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Asymptotic Estimates on Products of Random Matrices

Theo Verheggen*

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903, USA

Abstract. We find upper and lower bounds for the transmission coefficient of a
chain of random masses. Using these bounds we show that the heat conduction
in such a chain does not obey Fourier's law: For different temperatures at the
ends of a chain containing N particles the energy flux falls off like N~112 rather
than ΛΓ 1.

1. Introduction

We study the transmission coefficient and the heat flux of an isotopically
disordered harmonic chain. Since the work we shall describe relates much to
earlier work [1, ...,6] we shall content ourselves with giving only a brief sketch of
the problem before describing the results.

The system consists of a harmonic chain of N particles with random masses.
The system is at either end coupled to a semi-infinite chain of identical particles
with unit mass (cf. Rubin and Greer [2]). These left and right parts of the chain are
described at ί = 0 by Gibbs equilibrium measures (for the semi-infinite system) at
temperatures TL and TR, respectively. They act as heatbaths for the particles of the
system, at sites 0 to N—l, whose masses are denoted by ntp O^j^N—ί. The
coupling between the particles is nearest neighbor, harmonic, non-random, and
the same for all particles.

For a system where there is a harmonic restoring force at every lattice point it
was shown by Spohn and Lebowitz [7] that starting from an arbitrary initial state
(ensemble density) μs(0) for the middle N particles, constituting the system, the
measure describing the whole infinite chain and therefore also μs(t) approaches, as
ί-»oo, a stationary state μs in which there is a steady heat flux J(N) through the
system. Their proof requires some restriction on the masses, but in any case for our
system the last statement follows from the explicit calculations in [2] and [3]. For
a different system it was shown in [1]. In the system studied in [1] the particles at
each end of the chain are coupled to heat baths modelled by white noise whose
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covariance is proportional to the temperature of the bath and a Langevin damping
term.

When the masses πip O^j^N — 1, are arranged in a regular manner, i.e., m. is
periodic in ; with period n as in a perfect crystal with n particles per unit cell, then
the steady state heat flux J(N) has a well defined non-vanishing limit J(oo) as

T —T
N-+CO. Hence if we write J(N) = κ(N) L R, where κ(N) is the "pseudo" heat

conductivity, then κ(N)~N as JV->oo, and Fourier's law which would correspond
to κ(N)-+κ, 0<κ<oo, does not hold for these systems [1,3].

The situation is quite different, however, if the system is disordered, i.e., if the
masses are random. In this case it was proven [1,3] that, as N-+oo, J(iV)->0 for
almost all mass distributions, that is κ{N)/N-+0. The question remaining then is
the precise behavior of κ(N) as iV->oo. For the system of [1], perturbation type of
computations by Matsuda and Ishii [8] and Visscher [17] gave for the average
heat conductivity (κ(N)} ~N1/2 resp. JV~1/2, depending on the boundary con-
ditions. These calculations while certainly not rigorous agree also with the results
of computer simulations [9, 17, 18]. For our system a rigorous lower bound
{κ(N)}^CN1/2 was obtained in [2], and computer simulations showed (κ(N))
~N1/2 [17]. Consequently it was shown by Papanicolau et al. [10] that for the
analogous continuous model, a line with a random index of refraction, for
O g x ^ L , κ(L)~Li/2. It is the purpose of this note to prove the result κ{N)~N1/2

for the chain with random masses. This will be done in the next sections following
a precise formulation of the problem. Since the results involve essentially getting
estimates on the norm of a product of random matrices, this question is discussed
briefly in the last section.

We assume that the random masses are identically distributed, independent
random variables, with probability distribution Pm(dm) which is absolutely
continuous with respect to Lebesgue measure. For the density μ(m) we assume that
μ(m)Φθ only if o o > m ( 1 ) > m > m ( 0 ) > 0 .

If My is the displacement from equilibrium of the/th particle, then the equation
of motion is

mjύj + 2ύj-ύj_1-ύj+ί=0.

For a plane wave with frequency ω travelling through the system

the Uj satisfy the relations

— mjω
2uj + 2uj — uj_ι —uj+1 = 0. (1.1)

Rubin and Greer [2], and O'Connor and Lebowitz [3] related the steady state
energy flow J{N) in this model to the transmission coefficient T(N, ω). For a wave
incident from the right T(iV, ω) is determined by the equation of motion and the
boundary conditions

ύj{t) = De~ί{ωt+kj) + Re " ί { ω t ~kj) j^N-ί,

ύj(t) = e-iiωt+kj) 7 ^ 0 , (1.2)

ω = ω(k) = 2 sink/2
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The transmission coefficient is T(N,ω) = l/D. Then we have, with Boltzmann's
constant equal to one,

<J(N)>=(4π)- 1(TL-TΛ)ίdω<T*T(iV,ω)>. (1.3)
o

Our intention is to show the existence of positive constants J _ and J+ such that

T —T J T ~T J

V ' ^ ^ w ^ ^ as N^- (L4)

Actually one can prove the existence of

lim iV1/2<J(Λ0>
N+OO
N-+OO

and calculate it explicitly, Papanicolau [11]. Since (1.4) already implies non-regular
heatίlow, we will not do this here. Also it may be possible to use our techniques for
more complicated problems, like the heat conduction in a strip, where it may not be
possible to actually calculate the limit. For the sake of completeness, we mention the
result for the case where <m > = 1:

lim 1 / 2 <(m~l) 2 > 1 / 2 έ (ί2 + ί) 1 / 2 cosh 2 πί*

2. Statement of the Main Estimates

In this section we state the main estimates, Corollaries 1 and 2, and show how these
imply our main result (1.4).

Corollary 1. There exists a constant c and a junction g(ω), independent of N, such
that for all N

g(ω) is continuous, positive for ω > 0 , and

Umg(ω)/ω2=go>0.
ω|0

Corollary 2. There exists an integrable function /(α/), Orgo/< oo, with a positive
integral such that

The first to consider this type of estimates were Pastur and Feldman [4] for a
continuous case. In that case the details for a rigorous proof were given by
Papanicolau [6]. In the next sections we give a proof of the corollaries, now we
show how they imply (1.4). In fact for Corollary 1 we only have to prove the
statement for ω < ω0 where ω 0 is any positive number because the rest is covered
by O'Connor's proof. In the next sections we will prove Corollary 1 for ω < ω0

where ω 0 is the largest frequency for which there are propagating waves, i.e., for
which with probability greater than zero 2 — mω2> —2.
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Corollary 1 says that for large N the energy transported is in a frequency band
[0,ΛΓ 1 / 2 ].

2 2Λ?1/2

o ^ ω ~ o \ \

g J e~9iω'2dω'<J+<(X).
o

Here grx is the positive minimum of g(ω)/ω2 for 0 ^ ω ^ 2 .
Corollary 2 implies that the contribution of the frequency band [0, N~1/2~] is

nonzero. By Fatou's lemma

2 GO / / /

]im_N 1 / 2$(T*T{N,ω)}dω^ J Jim_( T*T JV, - ^

3. Proof of the Corollaries

First we transform the 2-point boundary value problem (1.2) into an initial value
problem. Equation (1.1) can be written in transfer matrix form

VΣ-m.ω2 -11 Γ ^

Define two solutions w and Zj by

M , ,

UJ

Then it is just a matter of some messy algebra to prove that

+ (l+cos/c)2 M +sin/c.
1/2 / \ 1/2

Next we introduce for ωφO polar coordinates by

1 1/2 J = ^ + i C O S " T ~
(3.2)

^ 2 ^ = 2 ω < m > 1 / 2 r ; + l S m ^ i
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(3.3)

with

We also define

1 1
J j p j j r

The initial values for the polar coordinates are

φ = o ? r = 1, θ =n,q = 1 . (3.4)

<m>1/2ω
These coordinates may seem peculiar because of the factors . Indeed at

this stage a simpler choice would do as well. But later we will need this
representation.

Again it is a matter of simple algebra to prove the following estimates

where

α^minjl,

a7 =max

for 0</c<π

for

(3.5)

(3.6)

Now it is clear that the proof of the theorem depends on knowledge of the
asymptotic behavior of rN and qN.

We have

vN-l

(3.7)

Matsuda and Ishii [8], and Yoshioka [12] were the first to observe that a theorem
by Furstenberg [13] applies to these products of random matrices. The theorem
states that the norm of the vectors grows exponentially with N. This theorem has
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also been used by Casher and Lebowitz [1], O'Connor and Lebowitz [3], and
O'Connor [5]. We state their results without proof in Theorem 1. Theorem 1 and
the next theorem on large deviations, which we will prove in the next section, are
the basis of the proofs.

Theorem 1. With probability one

lim ρN = I(ω).
N-+ oo

lim η =I(ω).
iV-̂  oo

Here I is a function of ω only, with the following properties. I(ω) is strictly positive
and continuous for ω>0, and

<m2>-<m>
2

2 o / \ o v̂  ^ /

ωio co 8 (m) 8

Theorem 2. There exist a constant K and a function J(β, ω), βeJR, ω0 ^ ω >0, swc/ί
ί/zαί/or all ε>0, β>0, ω,N>0

P{ρN>I(l+ε))SKe~βNIil+ε)+J{β>ω)N, (3.9)

l i V, (3.10)

>". (3.11)

Here J(j8, ω) is a continuous function of ω, analytic as a function of β and

J(β?cυ)| _ =/(ω), (3.12)

J ( i S , ω ) = - ( ^ + l ) τ 2 ω 2 + O(ω3~<5),ω|O, l>(5>0. (3.13)
8 \2 /

J{β, ω) is convex as a function of β.

Proof of Corollary i. From (3.5) and (3.11) we get

6 ^ ^ " ^ ^ " 2 ^ 1 " ^ - (3 1 4 )

By (3.12) and the continuity of J and 7, it is possible for fixed 1 > ε > 0 to find βo(ω)
> 0 such that βol(l —ε) + J( — β0, ω) < 0 and is a continuous function of ω for ω > 0.
This with (3.14) gives us Corollary 1 except for the small ω behavior of g(ω). In
order to obtain the small ω behavior, we have to optimize the inequality (3.14) by
choosing β and ε optimal. This is a simple calculation using the small ω behavior
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of J and / from (3.8) and (3.13). The choice β = ε = ]/δ —2 is optimal and gives

Cϋ j 0

Proof of Corollary 2. First we rewrite (3.6) such that rN and qN appear in separate
factors

_ g g - l o g ( 2 +«2> &)-log(2 +oc2qN)

By Jensen's inequality

/ J 1 * J*(JV (β)\ >^e~ <ιog(2 + a2ι-N)> - Oog(2 + a2qN)>

— R " i V { ^ < l o g ( 2 + α2^)> + ^ < l o g ( 2 + α 2 g ^ ) > }

Next we construct upperbounds for the two terms in the exponent using the large
deviation estimates (3.9) and (3.13). Since the proofs of both bounds are completely
analogous, we prove only one. By splitting the expectation integral we get

~ <log(2 + a2e
2N^)} g 1 log(2 + a2e

2N^ + *)P(ρN g 1(1 + ε))

+ Σ U
7 = 1

Since α2 > |/2, as is immediate from (3.6), and since / is positive

log(2 + a2e
2NI{1 + jε)) g log(α2 + oc2 γl) + 2NI(ί + jε).

Substituting this inequality and rearranging the terms we find

1 <log(2 + α2 e
2 N ^)> g 1 log(α2 + α2 |/2) + 27(1 + ε)

and by (3.9)

~ <log(2 + α2 e
2N^)} ^ I log(α2 + α2 ]/ϊ) + 2/(1 + ε)

+ 2ε/X
eN{J(βtω)-βI{l+ε)}

We have the same estimate for ηN. Substituting these estimates in (3.15) we obtain
for 0 < ω < ω o

eN{J(β,ω) ~βl(l+ε)}

exp \ - 2N
2 I
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By the small ω behavior of / and J we find

lim
JV-+00

CO

Nl/ α2(l :exp- (1
τ2ω2 εKτ2ω2 e

e 8 - 1

(3.16)

Of course we can optimize this inequality, but to obtain Corollary 2 this is
sufficient. D

4. Proof of Theorem 2

From the definition of the variables φp θp rp q. and the dynamic Eq. (1.1) it is
easily seen that

2 ,
(2-mnω

z) τ- t a n f

and

\ l / 2

<m>1 / 2ω

ω
,1/2

(2-mnω
2)+ — - — i

(4.1)

-(4-mnω 2)sin^

(2 ) sin ^ - mnω
2 cos

2Ί 1/2

(4.2)

= rnχ(Φn,rnn)

We have the same relations for 0;. and q . By the symmetry of (4.1) and (4.2) we can
now consider 0^φn<2π, 0^θn<2π, i.e., we are no longer interested in the
distinction between (wj+ί,Wj) = (a,b) and (w j + 1,w7 ) = ( — α, — i>). We notice that
since the factor by which rn is multiplied to get rn + 1 is bounded above and below
by positive constants independent of mn and φn, we have that ρn, given r0, is
uniformly bounded, with the bounds independent of n, φ 0 , and m . Also we notice
that ψ(φ, m) is a monotonic function of φ and m, as a function of φ 1 — 1 onto. Now
it is clear that the random sequence {φj} is a Markov chain with transition
probability

P{φ,Φ)=\Pm[dm)Xφ{ψ{φ,m)) (4.3)

where Φ is an arbitrary Borel set of the unit circle, and Xφ is its characteristic
function. In the sequel we will denote the usual Lebesgue measure on the unit
circle by v( ).

First we prove that Doeblin's condition D (cf. Doob [14]) holds, which gives us
the ergodic properties of the Markov chain. (See O'Connor [5]).

Lemma 1. i) There exists an ε > 0 such that P2(φ, Φ ) ^ 1 — β whenever v(
ii) There is only one ergodic set, the transition set has measure zero, there are no

cyclically moving subsets for 0 < ω < ω o .
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This implies
iii) There exist a unique limiting distribution P, and constants γ and ρ < 1 such

that

\Pn(φ, Φ) - P(Φ)\ ̂  yρ" for all φ and Φ.

iv) P(Φ) is positive whenever v(Φ) is positive.

Proof. We have P 2(φ, Φ) = J J dm dm' μ(m) μ(mf) Xφ{ψ(ψ(φ, m'\ m)). (4.4)

Now consider ψ(ψ(φ, m'\ m) as a function of m' and m. Then it is easily shown that
the 2-dimensional gradient of this function has a positive lower bound /
independent of φ. So the Lebesgue measure of the set in the (m\ m)-plane that
contributes to the integral (4.4), which is

λ{Φ)= JJ Xφ(ψ{ψ(φ,m%m))dm'dm,

is bounded by

(m(i)-m(Q))

/

Next we invoke a well-known theorem from integration theory, see, e.g., Gikhman,
Skorokhod [15, p. 71]. This gives us Doeblin's condition D. For the proof that
there is only one ergodic set, the whole set, and for the absence of cyclically moving
subsets we refer to O'Connor [5].

The conclusions (iii) and (iv) are now immediate from Doob [14]. •

Now we follow Pastur and Feldman, and consider

(eβNρN) and (eβNηN}9 βeJR.. (4.5)

Then it is easily seen that we have

P(ρN>I{l+ε))Se-βNIil+ε)(eβNρN}, β^O. (4.6)

P(ηN^I(l-ε))^e-βNIil-ε)(eβNηNy, jS^O. (4.7)

The next step must be an estimate of the expressions (4.5). For that we introduce
the following operator, defined on the space of continuous functions on the unit
circle with supnorm.

Af(Φ) = ί PJdm)χf(φ, m) f(ψ{φ, m)) (4.8)

where ψ(φ,m) is defined by (4.1) and χ(φ,m) by (4.2).
The dependence of A on β and ω will usually not be indicated. Now it is easily

checked that

Anf{φ) = Eφ(efi»°»f(φn)) (4.9)

where Eφ stands for the conditional expectation given φ0 = φ, and ρn is defined by
(4.2) as a function of the phase variables by taking r0 = 1. Thus

(eβNeN}=ANl(0), (4.10)

(eβNηN} = ANl(π), (4.11)
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where 1 stands for the function identically 1. To construct estimates we must have
information about the spectrum of A.

Lemma 2. i) The operator A is positivity preserving, and moreover strongly positive,
i.e., for every / ^ 0 , / φ θ , there is an m such that Amf is strictly positive. The strong
positivity we have for 0 < ω < ω0.

ii) A2 is compact.
iii) A2 depends continuously on ω fin the norm sense) for ω > 0 , A depends

analytically on β.
Proof, i) Positivity. The positivity preserving property is trivial. Since χ ^ χ o > 0
we have

T a k e / ^ O , / φ O . Let Φ be such that f(φ)^δ>0 for φeΦ. Then

Next we use Lemma 1 (iv) saying that P(Φ) is positive. So by Lemma 1 (iii) for
sufficiently large n Pn(φ, Φ) is positive, which proves the strong positivity.

ii) Compactness. We use an idea due to O'Connor [5]. Since, however, we
could not verify all the steps in his proof, we will give a proof here. Because the
continuous functions are dense in L1 we can approximate the operator A in norm
by operators with a continuous density μ. We prove that A2 with continuous μ is
compact. In (4.8) we use ψ as integration variable instead of m, with m = m(ψ, φ):

Aftφ) = j dxp^ , m(ψ, φ))f(ψ).

dip
Now it is easily checked that —- is bounded away from zero if

dm

ε>0.

So we define two continuous functions g^φ) and g2{φ) such that

and such that

^1(0) = O if

g2{φ)=0 if

ω

2 ω

<ε

>2ε.

Then by the Arzela-Ascoli theorem for any bounded family fn the family gγAfn

contains a convergent subsequence, and, of course, AgxAfn contains also a
convergent subsequence. Next we consider Ag2Afn = Ag2fή and show that this
family contains a convergent subsequence.

= ί dmμ(m)χβ(φ,m)g2(ψ(φ,m
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Next we change variables again. Now we avoid the dangerous neighborhood
2

where tan—- + -——^— <<5, since there g2(ψ(φ,m)) = O as is easily checked. (We

note that this procedure is closely related to the procedure we used to prove
DoebJiu's condition.)

iii) Continuity Properties. The dependence on β is trivial. By a procedure
similar to the one we used to prove compactness, we prove that A2 depends
continuously in norm on ω for ω >0. (If we would not have introduced an ω in the
definitions (3.2-3), A itself would depend continuously on ω, as could be shown by
a change of variables m' = mω2.) •

Now we are in the position to use the Krein-Rutman theorem [16]: A2 has a
unique strictly positive eigenvector with positive eigenvalue which exceeds all
other eigenvalues in modulus. We denote the eigenvalue by e2J and the eigenfunc-
tion by fo(φ). Due to the continuity properties of A and the fact that the
eigenvalue is isolated, we have that J(β, ω) depends continuously on ω, and so does
f0 (in the norm sense) for ω >0. J is analytic as a function of β and so is /0. So we
have for ω>ω1 > 0

/ /
min/ 0 minfπ

This with (4.6) and (4.7) gives us (3.9), (3.10), and (3.11). Next we prove that

We use the following representation of J

J(j8,ω)= lim -logAnfn.

Since J(0, ω) = 0 we must prove that

lim lim —?rloe)A
nfn^=I.

Since / 0 depends analytically on β the order of the limits is not important. Next we
use the representation (4.9)

Since for fixed n, nρn is uniformly bounded, and/ 0(ω = 0)=51, we find by first taking
the limit β-+0 and next rc-»oo

lim l im-—log^ π / 0 ^ n m < ^ > = ̂
n-^ooβ^Onβ n-oo^"7

by Theorem 1.

The only part of Theorem 2 that remains to be proven, is the small ω behavior
of J(β, ω). We do this by a perturbation expansion. The proof of this expansion is

the reason for the introduction of the factors in (3.2-3).
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Without the factor ω the problem would not be regular, and without the <m>1/2

only solvable for (rn) — 1.
By doing the perturbation expansion in a formal way we find

and

Now consider

f(φ)=l+ωh(ψ).

Then constants /_ and /+ exist such that oo >/+ S:/_ >0 for ω sufficiently small.
So

and

Next it is not difficult to verify that

therefore

for y>0, 5>0, and ω<ω2, ω2 sufficiently small.
Induction then gives

and

This together with (4.6), (4.7) and (4.10), (4.11) gives us the small ω part of
Theorem 2 and the proof is complete.

5. Discussion

The asymptotic behavior of products of random matrices, which is the general
framework in which the present work best fits, is a subject currently of great
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interest in a variety of fields ranging from studies of spectra of random systems [8],
[19], to finding models for turbulence [20]. We will discuss here briefly our work
in this context. Let M = (mo,m1,...) be a point in Ω, the space of semi-infinite
sequences with m7e IR+. We put on Ω the product measure of Pm(dm) and ask for the
asymptotic behavior of the random variable, the two by two matrix

j

or of the norm \\SN(M)u\\ where u is a real non-zero vector. We have specifically
that

Sj(M) = S{mj) = K-λXjU eSL(2). (5.1)

Here λ = ω2σ and χ . = — ,̂ a random variable with unit dispersion. X is the fixed
•̂ σ

matrix

2 - 1

and

l\ 0

To obtain our results about the heat conductivity we needed and were able to
prove (or find in the literature) the results stated in Theorem 1 and 2 of Sect. 3
about

for two particular choices of u. The results are actually independent of the specific
choice of u. But they do depend on the following facts. For Theorem 1 we need (i)
detS(mj) = l (ii) certain group theoretic properties which for the form given in (5.1)
are satisfied whenever the support of Pm(dm) contains at least two points (possibly
negative) [12], [13]. For Theorem 2 we used Theorem 1 and needed more in-
formation about Pm(dm). In particular important information was obtained
about the behavior of ρN for small values of ω and about large deviations.

The question is: how much of Theorem 1 and 2 really depends on the specific
assumptions, i.e., how much would remain valid for more general matrices K and
U (not necessarily two by two). This would be important if we want to apply our
methods to other problems like the heat conduction in a strip which can also be
treated by the transfer matrix approach.
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