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Abstract. In this paper we study the time evolution of a regular class of states of
an infinite classical system of anharmonic oscillators. The conditional pro-
babilities are investigated and an explicit form for these is given.

1. Introduction

One of the main problem in non equilibrium Statistical Mechanics is to study the
time evolution of states (i.e. probability measures on the phase space) of infinite
interacting classical systems. A natural way is to consider the time evolution as
described by a flow on the phase space arising from the Newton law of the motion.

The problem of constructing such a flow was solved in a satisfactory way for
some classes of particle systems in [1], [2] and for anharmonic oscillators in [3].
Other results which are specifically related to the equilibrium situation were
obtained in [4-8].

The next step is to study the time evolution of states, implemented by the flow
on the phase space. An approach proposed in [9] and [10] is based on the
hypothesis that a class of physically interesting states, the Gibbs states with
respect to some Hamiltonian is preserved in the course of the evolution (the
equilibrium states are precisely those states which are Gibbs with respect to the
Hamiltonian governing the motion). The main advantage of this approach is that
the change in time of the Hamiltonian of a given Gibbs state is described in a
simple way, directly referred to finite-volume dynamics.

Such an approach was studied in [9] in the case of one dimensional hard core
system interacting via a two body, bounded, short range potential. One of the
main points in [9] is the use of the cluster dynamics that, roughly speaking, says
that such systems behave in time as if they were formed by non interacting groups
consisting of a finite number of particles.
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In this paper we study the time evolution of Gibbs states for a special class of
anharmonic lattices in which the self-energy dominates over the interacting part.
The interest of the anharmonic systems in the solid state physics is well known (see
e.g. [11]). The dynamical flow we study here was investigated in [3]. Even if the
dynamics of such systems is not, obviously, of cluster type, nevertheless it exhibits
for many respects a simpler behaviour than the dynamics of continuous particle
systems.

The plan of this work will be the following: in Sect.2 we introduce the
notations and formulate the results; in Sect. 3 the proofs are given; the Appendix
is devoted in underlining some dynamical property we need.

2. Notation and Result

We consider the system of anharmonic oscillators on the v-dimensional cubic
lattice Z*. The phase space of a single oscillator is assumed to be R' x R*.

Definition 2.1. The phase space of the system under consideration is
X={(p;4,)iczvlq;€ R, p;eR'}. Points of X are denoted x, y, etc. Forevery ACZ", X ,
denotes the phase associated with the region A; X,={(p,q,);. ¢,€R*, p;e R'}.
Points of X, will be denoted by x4, y,,, etc. The space X and X, are equipped with
the natural Tychonov topologies. The corresponding Borel g-algebras are denoted
by % and %, and are the g-algebras generated by the variables (p;,q,;);.,» and
(297

Definition 2.2. A state p of the system of oscillators on Z' is a probability measure
on 4. Since X is a Polish space, (¥, #*, u), where #* is the completion of # w.t.r. p.
is a Lebesgue space. [12].

Given a partition ¢ of X, we say that £ is measurable if there exists a countable
family {f;...f, ...} of measurable functions, such that every atom a, of the partition
¢ is labelled by aeRN, and a,={xeX|f (x)=0,...a=(;... a,...)}.

Given a measurable partition &, let us consider the factor space X/¢ whose
points are the atoms of the partition. The canonical map IT:X—X/¢ which
associates at every point of X its atom, determines the measurable sets on X/ as
the sets whose inverse image is measurable in X.

Let y, be the measure on X/ defined by p(B)= (Il “}(B)). There exists a
family {u(-la),acé} of a measures on atoms aeé such that each (a,u(-|a)) is a
Lebesgue space. Furthermore, for all Ae #*, Anais p(-|a)-measurable for p.-a.a.
ae and:

wA)= xg . ulda)yu(Anala). (2.1)

Such a family {u(-]a)} is unique mod 0 (see [12]) and is called the system of
conditional probabilities of the state u w.r.t. £.

In the sequel we shall use the following property of the conditional
probabilities.

Let us consider two partitions, ¢ whose atoms we denote by a, and # whose
atoms we denote by b. Assume that # is a refinement of ¢ that means that every b is
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contained in some a. Then denoting by a(x) (or b(x)) the atom of type a (or b) which
contains the point xe X, it is not hard to prove that for p-a.a. xe X, the following
equality holds:

u(Ala(x)= [ p(Alb()u(dyla(x)). (2.2)

a(x)
Let us fix a bounded region A, and consider the following atoms
a,() = {ye X|(x) 4e=(¥) e} -

Here (x),, denote the restriction of x to X,,, QCZ". Let us consider £ 4, the partition
given by the atoms a,(x). ¢ is obviously measurable. Every atom a,(x) may be
thought as X, hence u(-|a,(x)) induces a measure on X, still denoted

pldx gla,(x)) = p(dx 4](x) 1) -

Then for any bounded measurable function f:X¥—R (2.1) reads as

{ u(dx) f(x)= i wdx) xf pldx 41(x) o) f(x 4 O(X) o). (2.3)

Definition 2.3. Let h be a real valued function on the set X¥= () X, (4 finite)
AcCzv

such that h|  is Z-measurable for all finite A CZ". Given finite subsets A, A'CZ",
AnA'=& and a pair (x,x,), x,€X,, x,€X,, we set
h(x 4)x' ) =h(x Ux').)— h(x ) — h(x,) . (2.4)

We say that p is a Gibbs state corresponding to the generating function h, if for any
finite ACZ®
i) the limit
h(x 4/(x) 4e) = lim hx (X) gma)s  x4€X,, x€X (2.5)
exists in the sense of convergence in measure (4 x y) over the cartesian product
X, x X, where 4, is the cube [ —n,n]", ne N, and 4 denotes the Lebesgue measure

on X,;
ii) the integral

Eh;x)= xf dA(x4) exp[— hlx ;) — h(x 4(x) 4)] (2.6)

is finite for y—a.a. xe X and any finite ACZ";
ili) For any A CZ" the conditional probability system for u w.r.t. £, is given by

d(x
(1) )= 20 o Bl ) hx 1) . @7)
Z,(h;x)
Definition 2.4. The function H : X —IR! defined by
H(x, =Y (p?/2+kq? +Aqt—Jq; Y qd> (2.8)
icA jednv,

where k,A>0, JeR', v,={jeZ’|li—jl=1}, li—jl= Y li,—j,) is called the
a=1
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Hamiltonian. The Hamiltonian (2.8) describes a physical model of anharmonic
oscillators (with unitary mass). We choose a particular Hamiltonian for the sake of
simplicity, but all our considerations are straightforwardly valid in the case of all
Hamiltonians where the self-energy dominates the interacting part (see [3]).

Definition 2.5. By {S,tcR'} we denote the group of transformations X(®— ¥(®
representing the motion of a finite system of oscillators with Hamiltonian H.
Clearly, S,X,=X, for every t and finite ACZ".

Definition 2.6. For every ne N put A, =[—n,n]" and denote by {S™,tcIR'} the
following group of transformation X—X. Given xe X, (S{"x) 4, =x 4, and (S{"x)
represents the solution of the Hamilton equations for the oscillators in A,
interacting via the Hamiltonian H and moving in the external field generated by
the frozen oscillators outside A,,.

Definition 2.7. Let ¢ : N—[1, c0) be an arbitrary increasing function such that ¢(k)
>c,p(k+1) for some constant ¢, 0<c,<1.
We denote £, : X—[1, 00) the function given by

1 .
&L (x)=sup —— sup ¥ 2.9
(P(X) kenI\? qo(k) ieAI: (X) ( )
where
POx)=p}2+kq?+ gt +1. (2.10)

We put X = {xeX|.Z,(x)< + 0}
All the dynamical properties we need in the sequel can be summarized in the
following

Theorem 1. i) For all xe X, and teR' the limit
Spx= lim S¢x (2.11)

exists in the product topology on X. S,x is one parameter group of transformations on
X, and moreover

2,(Sx) v sup Z,(S"x)| e (x) (2.12)

and for all bounded QCZ’.

2,[8(x)qux)g] SeMZ,(x) (2.12)
where a does not depend on x, t and Q.

it) If @' :IN—[1, o0) is an increasing function such that

¢'(k)>c, @'(k+1) for some c,, 0<c,<lI
and

(p’(k)/go(k)mao, then for all xeX,
lim L (S"x)=2L,(S,x) (2.13)

and for every z>0 the convergence in (2.13) is uniform for such x that £ ,(x)< .
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iii) Given xe X, the following bounds hold. For any n and i€ A,
'qgn)(t’ x)- qi(ta X)l Vv ngn)(t, X)-' ﬁi(t’ X)l

_ (@ pm) 2,y

- (n—k)!

n>k. (2.14)

Here (¢\"(t,x), p\"(t,x)) denotes the coordinate and the momentum of the
i-oscillator in S{x, (g(t,x), p{t,x)) the coordinate and the momentum of the
i-oscillator either in S"'x or in S,(x),, ,Ux 4. with n’=n and a, is constant for any
fixed t.

For any k, s, ne Nwith s<k<n and x,, x/; eX,, ieA,\A,:
16§n)(t, XASU(X)Ag) - fﬁ")(t, X’ASU(X)Ag)]
v P, X 4, (X) 4e) — (e, Xy (%) gl ‘

< (@[ Z(x4,0(x) 1) v L (x4 0(x) 1)1 p(2k))F 7+
= (k—s)! '

(2.15)

Here g{"(t,x) and p{"(t,x) denote the coordinate and the momentum of the
i-oscillator either in S”x or in §(x), Ux . and a, is constant for any fixed .
For any k, n, ”'e N such that k<n, n' denoting (g{"*(t,x), p{™*(t,x)) the
coordinate and the momentum of the i-oscillator in (S,x, | ,)U(x;, | 4), such that
ieA\A,_; and A4, DA, A’ then:
lgi™ (e, x) = g™ e, )| v [p{" D, x)— p{™> (2, )|

1

’ d+1
< (aspln v 233“’(” (2.16)
where
min(n—k,n' —k) if A=A n=£n
min(k—s, k—s') if A4 n=n
d=4q . ) (2.17)
min(k—s,k—s' n—k,n'—k) if A+A nEn
o0 if n=n A=A4".

ay is constant for any fixed ¢, and s,s'=min{le N|4,> 4, A}, 5,5 <k.

The ideas of the Theorem 1 are essentially contained in [3]. We outline the
proof in the Appendix.

In this paper we study the evolution

p=SFu=uS_,") (2.18)

of a Gibbs p w.r.t. a generating function h which satisfies the following conditions:
1) There exists a constant ¢ >0 such that for every finite ACZ" and x,CX,

h(x )= cH(x ). (2.19)
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2) There exists an integer r and a function y : [0,r)—IR™ such that for any finite
A, A'CZ with AnA'=® and all x,eX, and x/; € X, one has:

h(x 410 ) = h(X 41X 5 4 47) (2.20)
Ih(x X< Y ZA w(li—NLLx 0) + Lx,)] (2.20')
ied i'ed’

where 04 ={ieZ\A|Jje A :|i—j| =¥},
Here £%(x,) is defined via (2.10) replacing x by x,,.
3) Finally, we require that there exists a constant ¢ such that:

Ih(x 1) = h(ey)l = el Al max [£O(x 1) v Z(x),)]

+max Llg;—qil v Ip;—pill. (2.21)

e

In the Appendix we prove:

Theorem 2. Let h satisfy the condition 1)-3) above. Then there exists at least one
Gibbs state u corresponding to h such that

wx,)=1 (2.22)

for ¢'(k)=(logk) v 1.
Theorem 2 allows us to define the time evolved state p, via equality (2.18).
Now we can formulate the main result of this paper.

Theorem 3. Let u be a Gibbs state corresponding to a generating function h
satisfying the condition 1)-3), and such that (2.22) holds. Then p, is a Gibbs state
corresponding to the generating function h, given by

hyx ) =h(S_x,) (2.23)
where ACZ’ is finite.

Remark. A natural question arising in the examination of Theorem 3 is if the
condition 1)-3) on the initial p are preserved during the motion. Condition 1 which
means superstability for h is obviously preserved by the conservation of energy,
with the same coefficient ¢. A sort of local Lipschitz condition as (2.21) can also
exhibited for h,, by the use of Theorem 1.

Furthermore one can prove, by the use of the same ideas of Lemma 3.2 below,
that condition (2.20") is preserved for h, with a function v, (of course no more with
compact support because dynamics destroys locality) more than exponentially
decreasing at infinity. This will imply that the superstable estimates (Ref. [3] and
A.IT below) hold for y,. Obviously condition (2.20) is no more preserved.

3. Proofs

In order to prove Theorem 3 we have to give good estimates on the quantities
h(x 4l(x) .o) and Z ,(h,; x) for a sufficiently large set of xe X. While the first quantity
may be estimated by the use of Theorem 1, it seems hard to have a good control of
Z ,(h,;x) in terms of x by brute force using the dynamical properties we know. We
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do not approach the problem directly, but we shall prove an analog of Theorem 3
(see Theorem 4 below) where the conditional probabilities are taken not w.r.t. £,
but w.r.t. its refinement &’ whose atoms may be identificated with proper subsets
of X, of finite Lebesgue measure, which will allow us to avoid problems on the
convergence of the normalization factor. Once Theorem 4 is proved, it is not hard
to prove Theorem 3. We shall start by giving the new partition and a precise
formulation of Theorem 4. Then we shall show the passage from Theorem 4 to
Theorem 3. The rest of this section will be devoted to the proof of Theorem 4.
For all me N we define the partition £ of X, by giving its atoms:

ay(x) = {Y(¥) go=(x) 4o 3
Z<m if L (x)<m [Z,V]=[ZL,(y)] otherwise} (3.1)
where
ok)=1vlog?k keN (3.1
where [ 2] denotes the integer part of zeR. & is obviously measurable. Each atom
a’j(x) induces the subset a%(x)C X ,:
a"(X)={y L, (v, o)) <m if  Z (x)<m
[Z((y)ux))]=[Z,(x)] otherwise} (3.2)
and for each state yu, the family {u(-]a’(x))} induces the family of measures (still

denoted by wu(-|a’(x)) supported in corresponding d”(x)).
The main point of the proof of Theorem 3 in the following:

Theorem 4. Let h be a function satisfying the condition 1)-3) and u be a Gibbs state
corresponding to h and satisfying (2.20). Then for any me N we have :

[ dAR) exp[ = h(% ) — (% 4](x) 4]

Ala™(x)) = —2 3.3
A = R exp T~ (R ) — A 001 )

ap(x)
where ACa’(x) is a Borel set and h, is defined by (2.21).
Proof of Theorem 3. Let us consider two bounded measurable sets A and Bin X,
such that A(4), A(B) are different from zero, and a sufficiently large m such that
A, BCay(x) for all xe X, with &, (x) <m. Since &} is a refinement of & ,, it results by
(2.2):

p Al @RNx) ge) = o AIX) 5) (3.4)
and an analogous expression for B which hold for y,—a.a. x such that Z (x)<m.
By (3.3), both y,(Ala’(x)) and p(Bla’(x)) are different from zero and:

#(AI(X) 1) w(Bl(x) 4)

= . 35
(A Bla) )
By the use of (3.3), we obtain:
Hz( AI(X)AC) § o " (Fa) T he(Zal(x) 491§ /1(5%)
B
- .uz(Bl(x)AC) j e“[ht(fA)*'ht(fA'(x)A‘)]di(ycA) (3.6)
A

for u,—a.a.xeX,
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Consider now an increasing countable family of B’s invading X ,. There exists a
#, full measure set % such that (3.6) holds simultaneously for all elements of the
family. Fixed xe% 1‘[ is possible to find a sufficiently large B for which the r.h.s. of
(3.6) is different from 0. This implies that z,(A4|(x) ,.) £0. Finally, by taking the limit
B—X, we obtain simultaneously:

£ dMX 4 exp[—h(X 1) = h(X 41(x) 4o)]
1 Al(x) o) = B )

Ealh;x)= f dA(X ) exp [ — h(X ) — h(X 4|(x) 4)] < + 00

(3.7)

that proves Theorem 3.
Proof of Theorem 4. We shall consider the following measure :
=St =p(s" ) (3.8)

where p from now on is the same measure as in Theorem 3.
We denote by p(-|a%(x)) its conditional probability w.r.t. £. Then:

Lemma 3.1. For every xe X, and n such that A, A, there exists the Radon-Nicodym
derivative :

dp(x 4la%(x))

PiC, o) = T (39)
A
which is given by :
Prte o) = SR MU0, )] 6.0

I exp[—h((S® x4 u(x) 40)4,. )]

an(x)
where ¥ is the same as in condition 2).

Proof. The estimate (2.19) and the conservation of energy

HE(S"(x 4 0(X) ge))a,,, 1= HI(x 40 () 4 n,,., ] (3.11)

imply that the integral in r.h.s. of (3.10) is uniformly bounded on m. Furthermore,
by condition 2) one can prove that:

e~ (SO (x4, 0(x) 45) a,) = BUSTY(x 4, V(x) ag)) 4, ] X 25)

p? )= —
0 J¥) 15) normalization factor
_ exp[—h((S™, (x4, 9() ge) g, )] (3.12)
§ dix,,)expl—h((ST x4, V() 45) 4, )]
X4,
where P(x, |(x),) is the Radon-Nikodym derivative %)AQ
A

Since ¢, is a refinement of &, , we apply (2.2) and deduce that the density
P(x 4)(x) ) has the same form as Pj(x, |(x),) with the normalization factor,
obtained by integrating the coordinates in X ,. Still using (2.2), we obtain that the
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density PJ(x 4Ja%(x)) and momenta has the same form as Pi(x A[(x) 4c) with the
normalization factor obtained by integrating on a’(x). So (3.10) is proved.

Lemma 3.2. For any xe X, and x ;e @j(x) there exists the limit:
PE( i) = Tim Prx ().
Moreover there exists functions y,, 7, : Nx ¥—=>R with

lim vy, (n;x)= 11m Pn;x)=0

n— o0

such that for all " =n

Pi(x la%(x))

e e D 7))
AlYA

sexply,(n;x)]

and v,,(n;S"x) <7, (n, x).
Proof. We check that

Plglax) _
o PG ()

Suppose n'>n, X ,, X', X, are fixed, and consider the ratio:

exp[ —A((SU(X ;) 4e))a,,, JTexP [ = ASUAE, LX) 44, )]

r

exp [ = (S (XU (x) 1)) 4, Jexp [ = H((SUHX U (X) ) 4,0, )]

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

It is convenient to consider a sublattice of Z' constructed by cells of side ». We

denote these cells I, ieZ’. We put:

Y =% 00)  Nrnans,s V=S O 0D

where h=n,n".
In virtue of Condition 2), (3.17) become:

CXP—[;h( Z h( n, n n, 12]“13 {Zh(Y’ Z/ h(ﬁ’,illi]n/’,iz)

i1,i2 iy,i2

(3.18)

J(3.19)

exp—[;h(fq,iw > (Y, V) ]exp [Zh( PR Z W, .

where )" means the sum on the nearest neighbours.
Now we compare:
a) h(Y,,) with k(¥ ) and
WY,) with h(¥; ) for I,¢4,,
b) h(Y,,) with h(Y,,) and
WY ) with n(Y, ) for I,CA,,.

,2)1
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Then, by condition 3) (see (2.19)) and Theorem 1, iii) (see (2.15)), we have for
qu:An/Z:

(Y, ) —h(Y; Jolh(Y,, ) —h(Y, )l

<c¢'max [ 29 ffn i)vgm(i/’:’ 2 i/;z’,i)v"([(j)(gfn/’, )
Jely

n

[a5(Z,(%,,000) 1 2y (R U(x) 1 D)pln + 2r)]2
(g— —d(A)— r> !

where ¢’ >0 is a constant and d(A)=min {k|A4,D A}.
Analogously, by Theorem 1 iii) (see (2.14), we have for I,C4,,:

+d(A)—r+1

(3.20)

(Y, ) —h(Y, Mlh(Y, ) —h(Y, )
<c'max [LO(Y, wLNY, LT, LI, )]

Jjel,
[ (L(F () )L (X () 40))- ()]
3 |
2
Furthermore, Theorem 1, 1) (see (2.12)) gives:

LT, )ZO()L ST 4U(x) 10) SV NP()L (3 4 (X) 1) (3.22)

and similar bounds on the other £Y”s comparing in (3.20) and (3.21).
Hence, there exists a function y,(n, X 4, X', x) such that:

2 WY, )= Lh(Y, )+ Lih(Yy ) =Y h(i,»l <9,(1, %1, X1, %) (3.23)

(3.21)

and, because of the definition of ¢ (see (3.1),

P z)=sup {y (n, X, X, X)|xe X, X 1, Xy X 4,

(%4000 0L (X () 1) S ) (3.24)
verifies :
lim y,(n,2)=0. (3.25)

A similar estimate may be obtained for:
”_Z; WY, 1Y, - _Z;h&:,,-m,iz)}
+{ (YY) = T, )Y ) (3.26)

i2,is i1,i2 ]

Hence, ratio (3.17) is bounded from above by e?"'™) and from below by
e~ 2112 where % ,, X/, and x are chosen so that:

LX) g0 L (X O(X) go) S
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Now if X A, %',eaP(x), then there exists a function y, (n; x) satisfying (3.14) and
such that e*7 & bounds the ratio (3.17).
Integrating these estimate on dA(X',) over &’(x), one finally gets:

PP(% la(x))

exp [ —7,(n;x)] = T’W sexp [y,(n;x)] (3.27)

and hence (3.13) and (3.15). The existence of §,,(1; x) easily follows by Theorem 1, i).

Lemma 3.3. The function P{*)(-|a"(x)) defined by (3.13) satisfies the equality :

exp [ —h(x,) = h(x41(x) 1)1

f( dAXexp [ —hy(x/) = h(x/4l(x) 1)1
an(x)

In particular the r.h.s. of (3.28) makes sense.

Px ,lai(x) = (3.28)

Proof. First of all we show the existence of i,(x,|(x) ,.). To this purpose it is enough
to prove:

lim h(x 4,) = hy(x4,) = h(x 4,0+ h(x,,, 2l =0. (3.29)

n'>n

We only sketch the proof of (3.29) since it uses the same ideas as the proof of
Lemma 3.1. We define Z, ; (S_txAn)ImA . Z, —(S_,xAn\A), s Zy,; and Z,.
are defined analogously. Then:

lhz(xA") - ht(xA,,,) - ht(xA“\A) + ht(xAnr\A)l
<[ShZ, )~ T2, )= THZ, )+ HZ, )

+» Z/ h(Zn,illZn,iz)_ Z’ h(Zh’,ix‘Zn',iz)

i1,i2 i1,iz
Y WZy N2y )+ Y W N2y )
i1,i2 i1,iz

We compare

a) h(Zn l) WIth h(%"”i) lf ICA /2
a) W(Z,,) with h(Z, ) T
b) WZ,) with hZ,) § 19

b) Wz, ) with h(Z, ). ’
Analog comparison are made for the terms h(-|-)’s.

By the use of the estimates (2.16) of Theorem 1, (2.21) of Condition 3, and
(2.12) the statement (3.29) can be proved.
The second step is to prove the equality

i SXP [—h(SYUX,U(X) 40)4,., ]
n=o0 exp[ —h(S_(X,0(x) 4, , )]
j( )di@)exp[—h(S-t(i/AO(x)A,ﬁ.A\A))J

' )L = HSTE 000, )]
U (x)

=1. (3.30)
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As in Lemma 3.2, we consider the ratio

exp[[ — h((SU(% ;U(x) 1)) ., Vexp[ —h(S_ (X, 0(x), . )]
exp[[ —h((S“(%,0(x) ()0, JTexp[ —h(S_(%,0(x) . )]

and the repeating the construction utilized in Lemma 3.2 we obtain for (3.21) the
same bound from above and below by exp[ +7%,(n;x)] where 7, has the same
properties as y,,. This gives (3.30).

Finally, we observe that in the ratio (3.30) the numerator of the first term being
divided by, the denominator of the second gives in the limit P*(-|a"(x)) by Lemma
3.2 and the remaining term may be written as:

(eXp —[E ) +hZ ) 4, ,\A)])_ ! ‘

(3.31)

normalization factor

Hence, by the existence of h,(x ,|(x),.), the Lemma 3.3 is proved.
Now we are able to prove Theorem 4 by showing the following equality:

[ i(dOF ()= [ pfdx) [ dix )PP (e Jal(0)F(x 0 (x) 10)- (3.32)
x x an(x)

It suffices to consider the case where F is cylindrical (i.e. F depends explicitely only

on the coordinates and momenta in some finite A’ CZ"), continuous and bounded.

The general case may be obtained by standard approximation arguments. For the

brevity of notations we take A=A in the calculations below ; the reader can easily

extend them for arbitrary finite A". Since for every bounded continuous cylindrical
F

[ (dx)F(x)= lim | @(dx)F(x) (3.33)

n—->w %X
to prove (3.32) it suffices to prove:
lim [ @dx) [ dA(x )PP (x flai(x)F(x,)

n—ow ¥ an(x)
= 3]; pdx) mf( )di(xA)Pf" (XN F(x ) (3.34)

where F : X, >R is defined by F(x)=F((x),).
By the use of an ¢/3 argument we show (3.34) by proving that the following
three terms below are arbitrarily small for n, and n large enough with n>n,.
Jmidx) | A2, ) P, (00 F )
X an(x)

- i u(dx)  da(x JPro(x sla(x)F(x ) (3.35)

an(x)

\i pldx) | dAlx JPro(x Ja(x)F(x )

ag(x)

— [ (dx) | dAx IO af(x)F (x ) (3.36)
E3

am(x)

) [ A PG ) P

an(x)

_a{“ﬁ")(dx) [ A )PIx 4 i) F(x,5)

ar(x)

. (3.37)
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We start with estimating (3.37). Changing variables one obtain

G3INZNFL| | dilxy)

X a(Sx)
|Pyo(x gla(S™x)) — Pr(x (|ai(S )] - (3.38)
According to the Lemma 3.2 (see (3.15)),
|PP(x (|ai(S™x)) — Py(x fla’i((S™,x))]
= (exply,(no; (SUx)] —exp[ =7, 3 (SYx))])
Pro(x 4ai(S"x))
<(exp[Julho, )] —exp[ —7,,(ng: x)1)
Pro(x ,|a™(S™ x)). (3.39
Hence

(33| FIl, [ u(dx)min[2, 7o) — ¢~ Pnro0].
x

By the use of the Lebesgue theorem, for any ¢ >0 we can find a sufficiently large h,
such that (3.37) is smaller than ¢ for all n=n,. The same arguments show that the
term (3.35) vanishes as ny,— 0.
So (3.34) will be proven if we prove that for any fixed n,, (3.36)—0 as n— co.
Putting

g0)= | dix)PrCeaiix)Fe) (3.40)
it follows
(336)= |{ udx)Lg(5 ) —~g(S )] . (3.41)

We shall prove that
g(S_x)= lim g(S”x) for p—aa xeX (3.42)

and this will imply that (3.36)—0 as n—co by the use of the bound |g|| , | F|
and Lebesgue theorem.
Let us fix xe X, such that Z,(S_,x)¢ N where ¢'(k)=1 v logk. Then

l9(S - x) =g(SUXNSFll,| [ dAx)PI(x gla(S _ x))

an(s - ¢x)

- di(xA)Pﬁ"‘”(xA)aﬁ'(S‘f’tx))'

(St x)

| d/"t(xA)[Pﬁ"‘”(xAla'X(S‘f’,x))]1 (3.43)

ay(sS - ex)

where the last equality in (3.43) holds if n is sufficiently large, in virtue of Theorem
1) ii) and the definition of &7.

Furthermore

Pro(x ,|a(S™,x)) —— P™(x ,|a"(S_ x)). (3.44)

n—w
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(3.44) is consequence of the following convergence
expl — h(S"9(x ,U(S™x) o), . T ———> exp[ —A(S"(x,, U(S_ %)), )] (3:49)

due to Theorem 1 and the continuity of 4 and of the Lebesgue theorem combined
with the following estimate

(S (%, (8%) 4) 4, ) Z CHI(X , (SYX) ) 4, ]
> c[ Y AP+ (k=2v)g} + Aq)

(P1.q)exa

+ Y P2+ (k—2vD)g? + g%} (3.46)

(@), p))e(SUDx) 4, 4

In fact exp[(3.46)] is the product of two terms one of which does not depend on n
and is integrable w.r.t.dA(x,) and the other one is not depending on x, but
converges as n—oo and hence is bounded.

So (3.32) and hence Theorem 4 will be proven as consequence of the following
statement :

(X1, x)=m}) =0. (3.47)
For every xe X, then there exists a je IN* such that

ZL(8,%)= LIS ) g)=m.
So (3.47) is implied by the fact that

w({(x|LYx)=k, keR})=0. (3.48)

Finally, (3.48) may be obtained by considering that the set in X, where #Y(x )
take a fixed value has Lebesgue measure 0, and using the locally absolute
continuity of y, w.r.t. the Lebesgue measure. This final statement follows from the
locally absolute continuity w.r.t. the Lebesgue measure of the approximating
measures u.

Appendix

Proof of Theorem 1. By the use of the equation of the motion we obtain

d .
i S =In)( X a0 (A1)

Jjev,

The following estimates are obvious
; 2 .
Pt )| < )/ 229S7x) s g X)) < %& ) ZNSx). (A2)
(A.1) and the hypothesis on ¢ give the following integral inequality:
t
ZL(SVx) L L (x)+a (j) ZL,(SPx)ds (A.3)

where @ is a constant independent of n.
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Hence
Z,(Sx) 2L, (x)). (A4
Let us put:

(e, m,m)= sup {lg(t, x) g (1, x)

lil=k

VP, x) = pi" (e, x)|
Then by using the equation of the motion and in virtue of (A.2) and (A.4), there
exists a constant ¢ for which the following estimate holds:

t
uk(t,x,n,M)<§ sup [Ip(s)—pi" "™ (s)|

il £k
VIK(q(”“")() q"(s)+42:g" ™ (s)~ q{"(s))
(g™ (s)? g (s)alM(s) + qi"(5)?)
J Z lg57(s) =g "™ ()l 1ds

<ce®p(k)ZL,(x) jukﬂ(s x, n, m)ds. (A.6)

Interating the procedure n—k times we obtain:

(™ML, (x)pmi)y~*ee &, (X)co(n)
(n—k)!

This is bound (2.14) with the first meaning of (g, p), that combined with (A.4) gives

the assertion i). The estimates (2.12’), (2.14) with the second meaning of (g, p) and

also (2.15), (2.16) may be obtained with the same arguments as above.
Now we prove ii). By i) one has:

ut, x,n,m=

(A7)

lim 20(S"x)=29(Sx) xeX,. (A.8)
Fixed now xe X, it is enough to prove that there exists >0 and i,, such that
li,)| b < + oo for which

2
& (Sx)= L A9
ol Ao
But the estimate:
ZL9(S"x) i @'(0)
" S, (x)e" —— A.10
o) =7 g (10

(where a4 depends only on ¢') combined with the fact that ¢'(k)/p(k)—0 gives (A.9)
and hence proves ii).

Proof of Theorem 2. Theorem 2 is a consequence of the estimates in [13],

Corollary 2.4. In fact, denoting P ,(dx,), 2C 4, the probability distribution of x,,
w.r.t. the measure

exp[—hix )]

dx
Haldx )= normalization factor
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one obtains the following estimates:
P ((dxg) < Aexp (~ ky ) pi—ky ) q?} d(xq) (A1)
ie ie

where A, k,, k, are constant independent of 4. Compactness arguments combined
with (A.11) give the existence statement [14].
Still using estimate (A.11) one obtains:

[ p(dx)e?? " < M (A.12)

where M is a constant not depending on j and b is sufficiently small. Finally by the
Tchebyshev inequality :

HXIZ () > o)) S Ae P

for some constant A and B. This gives the thesis.

Acknowledgement. We thank S. Goldstein for having pointed us that an hypothesis was missing in the
first version of this work. One of us (Yu.S.) is grateful to Italian National Council of Research for
having supported his visit in [taly.

References

. Lanford, C.E. III: Commun. Math. Phys. 9, 176 (1968); Commun. Math. Phys. 11, 257 (1969)
. Dobrushin, R., Fritz, J.: Commun. Math. Phys. 55, 275 (1977); Commun. Math. Phys. 57, 67 (1977)
. Lanford, O.E. 111, Lebowitz, J.L., Lieb, E.H.: J. Stat. Phys. 16, 453 (1977)
. Sinai, J.: Sov. Theor. Math. Phys. 12, 487 (1973); Vestn. Moscow Univ. Sez. [ Math. Mech. 29, 152
(1974)
. Lanford, O.E. III: Lecture notes in physics, Vol. 38. Moser, J. (ed.). Berlin, Heidelberg, New York:
Springer 1975
. Marchioro, C., Pellegrinotti, A., Presutti, E.: Commun. Math. Phys. 40, 175 (1975)
. Presutti, E., Pulvirenti, M., Tirozzi, B.: Commun. Math. Phys. 47, 81 (1976)
. Alexander, R.: Commun. Math. Phys. 49, 81 (1976)
. Gurevich, B.M., Suhov, Yu.M.: Time evolution of Gibbs states. (In preparation) (1979)
. Dobrushin, R.L., Suhov, Yu.M.: On the problem of the mathematical foundation of the Gibbs
postulate in classical statistical mechanics. Proceedings of the Mn@ Conference, Rome (June 1977)
11. Ziman, J.M.: Principles of the theory of solids. New York: Cambridge University Press 1964
12. Rohlin, V.A.: Am. Math. Soc. Transl. 10, 1 (1962); Anosov, D.V.: Appendix in: Geodesic flows on
closed Riemann manifolds with negative curvature. Proceedings of the Steklov Institute of
Mathematics. Am. Math. Soc. n. 90 (1969)
13. Ruelle, D.: Commun. Math. Phys. 50, 189 (1976)
14. Dobrushin, R.: Theory Probab. Its Appl. XV 3, 458 (1970)

W B LN =

S oo

Communicated by J. L. Lebowitz

Received May 12, 1978; in revised form October 25, 1978





