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Bloch Electrons in Constant Electric Field

F. Bentosela*

Department of Physics, Princeton University, Princeton, NJ 08540, USA

Abstract. The motion of a conduction electron of a crystal in a constant electric
field is studied. It is shown that the modulus of the wave function in p-
representation is well approximated by a periodic function for times smaller
than several hundred periods.

The aim of this paper is to study the evolution of a wave packet describing a Bloch
electron under the influence of a constant electric field, as a first step to understand
from first principles, the electrical conductivity of crystals.

Contrarily, to the free case, in which the momentum average of the particle
grows linearly in time as we can easily see from the expression: e~

ι(p2 + e^x^t

= e-ieWt*l3e-iesXίteie&Pt*e-itp^ we find that in the presence of a periodic potential,

V(x\ the particle moves to a certain extent, periodically in the crystal.
More precisely, the probability the particle has a momentum in the in-

finitesimal volume [p, p + dp] is at times ί, t + T, t + 2T, almost the same, as ψt(p)
can be divided in three parts tpί(p) = ι/;J1)(p)-l-ψp)(p) + ι/;ί

(3)(p) and it exists

T= h— such that:

(1)

(2)

α and v are such that α-hvT is much smaller than 1. This result confirms the
heuristic approach of the problem, given by the solid state physicists [1-3] when

they suggest to replace the classical Newton law — = e$ by — - = eS where k, the

crystal momentum, is an element of a torus.
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Let us recall some general properties of the Bloch Hamiltonian HB = --

+ V one can find in [4-7, 9]. In the "p-representation" the action of the
hamiltonian on a function tpeL2(IR3, d3p) is given by:

(HBψ)(p)= ^~ v>(p)+ Σ 7κV(p-K) S
ZM κ

where Vκ are the Fourier coefficients of V(x) - { V(x + R) = V(x) if ReL (direct
lattice). Calling HJ- = {KeIR3|K R = 2πrc, VReL} the reciprocal lattice we have:

Θ

7(x)= £ Fκe
ίKx L2(IR3,d3/?) is isomorphic to f /2d3/c where /2 denotes the

KeL-1 B

usual Hubert space of sequences, and IB the Brillouin zone (B= {pelR3 |p is nearer
to 0 than to any other point of L1}); a general point of IB is called k, a crystal

momentum. Let H(k) be the operator of /2 : (#(k)w)(K)= u(K)
2M

Θ
+ Σ JκΉ(K-K'). Then, HB is unitarily equivalent to the direct integral j H(k)d*k.

K IB

H(k) has a pure point spectrum: E^k), E2(k)...£M(k), . . . . Calling {w^(K)},
(w^K)}, . . . (w|j(K)} the corresponding eigenvectors, we can construct, by varying k
in IB, wneL2(lR3

5 d*p) defined by:

if p =

Writing En(p) = En(k] if p = k + K, we get:

(HB wj (p) - |- wn(p) + Σ ̂ (P - K) - £Π(p) wn(p) .
ZM K

It can be easily seen [6] that wn are the Fourier transforms of the so-called
Wannier functions.

This "Wannier function" permits us to construct an unitary transformation
between L2(IR3) and ΰ(N x B) given by :

C7B:

To study the evolution of a particle under the semi-group generated by H = Hm

ί (where e^x^ is the potential associated to the electrical field S) we will use
the Trotter formula :

eί(A + B)t _ s_ Jjm ΓgiBt/m e ^Mί/m-m

1 To simplify the text we will use the same characters to denote the operators in the "x" and in the
"p-representation"
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There are several possible choices for A and B. The most natural one is to take :
A = HE and B = e/xl but it leads to a constant v in formula (2) which is such that
vTis of the order of 1 then we cannot conclude that the particle motion is quite
periodic.

We will split x1 into two parts: xi=x\+x'[ and take A = HE+e^x'l and B
= e/xf[, x\ will be the multiplication by the periodic function which is equal to x1

in the first unit cell.

Lemma 1. The operator H' = H^+e$x\ has analogous properties as HE. Calling
Hf(k) = H(k)JreS>xr

1(k\ H' is unitarily equivalent to

@
$H'(k)d3k.
B

Each of the H'(k) has a discrete spectrum.

Proof. As we know that (H(k) — ζ)'1 is a compact operator [4]. (H'(k) — ζ)"1

- (H(k) - 0" * - (H'(k) - CΓ 1 eΛcΊ(k) (H(k) - 0" l is also compact, then H'(k) has a
pure discrete spectrum.

Let us call vv/ the "Wannier functions" associated with H '; any function

/eL2(IR3) can be decomposed on M/ :/(p) = X^(p)w^(p) with, α^(p) = £ vv/(p + K)
71 K

/(P + K).

We want to study the evolution of a wave packet which belongs to PCZ?(IR3), at
time ί = 0. ("c" refers to a special band called the conduction band, which is the first

Θ

not entirely filled band, see [1]); Pc= J Pc(k)d3k. Call P'c the analogous operator
B

corresponding to the modified conduction band, i.e., to the eigenvalues of H'(k),
E'c(k), which are derived from Ec(k) when we apply the perturbing term eS'x'^k) to
HE(k). Then φePcL

2(IR3) can be written in the form

We consider first the evolution of P'cψ in Theorems 1 and 2 and give an estimate
of \\ψ(

t

3)\\ = \\Q~ίHt(l -P'c)ψ I I = ||(1 -P'c)ψ\\ in Theorem 3.

Theorem 1. Suppose the eigenvalues, E'c(k), of H'(k) are non-degenerate2 then

t/;51)(p)= lim Γp'e-
ie*x'M>»e~ί(HB + effχUtlmP'~]mw

m->oo c

is such that for almost every p :

2 This assumption guarantees that H/ is an analytic function of the variable p. Tf one starts with a
conduction band separated by gaps from the others, as it occurs practically often for sufficiently small
(f, considering e£x\ as perturbation, we get the same property for the modified conduction band, £^(P)
(In [10] one can find some sufficient conditions on the periodical potential to have a non-degenerate
lowest band; see also [8]).
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Proof. The way of proving the result is simply do to an explicit calculation of
^e-ie£X'ίt/me-ί(HB + egX\)t/mp,jm an(j Q{ fa j — ̂  when app\^ tθ P'cψ I

(pf

cψ)(p)=<(p)w;(p) e ' t ( H B + e ' x i ) t / m> <(p)<r^(p)ί/mw;(p).

As x^ and x x commute

„ — ieSx'ίtlm _ „ — ieSxitjm ^ieS'x

m) e ~ ίE'c(p + eSllm] ' t/m(e ~ ίeSx'ίtlm w;) (p)

Pc^ n' (n _L 0£t Λ*Λ /> ~ ί£e(p + eStlm) t/m

K
<(p + e/t/m) e ~ ίE'c(* + eStlm}'t/m [̂  w;(p + K) (e~ieSx>ίtlm w^) (p + K)|

Let us call Xw;(p + K'(e-ίe^'1/ί/mw;)(p + K)- [/(p). As
K

<? I/ ,— p> p-ίegχ'{t/m -i(HB + e g χ Ί ) ΐ/mpf
^mΨ — ̂  cc c -1 cV7

- α^(p + eg t/m) e ' ί£<(p + e<r ί/m) ' ί/m C7(p) w^(p) ,

we get:

S2

mιp = <(p + 2eS t/m) e ' ίE'c(p + 2eStlm} 'tlme' ίE'c(» + e*t/m} ' t/m - L/(p + e<$ t/m) -

and

m / V m

As α^(p + ̂ T) = α^(p), to end the proof we have to show that:

-iE'cv + -egt t/m

lim Π ^ ^ m ' u P+
-

7 — 1
__ 1

m

The limit of

m ._,, / , j . \ . i ™ j , , I , j e \ e£t
T—f -lEclp^i—eSt\ t/m Σ Lc[p + —eSt\
| | / ? \ m I —.p eS j=\ \ m } m

as w—»oo is
j p + eSt

£ P

Consider now:

/-I
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Writing

m

= ι-^MΣw;(P+

7— ̂ +κ)[xχ](P+

7-

- ^ Kί/m)2 IX (P + — ̂  + K) [θ^x'ί X] (p + — eΛ + K)
2 κ \ m / \ m j

i ~Ί ~\ \ 3 //3 r / j-1

3! ^ K W c \ wι j 3Xl Wc V m

Then

m / _ ι \ m m 7 2 1

^ = Σ Log(i+r,)= Σ ̂ -f (TTθτ
/ J = l 7=1 Z U + t f f / J

The coefficient of - in this expression is bounded above, in fact w'c is analytic so it

belongs to the domains of xϊ, x'ί2 = xf — 2x1x
/

1+x/

1

2 and X j 3 = χ^ — 3x2

ix'
e<^t\s

- — , 5 = 3, 4, 5, 6 are also bounded

aoυve, men;

m m p + eSt

Jim Σ Log(l + Y}) = Jim Σ 1} = - i j Σ <(p' + K) [x'ί <| (p' +
m^G° m ~* °°

We get finally :

lim [pf e~ie

—

^ T - T Λ
WC(P) Q E.D.

Let us now introduce the following notations

o _ pi p~ίeSx'ίt/mp-i(HB + eSx'1)t/m p/
°m — J cc c ^ c '
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Then we have by the Trotter formula:

Recall that ιp(

t^ = s-lim S™ψ, now we want to prove that ψ(

t

2) = ψt — ιp(

t

ί) — ψ(

t

3}

grows slowly in time.

Theorem 2. Suppose the conduction band is separated from the others by a gap, ΔEC,
ΛT< \

S< -, then \\ψt — ιp(

t

ί}— ψ(3)\\ ^vί, Vί< -, where v depends essentially on $
I 11

on ΔEC.

Proof. Expanding (Sm+ Tm + Pm + I^)mP'c we get terms which can be represented by

diagrams, for instance,

573/1 τJ2PSjl ί/ι +/0 + /0 =m —2) will be represented by:m m m mm v i ^ z « / J ' l J

i n t e r v a l s

As HSif/iT^/ si}!! ̂  ||/i|| -1|/;|| to get an upper bound for ||(Sm + Tm + Vm + I^Γ -
it suffices to count the number of diagrams.

with 1 "up" '— — —' } ' - ' =i : m

with 1 "up" and 1 "down"

Then

with 2 "up" and i "down" . (

with / "up" and £ — 1 "down"

with /"up" and £ "down"



Bloch Electrons in Constant Electric Field 179

Let S = ). We see that

Now the idea is to prove that Jm ^ - — , then for all ί such that vί < 1 we conclude

that:

ιiV(o-v>ίfy-v^
Subclaim. Γm and /^ are bounded operators, the norm of which is less than a
constant, called v, times \t/m.

Proof. H / J J I - ||(1 -p'c)e-i**xW™e-WB + eSX,)tlmp^

Let (P'cψ)(p) = cι'c(p)w'c(p). Introducing the Fourier inverse operator .^~1 and a'cR

the Fourier coefficients of a'c : (^ ~ l P'cψ) (x) = £ <^R(,^" ~ * vt/) (x — R). Then:

.-P'c)e-ίe*x'{tlmP'cψ\\ =

As e~ίeSx'{tίm = {-ie^t/mx'[ 01(x1)-\(e^t/m)2x'[2Θ2(x1) (Θ1 and Θ2 are, like x';,
constant in the intervals ]nα1,(n+l)α1[ and everywhere smaller than one).

-P>-ίe«r/mP>|^

lw'c) (x - R)

We can consider the right-hand side terms as generalised convolutions (see
Dunford-Schwartz, Part ΐ, Exercise 3, p. 527), then, for instance:

R

where

3 Here we designate by x'[ the x^-operator in the x-representation, i.e., simply, the multiplication
operator by xί—x'l
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As M/(p) is analytic in the strip |Imp| < A (see Appendix), (3F ~ 1 wc) (x)^'lx|e L2V,4'< A,
then ̂  exists, furthermore it is small because x'ίθ^x^ — R^^R^ is equal to 0
in the first unit cell, i.e., in the region J^~ 1wc is large.

A crude estimation of Jί will give us :

ά \ b> 1l

Using Cauchy theorem and the fact ||w^( +ipo)\\L2 = l, V|p0|<,4 it is possible to
choose A' <A in such a way

ί |(̂ ~
| y | £ i

Then:

|y |>ι

<2| a ι / f
~ l |y |>ι

2π

Numerical Estimation of vT

AEC, φ4eV — 6 10~19 J (gap between the modified conduction band
and the others)

| a ι |#5A-5 KΓ1 0m (a^. direct lattice vector)

- .
\ 1/5

Another estimation can be obtained if we consider the L.C.A.O. approxima-
tion [11]. This approximation, valid for a lot of materials, lead us to Wannier
functions very near to the atomic ones. For instance, S-bands will give us

_ M
wc(x) φ e ro where r0 is the Bohr radius, then

-ίiiiivi
J ly je r° 1

We now give a crude estimate of ϋφί3) | | = \\e~iHt(l—P'c)ψ\\ in :

Theorem^ \\ιp

Proof. |e-iH'(l-F>||=|(l-F>||.

As
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and Pcψ = ψ we get

then

181

Γ ' c B ~ ft —Z

Remark. Taking the same numerical values as above we find that

Discussion

In the presence of a periodic potential and an electrical field, we get a resonance
phenomena. In fact the preceding calculus show that ψt is well approximated by
the "periodic" function \p(

t

1} as long as ί is smaller than, say, 102 T and $ is smaller
than 107 V/m.

To discuss conductivity in crystals it is also necessary to consider the scattering
of the electrons by the impurities, the defects and the phonons. In general what has
been done is to consider a Boltzmann equation in which the effect of the periodical
potential is taken into account by introducing the effective mass of the electron,
i.e., to consider it as if was free, but with a different mass. We think it would be
interesting to introduce, in the case in which the period, T, is larger than the time
collision (i.e., in very pure monocrystals at low temperatures and high electric
fields), the dynamics that are described in the paper, in the Boltzmann equation.

We expect that the Ohm law, electric current versus electric field, would present
a saturation for high fields in these experimental conditions.

Appendix

As the conduction band is separated from the others by gaps larger than ΔE'C, it is
easy to prove that w'c is analytic in the region |Imp| <A where A can be calculated
in the following manner. H'(k) is an analytic family of operators acting on P, in fact
we have: ίΓ(k) = H'(k0) + 2(k—k0) K + k2 -k2,. Using the second resolvent equation
we obtain

(k2^

from which it is easy to see that as long as

-k2 + 2(k-k0)K)(#'(k0)-z)-
2M

<1

the spectral projector P'c(k) and consequently the eigenfunction {w^k(K)} are
analytic in k.

Condition (K) is satisfied if

1

dist(z,σ(ίf(k0))) M 1 (B)
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The second term in the left-hand side can be estimated using again the resolvent
equation:

1-

.+
lZ~ζl

K

1 +
dist(z,σ(H(k0))) ,kc

As ξ is, in a large extent, arbitrary, the only condition it has to satisfy is to be
/ \ l / 2 / i \ 1/2

sufficiently negative so that ΠΓ | V^\ 2 / ̂  — — - -^ \ < 1 we choose

it in such a way to minimize ,a/(ξ, k0) and call j/(k0)= inf j/(ς, k0). So(B) is satisfied
if k is such that

M 1

i.e., if ke(Γ, belongs to a certain ball ^ko, centered in k0. Then the region of
analyticity of (w^(K)} is \J ^ko, or in other words A is the minimum over k0e£

k0elB

of the radius of the balls ^ko.
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