ i), /t(z)>/5(z)-τ2 >/5(CQ)-2τ2.
Since h is differentiate (uniformly in τ j on [ i ^ τ j , 2£0], it satisfies /ί(ζo)>l
— const. τ\. Thus there exist a constant C > 0 and, for each τ 1 ; an ̂ (T t)>0 such that

) implies h(z)>l — Cτ\ for all z e K ^ ) . As a consequence, for every
J, F(Z,A,ζ) is analytic in Λ and ζ in

|ArgA| <(1 - ^) (1 - .5) (1 ~ Cτ?) (π + τJ/2,

where 0<(5<l and 0 < φ < l are arbitrary, S(TX) and y(δ)>0. Thus fixing first τγ

sufficiently small, then σ<^(τ 1), and finally δ and φ, we obtain the analyticity of F
in

(20)

with v>09 τ 2 > 0 , α>0.
The following information is now available:

=«!αΠ(k2,ζ),
= 0

where (ζ — /c2)"+1αn(/c2,ζ) is analytic in /c2, for real ς > M 2 , in

D = {/c2 |/c20M2+lR+} (21)

and, in this domain

\(ζ-k2γ+1an(k\ζ)\<C(k2ΛYn\, (22)

where C{k2,ζ) is bounded in any compact in (21). (This property of perturbation
theory can be proved by using Sect. 2.2 of [10].) Furthermore for /c2<0, (i.e., k
Euclidean), an{k2,ζ) is analytic in ζ for R e ζ > 0 and again satisfies (22) (since each
graph is bounded in modulus by the same graph with ζ replaced by Reζ). Hence
(ζ-k2)n+1an{k2,ζ) is analytic in

{k2,ζ\k2φ4M2 + R\\Arg(ζ-M2)\<φ(k2)},

I k2 \
2φ(k2) = Re Arccos ί—j - 1 .
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2. F(/c2, /,, 0 is analytic in the domain (20), continuous at its boundary and
bounded there by a constant (depending on ζ o ,τ 1 ,τ 2 ,α) and the same is true for

3. In the domain ί£2{τί), [see (14)],

+\n\)2. (24)

The first information implies the existence of the function

B,(k2,μ,ζ)= Σ{n\yιan(k\ζ)μ\ (25)
n=0

which is holomorphic in

Denoting Δ = {λ\ \λ\<υ, |Arg/|<(π/2) + τ2} and ω={z\ \z\ <R(τ1)}uX(τ1), we can
also define

B2(k2, μ, ς) = ̂  $ A" ιF(k2, λ, 0 exp(μ/A)di = F(/c2,0, ζ)

+ ™ f Γ W 2 , A ζ) - F(/c2,0,0) exp(μM)dΛ (27)

which is analytic in

{/< 2,μ,C|k 2eω,|Argμ|<τ 2, |£-ς 0 |<α} (28)

and bounded there in modulus by

. (29)

The bound (24) and Watson's theorem [12, p. 192, Theorem 136] show that, for
|/c2| <Λ(τ1), B1 and B2 coincide in the intersection of their domain of definition. By
analytic continuation, they define a unique function β(/c2,μ, ζ) analytic in the
union of the domains (26) and (28). This fact and the bound (29) show that

F'(k\ λ, ζ)- f dte-lB(k\ λu ζ) (30)
o

is well defined and analytic in k2 and ζ for 0<λ<υ, k2eω, \ζ — ζo\<ot. For
\k2\ <^(τj, it coincides with F(k2, /, ζ) by Watson's theorem, hence it continues to
do so for k2eω. Thus F is Borel summable as a function of λ.

For real λ and ζ, (\ζ — ζo\<cή the physical mass and wave-function re-
normalization constants are given by

Z(λ, 0=^-7 § F(z,λ,ζ)dZi (31)
2πz tf(τi)

m2(λX)Z(λX)=^ § zF(z9λ,ζ)dζ. (32)
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Let ^(λ, 0 denote either of the functions (31) or (32). These functions are analytic in
λ and ζ in

{λ,ζ\\λ\<v,\Argλ\<(π/2) + τ2,\ζ~ ( 3 3 )

[see (20)], continuous and bounded on its boundary. The same is true for their
respective first derivatives in λ. Therefore, reducing v if necessary, they do not
vanish in the domain (33). The properties just derived for Bλ,B2, and F show that
^(λ, ζ) is Borel summable in λ at λ = 0. To reach the same conclusion for m2(λ, ζ), it
is necessary to use some elementary and well-known properties [15] which we
briefly recall.

Let U be a bounded domain in (C, and denote ,¥r(JJ\ for r^O, the class of
functions / holomorphic in U, such that, for some constants .4^0, B^O
(depending on /), for all n^tO, and all λe U,

(34)

3F{r\Ό) is a complex vector space and (by Leibniz's formula) is closed under
multiplication.

Lemma 2. If fe^{r\U) satisfies (34) and, for all λ in U,
n ^ l andall λeU,

then, for all

=
AC2

We conclude that m2(λ, ζ) and Z(λ,ζ) are both Borel summable in λ and
analytic in ζ. In order to be able to fix the physical mass, we shall use the following
known facts.

Lemma 3. Let F be a function of two complex variables, λ and z, holomorphic in
W~ U x {z\ \z\ <R], and satisfying there, for all n,

OAJ

Let ge^{r\U) and assume that g{U)C{z\ \z\ <ρ}, ρ<R. Denote Φ{λ) = F{λ,g{λ)\
Then

Lemma 4. Let F have the same properties as in Lemma 3, and assume that, for some
C>0, andall{λ,z)eW,

d _

i) Let V{λ,ρ) = F(λ,{z\\z\<ρ}). There exists a ρ>0, {ρ<R), such that, for all
λeΌ, z—>F(λ,z) maps {z\\z\<ρ} one-to-one onto V{λ,ρ) and has an inverse
m2->g(λ,m2). This defines a holomorphic function on {(λ,m2)\λeU,m2eV(λ,ρ)}.

ii) There are constants A', B' such that for all n, λeU, m2eV(λ,ρ/2),

<A'B'n{n\)r



252 J.-P. Eckmann and H. Epstein

Proof, (i) is an immediate application of the inverse function theorem [4, VΠI,7
p. 250] together with the uniform bounds postulated in the lemma, and of the
implicit function theorem, (ii) follows from the identity, valid for m2eV(λ,ρ/2),

g(λ,m2)=^ J - ^ - Ίdz
2πι | z | = ρ F(λ,z) — mz

id \q

and from Lemma 2. Note that, for fixed q, \z\ <R-ε, — F(λ,z)eβr(r)(U) by the

Cauchy inequalities.
We apply Lemma 4 to the function

with U = {λ\ \λ\<vv |Arg/l|<(π/2) + τ} and 0<v1 ^v. The uniform bounds on the
derivatives of m2(λ, ζ) and the proof of the inverse function theorem show that, for
sufficiently small v1>0 and ρ>0, there is a κ>0 such that for all λeU, V(λ,ρ/2)
contains the disk {m2\ \m2 — ζo\ <κ}. Hence, the inverse function g(λ,m2) defined in
Lemma 4 is well-defined for /e U and \m2 — ζo\ < K, and, for fixed m2, determines a
function of λ belonging to έF{r){U). This proves:

Lemma 5. For fixed ζo>M2, there are constants υ1>0,τ>0, and there is a unique
function g(λ, w), holomorphic in

J | w - C 0 | < κ } (35)

such that

m2(λ,g(λ,\v)) = w.

There is a constant K such that, in the domain (35), for all n,

<Kn+ί(n\)2.

Hence this function is Borel summable in λ.

3. The Two-Point Vertex Function

This section and the next use methods specific to the even φ\ theory. The
preceding results can be extended by using further known information [16,17]
about the one-particle-irreducible, or vertex, two-point function

The estimates of Spencer [16] can be straightforwardly extended to show that, for
all ζ > M 2 , this function can be analytically continued in both k2 and λ in the
domain

{k\ λ\ I Re 1/F| <3(j/ζ -B'), \λ\ <ε(ζ), Re/>0}
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where it is bounded in modulus by Const.(\k21 + ζ). (Here all constants depend on
ζ, with the exception of B'). By real scaling, Γ2 is analytic in

{/c 2 ,Λ | |Re |A^I<3( |/C-Fρ- 1 ) ,μ |<ρ- 2 ε(ρ 2 0,ReA>0} ? ( ρ > l ) , (36)

where it satisfies a similar bound. Furthermore, it is possible to show, by the
method of partial integration that, for ζ o > M 2 , any / > 0 , for some v>0, α>0,
C > 0, in the domain

the bounds

\(ζ-k2)F(k2,λ,ζ)\<C, (ζ-k2)~F(k2,λ,ζ) <C
dλ

hold. Thus, after reducing v if necessary, we have in (37),

\(ζ-k2)F(k2,λ,ζ)\>\{ζ-k2)F(k2Aζ)\-vC = l-υC^ί/2,

hence

|Γ# 2 ,Λ,0l<2 |C-/c 2 | in(37). (38)

In particular, interpolating between the domains (36) and (37) we find that Γ2 is
analytic in

] \ 0 , \ ζ - ζ 0 \ < β } (39)

for some /?>0, and arbitrarily small / > 0 . In this domain it is again bounded by

Const.(C0 + |/c2|). The same is true for -—Γ2(k2,λ,ζ).

Since Γ2(/c2,0,0 = ζ-/c 2, there is a constant B such that, in (39),

\ζ - k2\ - υB(ζ0 + \k2\) < \Γ2{k2, K 01 < |ζ - /c2| + vB(ζ0 + |/c2 |).

As a consequence v and β may be chosen so small that in

\Γ2(k\lζ)\>\ζ0-k2/4. (40)

Applying Rouche's theorem in the variable k2 for \k2 — ζo\ <ζo/2 shows that inside
this disk, for sufficiently small v and /?, |^| <v, Re2>0, \ζ — ζo\ <β, Γ2 has no other
zero than k2 = m2(λ,ζ)> For v sufficiently small, \m2(λ,ζ) — ζ0\<ζ0/4 so that, on the
circle {/c2| \k2 — ζ o | = £o/2}, and consequently inside,

Finally we see that, with suitable choice of υ > 0 and β > 0, there is a constant X > 0
such that, in (39),

\(k2 - m 2 α, ζ))'ι Γ2(k2, λ, ζ)\>K (41)
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and consequently

(k2-m2(λ,ζ))F(k2,λ,ζ)

is also analytic in (39) and its modulus is bounded there by K"1.
A first consequence of these facts is the possibility of substituting ζ = g{λ9 ζ0) in

F(k2, λ, ζ) and Γ2(k2, λ, ζ) so as to fix the physical mass to ζ0. More precisely it has
been seen that, for sufficiently small α>0, one can choose v>0 and τ > 0 such that
\λ\<v and |Arg/|<(π/2) + τ imply \g(λ,ζo) — ζo\<a so that

(Co -k2)'1 G(/c2, x, ζ0) = Γ2(k2, λ, g(λ, ζ0)) (Co - k2yx (42)

and

(Co - k2) F(/c2, /, g(K Co)) = (Co - k2) G(/c2, λ, ζ0)'' (43)

are both analytic and bounded in

4. The Four-Point Function

The Bethe-Salpeter kernel K(x 1 ,x 2 ;x 3 ,x 4 ; A, ζ) has been studied by Spencer and
Zirilli in the φ\ model and, in the general framework proposed by Symanzik [18],
by Bros and Lassalle [1,2,16,17]. (See also [5].) This is a Euclidean invariant
tempered distribution over (IR2)4 which, considered as a kernel, satisfies the
equation

SlRQ. (44)

Here Si is considered as also defining a kernel and

We denote

K(k,p,q,λ,ζ) = (2πΓ 6 J K { x v x 2 x 3 ,x 4 λ,ζ)

d2(xί -x2)d2(x3 -x4) (l/4)d2(x1 + x 2 - x 3 - x 4 ) .

The methods of Spencer [16] apply without modification for sufficiently small
complex λ with ReA>0. In particular they provide the following theorem:
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Theorem 6 [16]. Let ζ0 >M2 be fixed. Then for any sufficiently small / > 0 , there
are constants α>0, C>0, ε>0, such that, for all real ζ with \ζ — C0 |<α, K is well
defined as an analytic function of fc, p, q, and λ in the domain

|Λ|<ε,ReΛ>0} (45)

for any 0e[0,1], and in this domain,

\K\<\λ\C.

In the intersection of the domain (45) with

/ ^ \ / ^ - η } , (46)

K may be obtained by solving the integral equation (44) in momentum space, with
a purely Euclidean integration variable, as explained in [1] in fact, for sufficiently
small | i |, this can be done by using a Neumann series. Since, in the relevant domain
HA can be analytically continued in ζ in the disk {ζ\ \ζ — ζQ\ <α}, with appropriate
redefinition of α, the same is true for K (provided k is in (46)). Analytic completion
then shows that, (for suitable redefinition of ί and β > 0) K is holomorphic, and
bounded by C'\λ\, in the topological product of (45) and {\ζ — ζo\<β}. It is then
possible to substitute ζ = g(λ,ζ0) in K, i.e., to define

K\K P, q, K Co) = K(k> A & K 0(k Co))

which, for fixed ζ0, is again analytic and bounded by C"\λ\ in the domain

•0}, (47)

with possible redefinition of constants.
The original four-point function can now be reconstructed, and its analyticity

extended, with the help of K (or K') [1,2,17]. We briefly recall the principle of this
method. Let

,n , x l(k \2 \ llk Y
R 0 ( k , p 9 λ , ζ 0 ) = G k + p , Λ , ς 0 G - - p , / , ς 0 .

-pj, | k \ ί k

L'(k, p, q, A, ζ0) — R'0{k, p, λ, ζo)H'4(k, p, q, λ, ζo)R'o( — k, q, Λ, ζ0)
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Then, by (44) and a straightforward analytic continuation, the equation

ί/(/c, p, q, λ, Co) = K'(K P, q, K Co)
2Z (48)

holds in the intersection of the domains (46) and (47), with the "contour <ίί" taken
as the Euclidean space in the variable Z, i.e., < ^ = { Z | R e Z ° = 0 = ImZ 1 }.

We now fix fc = (σ,0), and interpret (48) as an equation for L', given K'. The
analyticity of K' in the domain (47), the bound \K'\<C"\λ\, and (43), allow the
solution of (48) to be obtained as a Neumann series, the integration contour being
deformed as σ varies, as explained in [1,2]. (Alternatively, the methods of [5,17]
can be used.) The result is that L', as a function of σ, p, q, λ, is holomorphic and
bounded in

| o ^ l / c 7 - ^ } , (49)

where the constants v >0, y > 0 have to be chosen sufficiently small (ί can be fixed
arbitrarily small).

The domain Q)(y) is a two-sheeted domain which can be described with the help
of the variable w = (σ 2 -4C 0 ) 1 / 2 \2{y) is the (ramified) image of

{ w | 0 < R e ( w 2 + 4 C 0 ) 1 / 2 < 4 | / C ^ - 2 / , I m w > - 7 } .

Note that {w|Imw>0} corresponds, in the variable σ to the domain
{σ|σ2^4C0 + R + } Of course L is also analytic in the domain obtained from (49) by
changing k to —k. The fact that the Riemann domain srf goes beyond the "physical
sheet" is essential for our purposes. Indeed we know from (14) and from Lemmas 3
and 5 that, in the domain

{fc,p,ςf,κ|μ|<i;JArgΛ|<(π + τJ/2Jk| + |p| + | q | < i ] / ζ ^ } , (50)

— Lf(k,p9q9λ,ζ0) is holomorphic and bounded in modulus by (Const.)''+1(r!)2.
O Aj

Fixing k = (σ, 0) we may analytically interpolate between the domains (49) and (50)
and obtain the existence of τ(σ,p,g)>0, z/>0 such that L is holomorphic in

σ,p,g)}. (51)

τ(σ, p, q) tends to 0 as (σ, p, q) tend to the boundary of their allowed domain j / , but
is strictly positive inside. Furthermore the domain (51) extends in an obvious
manner through the Lorentz invariance of L to a domain %'. The mechanism

described in Sect. 1 ensures that, at all (k, p, q)e J/'= [J Λst.JJ is Borel
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summable as a function of /. There remains to prove that this implies the Borel
summability of the two-particle 5-matrix in the purely elastic region. Let (k, p, q)
be a physical point on the mass-shell, i.e.,

We may, for instance, choose fc = (σ,0). Then the domain stf' contains a full
complex neighborhood of this point (the part of this neighborhood with Im/c2 > 0
(resp. Im/c2<0) being taken in the physical (resp. second) sheet). This neigh-
borhood intersects the mass-shell. Thus the S-matrix is analytic in a neighborhood
of the given point on the mass-shell and, by the same arguments as in Sect. 2, is
Borel summable in λ at λ = 0.
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