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Abstract. We prove cluster properties of the spatially inhomogeneous Gibbs
states in symmetric two component lattice systems obtained at large (equal)
values of the fugacity. We also prove that the surface tension of these systems is
given by an integral over the density variation in this state Gibbs' formula. An
alternative formula for the surface tension is also derived.

1. Introduction

In a previous paper [1] we proved for a class of two-component A — B lattice gas
systems in three dimensions the existence of Gibbs states in which there is a spatial
segregation into an y4-rich and a jB-rich phase with a "sharp interface". These
states are obtained, at high values of the chemical potential μ, μ = μA = μB, by
taking the infinite volume limit of a system with boundary conditions favoring
A(B) particles in the upper (lower) part of a box. This is entirely analogous to the
existence of such nontranslation invariant states for ferromagnetic Ising spin
systems at sufficiently low temperatures in three or more dimensions. The latter
was first proven by Dobrushin [2] whose methods we used heavily in [1].

The purpose of this paper is to prove further properties of this nontranslation
invariant Gibbs state: extremality, exponential clustering of correlation functions
(no long range transverse part), and asymptotic behavior far from the interface.
We also prove that the surface tension in these states is given by an integral over
the correlation functions. This justifies a commonly used expression due originally
to Gibbs. The methods used here are, like in [1], based on the work of Dobrushin
[3]. For this reason we generally omit details of the proofs. Our results about the
surface tension are new and apply also to the Ising model.

We use notation, definitions and results of [1] and we treat only the following
model: we have two kinds of particles A and B with chemical potentials
μA = μB=

zμ. There is at most one particle at each point of Ί? and the presence of a
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particle at x excludes the presence of a particle of the other kind at all y such that
\x — y\=, max \xι — yι | = 1. The paper is divided into three parts. Section 2 treats the

statistics of the interface in terms of groups of walls. Section 3 contains the
derivation of the results mentioned above using the results of Sect. 2 and properties
of the pure phases which are given in Appendix. Section 4 is devoted to the study of
the surface tension.

2. The Ensemble of Groups of Walls

2.1. Definition of the Ensemble. Let ALM = {xεΈ3: \xx\^M, | x 2 | ^ L , \x3\^L} be a
parallelepiped of base σL = {x '.x1 = 0, \x2\^L, \x3\^L} lying in the regular plane
σ={x x 1 =0}. We consider A — B boundary condition for ALM: we have an A-
particle (respectively a ^-particle) at each site outside ALM with x ^ l (re-
spectively x 1 ^ — 1). Therefore each configuration in ALM with A — B boundary
condition defines a configuration w in all Έ3. In every configuration w there is
exactly one infinite connected component of empty sites, which we call Δ(w). All
adjacent sites to Δ(w) are occupied by particles. The interface Δ(w) of the
configuration w is the couple given by Δ(w) and all particles of w adjacent to Δ{w)
(1.2) (Paper I, Sect. 2).

The probability of an interface Δ, PLM(Δ\ is by definition the Gibbs measure of
the set of all configurations w in ALM such that Δ(w) = Δ. Taking the limit M->oo
we obtain a Gibbs state in the set BL = {xel? : \x2\ ̂ L , |x3 | ^L} . The probability
of an interface Δ in BL computed with this Gibbs state is given by
lim PL M(Δ) — PL(Δ). Furthermore we know that PL( ) is concentrated on the set

M-* oo '

DL of all interfaces which are contained in bounded sets of BL (1.3).
To study the probability PL( ) on DL we decompose any interface of DL into

pieces of two types called walls and ceilings. There is only one interface which
contains no wall. It is the interface of the ground state of the model (μ= oo) in
which the interface is perfectly flat. The next simplest interfaces are those which
contain only one wall, e.g., the interface looks like a top-hat with its brim extended
to infinity. All walls which come from such an interface are called standard walls.
The importance of standard walls comes from the fact that we can associate to
every interface a family of disjoint standard walls. We call such a family
admissible. Conversely to any admissible family of standard walls corresponds a
unique interface Δ (1.4). The probability PL( ) on DL then induces a probability on
the set of all admissible families of standard walls.

We can now view the standard walls as elementary excitations of the ground
state and define many-body long-ranged interactions between these excitations
such that the corresponding Gibbs state is the probability PL( ) These in-
teractions are sufficiently weak so that we can use standard methods of statistical
mechanics like equations of the Kirkwood-Salsburg type to study the interface.
This is indeed the method of Gallavotti in his paper on the interface of the two
dimensional Ising model [4], and we shall use this type of analysis in another
paper where we discuss analycity properties of the surface tension and of
correlation functions [9].
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The standard walls can also be viewed as corresponding to the contours in the
description of a pure phase in the Ising model at low temperature. The ground
state is the configuration where no contours are present. To obtain a precise
analogy we must however modify slightly the description of the interface. For
technical reasons it is necessary to group the standard walls so that two standard
walls belonging to different groups are not too close to each other. The precise
definition of groups of walls is given in (1.5). A family of groups of walls is
admissible if two groups of walls Ftι, Ft2 of the family are such that FtiκjFt2 is not a
group of walls. There is a bijection between DL and the set of all admissible families
of groups of walls. The groups of walls are the objects corresponding to the
contours. The quantity Π(Ft) (1.5) corresponds to the length of a contour. Every
group of walls Ft has an origin teσL; it is convenient to have a group of walls Ft

with origin t for each t of σL. We introduce for this purpose the symbol Λv called
the empty group of walls with origin ί, with Π(Λt) = 0. Let J^L be the set of all
groups of walls in BL with origin ί, including Λr Every A in DL is uniquely
described by an admissible family (FvteσL). We use the notation A=A(FvteσL).
When we want to specify that each Ft oϊ(Fp teσL) belongs to <<Ft

L we say that (Fv

teσL) is admissible in BL. We can now give a precise definition of the ensemble of
groups of walls. For each teσL we define a random variable η^e^t

L with

PΛΔ) if A=A(Ft,teστ) exists
, . (2.1)

0 otherwise.

We can use the same method as used by Dobrushin in [5] for the Ising model
to study the random process (η^teσL). We obtain for this process properties
similar to those holding for the Gibbs state of a pure phase of the Ising model at
low temperature.

Let us recall now some basic facts we shall need later about the random
process (γ\\, teσL). We begin with geometrical properties of the configuration
space :

(Fu, UEGj) admissible => (Fu, ueσL\t, Λt) admissible

In other words if we remove a group of walls in an admissible family (Fu, ueσL) we
obtain a new admissible family

The number of distinct groups of walls Ft with origin t and Π(Ft) = k
does not exceed Ck with C a constant. (2.3)

This is an entropy estimate and it is proved in (1.5).
We define now a function

admissible

( 2 4 )
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where Δ=A(Fu,ueσL\t,Ft\ A* = A*(Fu,ueσL\t,Λt). Using this function we have

Prob(F t |Fu,tt6σLV)

ZΪ(Ft\Fu,ueσL\t) _ ^

Prob(Ff|FM,MeσL\ί) is small for FtΦΛt in the following sen'se. If (Fu,ueσL\t,Λt) is
admissible in BL and μ large enough

(2.6)

This is proved in (1.5). Furthermore by an analogous proof we have that Prob
(Ft\Fu, ueσL\t) depends weakly on FM, if u and t are far apart in the following sense.
If (Fu, ueσL\t,Λt) is admissible in BL and μ is large enough there exist λ>0 and
H<co independent of L and μ such that

s\) (2.7)

for every seσL\ί with \s-t\^10(Π(Ft

2.2. Clustering Properties. We define the finite dimensional distributions of the
process {ηf, teσL) by

ρL(Fti,...,Ftn) =

=Prob(ηt=Ft,teC), (2.8)

where C = (ί 1 ?..., ίn) is a finite subset of σL. These distributions satisfy the following
cluster property.

Proposition 2.1. For μ large enough and Ex and E2 any two disjoint subsets of σL,
there exist constants K<co and κ>0 independent of EVE2, L and μ, such that

Σ Σ \QL(Fs,seEvFp,peE2)
F S , S 6 £ ! Fp,peE2

Σ exp(-μιφ-pl). (2.9)
seEi peE2

Proof The proof of (2.9) follows closely Dobrushin's ideas [5]. We therefore
present here only an outline of the method of proof.

As L is fixed we will not write it as an index. If (Fs, seEί9 Λu, weσL\£1) is not
admissible, then (2.9) is zero. Therefore we suppose that (Fs, seEί9 Λu, weσL\£1) is
admissible. We can write the left-hand side of (2.9) as follows

Fp,peE2

(2.10)
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Instead of estimating (2.10) directly we estimate

Fp,peE2

. (2.11)

For the moment F s, seEί are fixed. We introduce two random processes (η],
teσL), η]e^t

L with Prob^ 1 =FV teσL) = Pvob(ηt = Fv teσL) which is our previous
process and (ηf, teσ^E^, ηfeάFt

L with

We can rewrite (2.10) as

l p
Fp,peE2

-Fvob(η2

p=Fp,peE2)\. (2.12)

We put σL\Eί = V2 and σL = Vί. We say that (FM, ue V2) is admissible (for the second
process) if (FM, ue V2, F s, s e E J is admissible. It is easy to see that (ηf, te V2) has the
same properties (2.2)-(2.7) as (η^ teV^). Let (ήt,teVi9 i = 1,2) be a joint repre-
sentation of the two processes. That is (ηv teVi9ί= 1,2) is a stochastic process with

and

Probft1 =FV te F J ^ P r o b ^ 1 =FV te Vx)9

We obtain immediately the inequality

S2 Σ P r o b ( ^ Φ ^ ) . (2.14)

The processes (τ/j, ίePQ have properties (2.2)-(2.7) and their conditional
probabilities are comparable in the following sense: There exist constants
i/<oo, and F s, S G 7 1 \ F 2 = £ 1 , such that

Λ ZHFAFu,ue\

-λμ min |s-ί|\ (2.15)

if min \s-t\> 10Π{Ft).
seVt\V2 *

We can then find a joint representation with the property: there exist constants
/c>0, Cι < oo and C2 < oo such that for μ large enough

E exp(κ;μiJ(f7 j)) ̂  C x, i = 1,2, t e ̂ .

and (2.16)
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This follows from Lemmas 1 and 2 of [5] and from the fact that (2.15) is
satisfied for any H and λ if Fs — Fs, seE1. Therefore we have proved Proposition
2.1. D

23. Dependence on L. Let (η], teσL) = (η^ teσL) and (ηf, teσv) = (η^\ teσL) with
L > L. These two processes have the properties (2.2)-(2.7) and if we choose Fs = Λs

for seσL\σL we can prove (2.15) for μ large enough. Therefore we can use the same
technique as above to study the dependence on L of the random process (r\\, teσL).
We formulate the result using the random variable δL with values in DL defined by
Prob(<5L = A) = PL(Δ). Let BM = {xeZ3: | x 2 | ^ M , | x 3 | ^ M } and L>L>M.

Proposition 2.2. There exist constants K > 0, K < oo such that for μ large enough

SCBM

(^M) (2.17)

with GML^KLM2.

The proof is exactly the same as the proof of Lemma 5 in [3]. We mention still
another direct consequence of the existence of a joint representation for (η], teσL)
and (ηf,teσL,) with property (2.16).

Proposition 2.3. Let D be a finite subset in σL and let Fte^t

L for teD. If μ is large
enough there exist constants κ>0 and C<oo such that for all L>L

Σ \QL{FvteD)-ρL{FvteD)\
Ft,teD

^C Σ exp(-μκ|s-t|). (2.18)
teD

seσL>\σL

Proof.

Σ \ρL(Ft,teD)-ρL,(Ft,teD)\
Ft,teD

= Σ
Ft,teD

teD

^ Σ Σ Cexp(-κμ\t-s\). D
teD seσL'\σL

This proposition shows that the finite dimensional distributions oϊ(η^, teσL) have
properties with respect to L analogous to those of the finite dimensional
distributions with respect to Λ of the Ising model with pure boundary condition in
a finite volume A at low temperature.

2.4. An Estimation of the Height of the Interface. Let y^(Δ) = max {xι:xeΔ, p(x) = s}
for each s = (0, s2, s3)eσL. Here AeDL and p(x) is the orthogonal projection on
the regular plane (1.4).
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Proposition 2.4. There exist constants a > 0 and K > oo such that for μ large enough
and all seσL

Prob (y^ΛΓ)^K exp (-αμiV). (2.19)

Proof Let Wt be a standard wall with origin t and A = A(ΛU, ueσL\t, Ft = {Wt}). Let
h(Wt) be the maximum of the modulus of the heights of the ceilings in the interface
A. We have h(Wt)^Π{Wt). For each interface A in DL we have that

yL

s{Δ)ύ _ Σ Π(Wt). (2.20)
Wt, standard walls
of J, |ί-s|^iI(ϊΓt)

Therefore

with

ίίJ(Ft) if | s - ί | g
= { θ if \s-tl>Π(Ft).

From Lemmas of (1.5) we get

πp{iμφt{Ft))Pτob{Ft\Fu9ueσL\t)

(Π(Ft)<\s-t\)

Σ sfexp(-

Applying Lemma 1 of [3] we get

). (2.21)

By Chebyshev's inequality

Prob (γζ ̂  iV) = Prob (exp — γ^ ̂  exp — N

D

3. Nontranslation Invariant Gibbs State

3.ί. Existence. Let us introduce the random variables St with values in
X = {- 1,0, + 1 } : St = + 1 ( - 1) if there is an A (β)-ρarticle at ί, St = 0 if there is no
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particle at t. Let PAB be the Gibbs state in BL with Λ — B boundary condition. By a
compactness argument there exists a sequence Ln,Ln-^oo as Π-*GO such that
lim PJAB = PAB is a Gibbs state for the infinite system on Έ?. This is the type of

n->oon->oo

Gibbs state which we considered in (1.6). Let its finite dimensional distributions be
denoted by r(St,teC)=Pvob(St = St,teC) where SteX9 and C is a finite subset of
Έ3. Before proving new properties of PAB we mention that we can also obtain PAB

in a different way. Let AL = {xeZ3:\xι\^L, i = 1,2,3}. Let rAβv teC) be the finite
dimensional distributions of the Gibbs state in AL with A — B boundary condition.

Proposition 3.1. For μ large enough and any finite CcTL3 and any SteX, teC we
have

r(Sv te C) = lim rAjβv

 t e c) exists. (3.1)

The proof is the same as the proof of Theorem 3, Part I in [3].

3.2. Clustering Property and Extremalίty of PAB. Let Dί and D2 be two finite

subsets of Ί? and let d{Dl9D2) = min |s -1\.
seD1,teD2

Proposition 3.2. There exist constants κ>0 and K<co such that for μ large enough
and all Dί9D2

St,teDί Sp,peD2

^\Dί\'\D2\Kexp(-μκd(D1,D2)). (3.2)

Corollary 3.1. The Gibbs state PAB is extremal among the set of all Gibbs states.

Proof of Corollary 3.1. It is sufficient to prove that for any local observable / we
have

where An is a sequence of finite subsets of Έ3 with An-^Έ3, n—»oo, and where
is the conditional expectation value of/given the configuration outside An. Indeed
let us suppose that PAB = J Pada where Pa are extremal Gibbs states α-a.s. Since the
Pα are extremal Gibbs states we get by (3.3)

lim

J))2 da = (E(/))2 = (J ΈPa(f)da)2.

Therefore EPα(/) is constant α-a.s. Since this is true for all /, PAB = PΛ, α-a.s. and
therefore PAB is extremal. Now in our case we have finite range interaction and
therefore </)y l n depends only on the values of the random variables Sx for x
outside An and close to An. We obtain (3.3) using (3.2) with D1 =A,D2 = dAn where
A is such that / depends only on the configuration inside A. D

Proof of Proposition 3.1. It is sufficient to prove (3.2) for PAB with K and K
independent of L. Let ΔeDL. We introduce the function χ(St\A) for every
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t E σL: χ(St | A) = 1 if any of the following conditions are satisfied: St = St = + 1 (— 1),

the cell t is occupied by an ,4(£)-particle and ted A or St = 0 and teΔ or teS(A).

Otherwise χ(St\Δ) = 0. We put χ(SvteC\A) = Y\χ(St\Δ). Using this function we

have

rL(St,teC)

= Σ PL{Δ)χ(St,teC\Δ)rβvteCnS(Δ)),
ΛeDL

(3.4)

where rΞ(St, teCnS(A)) is a finite dimensional distribution of the Gibbs state of the
system enclosed in S(A) and with pure boundary condition for each connected
component S (A) of S(A). The type, A or B, of boundary condition is given by the
kind of particles in dSt(A) (1.3). To simplify the notation we write r(C\Δ) for
r3{SvteCnS(A)) and χ(C\Δ) for χ(S f J ίeC|J). Therefore we have

= Σ Σ P

^ Σ Σ
ΔeDL

+ . Σ _Σ P

M) Σ
Δ'eDL

(3.5)

Using (A.2) of Appendix we have

Σ PLα) Σ

D2)). (3.6)

Let us concentrate on the last term in (3.5). For all x of the projection P(-Dj), ί= 1,2,
of Dt on the regular plane we choose a square Ex(δ) = {yeσL\\x — y\^δ}. Let

In σL we choose the total ordering so that the first points are in Ex and the next
ones in E2. lϊΔ=Δ(Ft, ίeσL) then wcputA^A^F^ teE^ Λu, ueσL\Ei),i= 1,2. Let 6°
be the set of groups of walls (FpteσL) which are admissible and which satisfy the
following condition

IfInt(F f)nJE1*0=
JIntFfn£2 =

(3.7)
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If P(F f )n£ f Φ0, then by our choice of the total ordering in σL we have that teEt,
i = l,2. Iϊ(FvteσL)eS>, then Δr\Bi = ΔirλBi where Bi = {xeΊ? :p(x)eEi}, i = l , 2 .
Indeed_if Δ and Δ' are two interfaces such that for some ueσL the set of standard
walls Woΐ Δ with uelnt W coincide with the set of standard walls W of Δ' with
uelntW, then {xeJ :p(x) = u} = {xeΛ':p(λ;) = M} (1.4). By (A.2) of Appendix and
since ^(D. S ^ X S ^ ^ ^ δ we have

(3.8)

On the other hand it is easy to verify that the conditional finite dimensional
distributions Vτob(η^ = FvteC\S) satisfy (2.9) of Proposition (2.1). Using this fact
and (3.8) we obtain the following upper bound for the last term in (3.5):

k\Dγ\\D2\πQ{-μ&δ) + K Σ Σ exp(-/tfφ-p|)
seEί peE2

+ 3PL(DL\#). (3.9)

We need an estimate pL(Dj\$). If (Ft, teσL) does not belong to $ but is admissible
in BL, then either there exists an Ft such that p(F ί )nE 1 Φ0 and p(Ft)nE2ή=0 or
there exists and Ft such that p(F^nEi = 9 but I n t F ί n E Φ0, ί=ί or 2. Therefore
using Lemmas of (1.5) we get [see (1.6)],

Now we choose δ = \d(D1,D2) to finish the proof. •

3.3. Asymptotic Property of PAB. Let C be a finite subset of Έ?. Let dί(C)= min lί1!.

Let r(St,teC) with dγ(C) large and ί : > 0 for all teC. We will prove that these
distributions are well approximated by the corresponding distributions rA(Sv teC)
of the pure phase A. Of course a similar statement holds with B instead of A if
^ < 0 for all teC.

Proposition 3.3. There exist two constants α > 0 and K<co such that for μ large
enough, C a finite subset ofl? with t1>0, teC,

Σ \r(SpteC)-rA(SpteC)\
St,teC

(3.10)

Proof. We prove (3.10) for PL

AB with α and K independent of L. Let

U
xeP(C)
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where C(x,a) = {yeZ3:\x-y\^a}. Let δ be the event:

for all seE.

\rL(St,teC)-ri(St,teC)\
St,teC

= Σ Σ PL(A)χ(St,teC\A)r(St,tEC\A)-ri(St,teC)
St,teC

p-μά'^) +2P(φ)

since if ΔsS, then

[(A.2), Appendix]. Using Proposition 2.4 we get

4. Surface Tension

4.1. Definition. There are various microscopic definitions of the surface tension τ in
the literature and it is not a priori obvious that they are equivalent. A discussion of
this question can be found in [6], where it is shown that several different
definitions do give the same answer for the two dimensional Ising model, i.e., the
one computed by Onsager [7]. Here we use a definition of τ for the Widom
Rowlinson model which is similar to the grand canonical surface tension in [6].
This definition appears to us natural and is particularly convenient for cases in
which the two coexisting phases whose interfacial tension we desire are related by
symmetry.

Let Z^B

M and Z^ M ( — Zf M) represent the partition functions of our system in
ALM with A — B and pure A (pure B) boundary condition respectively. Define

QL M is the difference in the Gibbs free energies between the systems with A — B
(mixed state) respectively A (pure state) boundary conditions. The surface tension
per unit area is then defined as

— lim lim — TTTQT M = ? (4.1)

L-αo M - o ( 2 L + l ) 2 ^ L ' M V }

when the limit exists. Using this definition we show that for μ large enough τ exists,

is positive, and that — can be expressed as an integral over correlation functions
dμ

(Gibbs formula) [8]. While these results (even for the Ising model) are not
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contained in the work of Dobrushin, the elements of the proof are basically similar
to what we have already discussed and therefore we shall be very brief. The
analogous results for the Ising model at low temperature are stated at the end of
this section.

4.2. Integral Representation of τ. Let us consider the system in the finite volume

M. The hamil

H=~μ Σ

AL M. The hamiltonian is written as

Let

the probability being computed with α, α = A or ΛB, boundary conditions. Clearly

Let x = (u, v) with u = xι be the vertical height and v = p(x) the projection of x in
the regular plane σL.

Lemma 4.1. If μ is large enough

a) lim QLM(μ) = QL(μ) exists;
M->-oo '

b) lim j-QLM{μ)= Σ Σ(rA

L{u,v)-rA

L

B{u,v))
M^CO aμ veσL ueZ

exists uniformly in μ, where

rl(x)= lim rlM(x).
M-> oo

Proof We know already that lim QL M exists by results of (1.3). Therefore we

d
have to prove that -j—QLM converges uniformly in μ to

Since the interface is rigid in BL we expect that Proposition 3.3 is also true for
the finite system in AhM with M^>L. The difficulty of proving this comes from the
finiteness of the system: it is not always possible to remove a group of walls from
an interface in AL M and obtain in this way a new interface in AL M. Let δL M be the
interface in ALM. We first prove that if M>L then

with K<co and ά > 0 two constants. The proof is similar to the proof of Lemma 3
in [3]. Using this result it is easy to prove Proposition 3.3 for the system in ALM
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with a correction term tending to zero exponentially fast when M tends to infinity.
The proof of Lemma 4.1 follows then immediately by combining this result with
Proposition 3.3 and using properties of the correlation functions in the pure
phases. D

Proposition 4.1. For μ large enough

' ^ 2™ ( 2 ϊ W δ l M(ίl )=τ(/ί)

exists and is a Cι-function whose derivative is given by

y- τ M = - Σ (r>, v=0) - rΛB(u, v = 0)), (4.2)
"β ueΈ

where ra(x) = lim ra

L(x).
L-*oo

Proof. These results follow easily from Lemma 4.1 and the fact that for L >L and
any x in BL

| r f (x) - rA

L

B{x)\ S K exp(- aμ(L - \p(x)\)),

where K<co and α > 0 are two constants.
This inequality is a direct consequence of Proposition 2.2 using an idea similar

to that of the proof of Proposition 3.2. •

4.3. An Alternative Formula for the Surface Tension. In (1.5) we proved that

exp[βj= Σ expί-μ Σ Π(Ft(Δ))+ Σ/ μ (x,^,^exp(-μ(2L+l) 2 ) .

(4.3)

When μ tends to infinity the only term in exp[βL] exp[μ(2L+1)2] which remains
nonzero is that with Λ=A0 the interface of the ground state. Therefore it is
convenient to write exp QL as a product of

fμ(x,Δ0,L)) &ιp(-μ(2L + ί)2) (4.4a)
\xeA0

and

ZL(μ)= _Σ exp(-μ Σ Π(Ft(A))+ £/μ(x, J , L ) - Σ fμ(x,Λ0,L)\. (4.4b)

Let us define r^(u,v) as the probability that S(M>ι;) = 0 in the state which we
obtain as the limit L—>oo of P\B restricted to all configurations which give the
interface Δo of the ground state. It is then easy to show, using properties of the
correlation functions in the pure phases that lim bL(μ) = b(μ) exists and is a C1-

L-+00

function whose derivative is

4-b(μ) =~Σ (A",v = 0)-riy,v = 0)). (4.5)
ali ueΈ

We now concentrate on (4.4b). Replacing there every Π(Ft(Δ)) by λΠ(Ft(Λ)) we
get a function ZΛμ,λ) such that lim ZL(μ,λ) = l. Let us denote by «G»L(/l) the

λ > o o
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expectation value of a function G of A computed with the probability obtained by
replacing Π(Ft) by λΠ(Ft) in PL(A) for every teσL.

We introduce now for every υ in the regular plane the random variable nv

defined by

nv + 1 is the number of empty sites
y in the interface with (4.6)

i.e., nv+l is the "thickness" of the interface above the horizontal position v.

Proposition 4.2. If μ is large enough then
i) τ(μ) = b(μ) — μa(μ) where b(μ) is differentiable and its derivative is given by (4.5)

and

a(μ)= Urn

ii) Both μa(μ) and b(μ) — μ tend to zero exponentially fast when μ tends to
infinity. In particular there exists a constant K<oo such that for all L

The proof of Proposition 4.2 uses the same arguments as before and therefore
we omit it.

4.4. Final Comments, i) Let <ρ(w)>α = 1 — r\u, v = 0), be the density of particles at
(U,V = 0)EZ3 in the A or A — B phase. Formula (4.2) of Proposition 4.1 becomes

This formula is essentially due to Gibbs [8].
ii) Let us now discuss briefly the analogous result for the Ising model. In this

case the + boundary condition corresponds to the A boundary condition of the
Widom Rowlinson model and the + boundary condition to the AB boundary
condition. We define the microscopic energy density at x by

ex=~2σxJ Σ <V
y:||*-y|| = i

where J > 0 is the ferromagnetic coupling constant and || || the Euclidean distance.
Let <eM>+ and <βu>

± be the expectation values of ex at x = (u,0,O). Then we can do
exactly the same analysis as before and we obtain instead of (4.7) the formula

valid for large values of β, the inverse temperature.
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iii) Concerning Proposition 4.2, we see that τ(μ) is expressed as a sum of two
terms. The first one b(μ) is the surface tension that we would obtain if we had a
completely flat interface. This is the limit of bL(μ);(2L+l)2bL(μ) being the
difference, when M->oo, between the free energy of a system with pure A b.c. in
AL M and the "same" system when it is divided in two by a "rigid horizontal wall"
at x 1 = 0 . The term a(μ) then takes account of the surface tension due to the
deformations of the interface itself. Notice, however, that in the integral over λ we
do not take the usual expectation value, since λ multiplies μ in front of Π(Ft) and
not infμ(x9A9L).

Acknowledgements. We wish to thank Joseph Slawny for useful discussions.

Appendix. The Pure Phases at High Activity

Let Vi be any finite subset of Ί?. We consider only the Gibbs state of the system in
Vt with pure boundary condition, say of kind A. The corresponding Gibbs random
process is (η\, te V^, ηι

teX = { — l,0, +1}. The finite dimensional distributions of the
process are rVι(St,teC) = ~Pτob(ηι

t = St,teC) where St are fixed values inX.

Lemma A.I. There exist a constant K<co such that for μ large enough, CcV1nV2

Σ \rVi(St,teC)-rV2(St,teC)\
St,teC

Σ Σ exp - £ | ί -
teC seV1AV2 \ Z

Remark. Let d(tλ, Vλ ;t 2, V2) = sup{d:V1nC{t1,d) is congruent to V2nC(t2;d)} (1.3).
Let d(C;V1,V2)=mmd(t,Vί;t,V2). Then there exist two constants α>0 and

K<oo such that for μ large enough

Σ \rViφvteC)-rvβvteC)\
St,teC

Lemma A.2. There exist two constants a' > 0 and K' < oo such that for μ large
enough, B and C finite subsets of V1

Σ \rVί(St,teBvC)-rVi(St,teB)rVi(SvteC)\
St,teBuC

S \B\K' exp( - μα' d(B, C)). (A.2)
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