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Dilation Analyticity in Constant Electric Field

I. The Two Body Problem*

Ira W. Herbst
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Abstract. The resolvent of the operator H0(ε, θ)= — Δe 2θ + εx1e
θ is not

analytic in θ for θ in a neighborhood of a real point, if the electric field c is non-
zero. (One manifestation of this singular behavior is that for 0<|Imθ|<π/3,
H0(ε, θ) has no spectrum in the finite plane.) Nevertheless it is shown that the
techniques of dilation analyticity still can be used to discuss the long-lived
states (resonances) of a system described by a Hamiltonian of the form

I. Introduction

It is interesting that two of the first problems which arose in the early days of
quantum mechanics, the Stark and Zeeman effects, have until recently remained
largely unstudied from a mathematical point of view (and to some extent, for large
fields at least, also from a physical point of view). Notable exceptions are
contained in the work of Titchmarsh [33] and Riddell [29] on the Stark effect in
hydrogen. More recent rigorous work on the Zeeman effect can be found in [6-10,
24] and on the Stark effect in [5, 16, 17, 34], however many interesting questions
remain to be answered.

It is the purpose of this paper to discuss the long-lived states or resonances
associated with systems described by Hamiltonians of the form H= — A+εx1-\-V
in L2(R") (Stark Hamiltonians), where in this paper Fis a multiplication operator
which in some sense vanishes at oo. In addition we wish to lay the groundwork for
a study of the TV-body Stark problem (e.g. atomic systems with N electrons). The
resonances we will discuss are not solely associated with the operator H [21, 22,
23]. This can be understood by noting the fact that for a large class of potentials, K
(including V(x)=—Z/\x\ in L2(IR3)) H is for each ε>0 unitarily equivalent to
multiplication by x1 [17] :

H=UxίU~l
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Thus the spectral analysis of H provides no information about so called
resonances.

In [5], the concept of translation analyticity was introduced, modelled after the
dilation analytic framework pioneered by Aguilar, Balslev and Combes [3, 11]
(which was in turn designed to handle the ε = 0 case). The idea is to consider
potentials, V(x1,xA_\ which are analytic in a strip |Imx 1 |<α and such that (with

K λ(x1,x1)=F(x ] +A,xJ) the operator Vλ(-Δ +εx1 + 0"1

is compact in |Im/l|<α. Then if ε>0 and Im/l>0, the spectrum of

Hλ=-Δ+εx1+ελ+Vλ

consists of the line z = ελ + t, ίelR along with discrete spectrum in the region
Orglmz<εlm/l . The non-real eigenvalues of Hλ in the latter region are
interpretable as resonances associated with the system described by H (the
imaginary part being proportional to the inverse of the "lifetime" of the resonant
state). The position of an eigenvalue E of Hλ turns out to be independent of λ as
long as Im E < εlm λ. For a discussion of the connection between these eigenvalues
and lifetimes, at least in the case ε = 0, see [30].

While translation analyticity seems appealing from a mathematical point of
view, the method suffers from two defects. The first is a pragmatic physical one :
the Coulomb potential is not translation analytic. From a computational point of
view this is not very serious since if one replaces the point nuclear charge by say a
gaussian charge density ρ(x), the Coulomb potential x ~l transforms to ρΉxΓ 1

which is translation analytic. The resonance eigenvalues should converge as ρ— »<5
(in fact they do as the results of Theorem III. 5 show.) Nevertheless, this situation is
still not entirely satisfactory. The second defect is a much more serious one. One
would like to study the behavior of the eigenvalues of Hλ as ε|0 and prove that
they in fact converge to those of — Δ -f V. Here one is severely hampered by the
dependence of the essential spectrum of Hλ on ε. As ε|0 this spectrum converges
downward to the real axis leaving very little room for the analysis of resonances.

Because of the singular nature of the perturbation εx1? the dilation group does
not act in a smooth way on the resolvent of H even when V is dilation analytic.
Thus the idea of dilation analyticity was ignored in [5]. It was the detailed computer
calculations of Stark resonance energies, using the complex scaling technique,
presented by W. Reinhardt in a colloquium at the University of Virginia in the
Fall of 1977, which motivated the research which led to this paper. (For the
calculational aspects of the complex scaling technique, see [12, 13, 28] and the
review article [14]. In the latter reference, a model calculation of resonance
positions using the translation analytic technique is presented.) Independently and
approximately simultaneously, Graffi and Grecchi [16] have analyzed the pro-
blem with V(x)= — l/|x| using the fact that in this case, Schrόdinger's equation is
separable in parabolic coordinates. Our results overlap theirs in the case of
hydrogen although the methods are very different.

The point of this paper is to demonstrate the applicability of complex scaling
techniques to the Stark problem and to explore some of the unique properties of
the scaled Hamiltonian. In Sect. II we consider the operator — Δ +αxx for complex
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α, and in Sect. Ill the full problem is discussed. Here it is shown that resonances
actually exist and converge as ε-»0 to the eigenvalues of — A -f V. In Section IV
some unsolved problems and speculations are discussed.

This is the first of a pair of papers, the second co-authored with B. Simon [19],
will consider the JV-body Stark problem along with analyticity and summability
properties of the complex eigenvalues as a function of the electric field. (Some of
the results of the present work and that in [19] have been announced in [18].)

II. The Operator — Δ+&xl for Complex α

Because of the unusual properties of the Hamiltonian operator for a particle in a
complex electric field we will proceed cautiously. Define

) = - Λ + αx ! ,

The object of this section is to describe the closure of h(oc) in L2(IR", dnx). Most of
the important results are summarized in Theorems II. 1, II. 3, and II. 5. We remind
the reader that if α is real, h(a) is essentially self-adjoint and if in addition αφO its
closure has spectrum (—00, oo).

Theorem II. 1. Fix α with ImαφO.
a) The numerical range, W(h(oc)), is the open half-plane

Sa = {z : Re z > (Re α/Im α)Im z} .

The operator h(a) is closable. Denote its closure by h(ct).
b) The spectrum of h(<x) is empty.
c) /ϊ(α)* = S(ά).

At this stage we will only prove part a) of the theorem :
The numerical range of /ι(α) is clearly contained in Sa. (This has been noted

previously in [13].) The fact that W(h(a)) = Sa follows from a consideration of
(ψ,h(a.)ψ) for particular ψ in ^. First take (ψ,xίψ) = Q to show that W(h(u))
contains (0, oo). Translating these ψ(ψ(x)-*ψ(x — a)) gives all of Sa. We refer to
Kato [23] for the proof that an operator with numerical range in a half-plane is
closable. However a shorter proof is given after Proposition II.2, along with the
remainder of the proof of Theorem ILL We mention that it does not follow from
(a) of the theorem that σ(/ϊ(α))£Sα. For example, consider a closed symmetric
operator A with both deficiency indices non-zero. Then VF(y4)£IRbut σ(A) is all of
C.

We remark at this point that by extending the graph of ft(α) one dimension at a
time one can always find closed extensions of h(a) which have non-empty
spectrum. However if a closed extension h'(a) of h(a) satisfies condition c) above,
we must have /?'(α) — /ΐ(α).

To prove Theorem II. 1 and the remainder of the theorems of this section we
will exploit a combination of two techniques. The first is based on an explicit
formula for the semigroup generated by ion~lh((x) and the second on a quadratic
estimate. The latter is powerful enough to prove all of the theorems of this section,
however the proofs are not as slick as those based on the semigroup formalism and
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hence we will rely heavily on this technique. The semigroup technique also plays
an important role in [19] where a Weinberg-Van Winter equation for semigroups
is introduced.

It is shown in [5] that for real α,

exp ( — it(p2 + a,xί)) = exp ( — fίαxjexp ( — Up2 + zί2p1α — zα2ί3/3)

where here and in the following we use the notation p.= —idj9 p2 = ]Γ p2 = — A.
j=ι

The change of variable ία-»t motivates the definition (for Imα>0):

Pt -exp (- iίxjexp (- ita~ \p2 - tp1 + t2β)) ί ̂ 0 . (2.1)

The case Imα<0 is handled by changing the sign of t.

Proposition H.2. Suppose Imα>0. Then Pt is a strongly continuous semigroup
satisfying \\Pt\\ = exp(-D(α)f3) with D(a) = Ima/12|a[2. If we define the generator of
Pt by setting Pt = exp ( — ίL(α)), we have L(tt) = iot~1h(tt).

Proof. Writing p\-tpl + t2/3 = (pi- t/2)2 + ί2/12 we have

where q^ql i- ... +q2 and

D(α) = Re(iα"1)/12 = Imα/12|α|2.

A straightforward computation using

gives the semigroup formula PtPs = Pt + s while the strong continuity can be seen at
a glance.

To prove L(α) = iα~ 1/ϊ(α) we use a technique now standard in semigroup theory
[25,27]. First note that Pt: &(!&?) -+&>(]&?) and that by a simple computation

lim r Hi ~ P> - ia~lh(ά)ιp , tpe ̂ (Rn) .
no

This shows that L(α) 2 iα ~ ̂ (α). Let /(α) = iα~ ̂ (α). We show that /(α) + 1 has dense
range: Suppose (φ,(/(α)+ l)φ) = 0 all φe^. Then /(ί) = (φ, P^) satisfies (for ψ<Ξ^)
f'(t)= -(φ,L(a)Ptψ)= -(φJ(a)Ptψ) (since Ptψe&) = f(t). Thus f(t) = ef(φ9ψ)ι but
since ||P(||^1, we must have (φ,tp) = 0. Thus φ=0. Since /(α) has a closed
extension, namely L(α), it is closable and satisfies Ran(Γ(α) + l) = L2(lR"). If
φε@(L(a)) we thus have (L(α) + l)0 = (Γ(α)+l)φ for some φe^(Γ(α)). But since
L(α)2ί(α) this gives (L(α) + l)(φ-^) = 0. But σ(L(α)) g {z : Re z ̂  0} which implies
φ = ψ, and hence /(α)2L(α). This completes the proof.

We now finish the proof of Theorem II. 1 :
The fact that ||PJ =exp(-D(α)ί3) implies that
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has a norm convergent limit as T->oo for all z:

lim RJz) = R(z).
T-> oo

But a short computation shows that for

and thus (β(α) — z)R(z)ψ = R(z)(h(a) — z)ιp = ψ. This implies as expected that R(z]
= (h(a) — z)"1. In particular σ(/ϊ(α)) = 0. An identical argument with ί-> — ί proves
this result for Imα<0.

To show that fr(α)* = h(S)9 we start with the observation that P* is a strongly
continuous contraction semigroup with generator L(α)*. Simple computations
show that — iΰ~ 1/ΐ(α)* = L(α)* 2 — iόc~ 1ft(ά). An argument identical to the proof of
Γ(α)2L(α) shows that L(α)*= — iα""1/^) and thus h(<x)* = h(5). This completes the
proof of Theorem ILL

We now go on to determine the domain of /ϊ(oc).

Theorem Π.3. Suppose ImαφO. Then
a) 2(hW) = 2(-Δ)n2(x,ι\
b) // n=l, ί/ien (z — /ι(α))"1 is compact.

We note that b) follows from a) and the closed graph theorem, for by the latter

(PΪ + tal + lX^-Mα))"1 is bounded and thus (z-Aία^'^^-f-IXil + l)"1^
4-lxJ-hlXz — /ϊ(α))"1] is compact since (p^ + |xj + 1)"1 is compact The proof of
part a) rests on the quadratic estimate :

Proposition II.4. Suppose that |Imα|>0. Then there are constants c(α) and /j(α)>0
so that for all

l l x ι ^ l l 2 ) . (2.2)

= (l-|cosθ|)/2

Proof. The following computations are to be interpreted as taking place on vectors
in (̂1R") and all operator inequalities as quadratic form inequalities between
vectors in 5^(]Rn) : We compute

(p2 + όbcjtj?2 + αxj = p4 + 2pl Imα + Reα(p2x1 + x tp
2) + |α|2x2 .

The inequality (p2β~1 ±j8x1)
2^0 gives with jβ-|α|1/2

) ̂  - |α" 1 Reα|(p4 + |α|2x2)

and thus

Equation (2.2) follows after we use some of the p4 to bound the term linear in p j .
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We now complete the proof of Theorem II. 3 : It is clear that

^(-zl)n^(

for if

for ί > 0 and

as f-»0 as a small computation shows. The fact that

folio ws_ from the quadratic estimate for if /e^(/ΐ(α)) there is a sequence
with ||£(α)(/-/J|2 + ||/-/m|2^0. But sup||Λ(α)/J| <oo implies

Fatou's lemma then gives fe^( — Δ)r\^(x1).

We now go on to analyze the analytic! ty properties of (h(oc) — z) ~ 1 . We denote
the distance from zeC to W(h(at)) by d(z, α). On the positive side we have

Theorem 11.5. a) The resolvent (z — /ϊ(α))~ * is jointly analytic in the variables (z, α)/or
|Imα|>0, ze(C.
b) //Imα0 =

Proof. Perhaps the simplest direct way of seeing a) is to first note that

is analytic in the variables (z, α) for Imα >0 and ze(C and thus can be written as a
double Cauchy integral

F f(j8,w)

Integrating from 0 to oo on t gives the same formula for the resolvent from which
the stated analyticity easily follows.

We now prove b). On vectors in ^(IRΠ) it is easy to derive the formula

We omit the easy proof which shows that X j ( z — /Ϊ(α0))~1(x1 -H')"1 i§ bounded (see
[17]). This fact and the uniform bound ||(z — ̂ (α))"1!! rgl/d(z,α), where d(z,α)is the
distance from z to W(h(a)), gives convergence on ̂  . The uniform bound converts
convergence on a dense set to strong convergence.

On the negative side we have the following results, the last two of which show
very vividly that h(a) "remembers" its numerical range.
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Proposition Π.6. a) 7/Imα0 — 0 and z is fixed, then if {αn}^°=1 is any sequence with
απ-»α0 and αnφα 0, the resolvent (z — h^)}'1 does not converge in norm to
(z — hfao))'1. In particular (z — ^(α))"1 is not analytic in any neighborhood of a0.

b) Suppose ε>0 and θ is fixed with θ^nπ and suppose z0 e W(h(εel0)}. Then for ε
small

for some positive constants c and λ.
c) Suppose ε and z0 are fixed with ε>0 and Imz0<0. Then for θ>0 and small

for some positive constants c and λ.

Remarks, a) It may seem "obvious" that (z — /^αj)"1 cannot converge in_norm to
(z — hfao))'1 as απ-»α0 with ImαnφO, for h(an) has no spectrum (ίe(z— ^(αj)"1 is
quasinilpotent) while /z(α0) has spectrum equal to either IR or [0, oo). However
results of [4, 20] show that there exist sequences of nilpotent operators converging
in norm to (z — h(μQ))~l for any z^σ(S(α0)).

b) The last two results are perhaps surprising because z0 can be chosen far
from the spectrum of the "limiting" operators /z(0) = — A or h(ε)= — A +εx1.

Proof. To prove part a) we first reduce to the case Im an φ 0 : If the αn are real and
α 0 =0 then since σ(ff(0)) = [0, oo) and σ(/ϊ(αn)) = IR, h(an) cannot converge to h(0) in
norm resolvent sense. If α 0Φθ, by scaling and reflecting if necessary we can take
α0 = 1. By considering

with U = exp( — ip\β\ norm resolvent convergence implies

But if χ(x) is the characteristic function of a ball of radius 1,
χ((l— xn)pl+p2 + ttnx1 +i)~ί is compact [5] while x(pl + Xi +0"1 i§ not and hence
the latter cannot be the norm limit of the former.

Now consider the case Imα π φO all n. Let φ be a fixed nonzero vector in
L^IR"-1,^-1*) and define ̂  = {/®φ:/eL2(IR5dx1)}; let P be the orthogonal
projection onto Jft. Consider the map Ka:^

>

1-^^l defined by

If ImαφO, then Ka is compact since by Theorem II.3 (p2

1 + \x1\ + ί)KΛ is bounded.
I N I

If (z — h(an)) 1 - >(z — /ι(α0)) 1 then Kσo is also compact. But this is impossible

because Kao commutes with the group of unitaries

U(a) = eip*l3Λ°eίaχie-ίp*l3Λ° α 0 Φθ

= eίapί α 0 Φ θ .

(Since U(a)-^Q as α->0 while \\KΛnU(a)ψ\\ = \\Kaoψ\\, Kao cannot be compact.)
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To prove parts b) and c), we first reduce the problem to a one-dimensional one
by noting that iϊ N'1 = \\(pl + p2

1+ax1-z0Γ
1\\, |Imα|Φθ, then

where the infimum is taken over all φe@( — A)n^(x1) with \\φ\\ = 1. Thus

N-l^mf\\(pl + pl+aXί-zΌ)φ®ψ\\
Φ®ψ

^inf \\(p\ + αx! -z0)φ\\ + inf \\ρ]y\\

where φeL2OM*ι)9 φeL2^11"1,^-"^), \\φ\\ = \\ip\\ = 1, and

N^llίPΪ + α X i - Z o Γ Ί l .

The estimates in b) and c) are both consequences of the estimate

(2.3)

as Re/? ̂ oo. Equation (2.3) is proved by first Fourier transforming the operator
— d2 d

2 + ίβ~1x — 1 to get the unitarily equivalent operator x2 — 1 +/?"1-— . Let
dX tί-/C

φQ = e~β(χ3l3~x} and note that ίx2- 1+/?"1 — -Jφ 0 = 0. However since φ0φL2 we
\ dx]

use the trial function fφ0 for suitable /.
We have

/ \ \ f φ j

2$ \f(x)\2\φ0(x}\2dx/ j |/(x)|2|φ0(x)|2dx . (2.4)

Choosing geC^QR) with gf(x) = 0 if x^O and p(x)=l if x^l, we take
f(x) = g(χ Re β). The integrals in Eq. (2.4) can be estimated with the help of [1]
giving Eq. (2.3) with c>0.

It remains only to see how b) and c) follow from Eq. (2.3) : By translating we see
that pi + εelθx 1 — z0 and pi + εelθx ί — (ZQ + acelθ) are unitarily equivalent. By choos-
ing a to be dependent on εelθ, in b) we can choose a so that z0 -f- aεelθ — r0 > 0, where
r0 is fixed, while in c) r0 = Rez + |Imz|ctnθ can be realized, as a little geometry
shows. Complex conjugation shows that we can assume in b) that sin θ >0. A scale
transformation shows that for r0>0

Thus in comparing to Eq. (2.3) we have Rejβ = ε~ 1 sinθrQ / 2 . In b), Reβ^cε'1 while
in c) Reβ~cθ~1 / 2. This gives the result.
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III. Resonances

In this section we will be concerned with making sense out of the formal operator

θ+V(xeθ) (3.1)

for complex 0, and discussing its properties. We will first introduce an assumption
concerning V which allows us to make sense out of H(ε, θ) for 0 < |Im θ\ < Θ0 and all
real ε and for ε = 0 and O^Ξ|Im0|<0 0. This hypothesis (see below) will lead to
discrete eigenvalues of H(ε, θ) which converge to those of — A -h V as εjO (see
Theorems III.2 and III. 3). We will then make a weak hypothesis which allows us to
prove self-adjointness of H(ε)= — A +εx1 + V on ί̂ ( — zl +εx1) and which further
provides a connection between the spectrum of H(ε, θ) for Im θ Φ 0 and the
singularities in analytically continued matrix elements of (z — H(ε))"1. This will
also give further information about σ(H(ε, θ)). (see Theorem IIL4). Finally we show
in Theorem III. 5 that if Vis replaced by ρ*V where ρ is a normalized Gaussian, the
resulting potential is translation analytic [5] and the resulting complex eigenval-
ues converge to those of H(ε, θ) (Im θ φ 0) as ρ converges to a delta function. Thus
translation analyticity may be useful in situations where V is not translation
analytic.

Our Hubert space tf will be L2(IR",Λc) and will also need 3^+l=2(-Δ)
normed with \\φ\\ + 1 = ||( — Δ + l)φ\\. We introduce the dilation group

U(θ)f(x) = enθl2f(eθx), 0e 1R

and for a self-adjoint multiplication operator M we use the notation
M(Θ)=U(Θ)MU(-Θ).

We make the following standard looking assumption [3, 11] concerning the
potential V which we will make use of without further reference :

Vis a self-adjoint multiplication operator with @(V)2.@( — Δ). As a map from
ffl+ 1 to #f , V(θ) is compact and extends to a compact analytic operator valued
function of θ in the strip \lmθ\<θ0for some 00e(0,π/3].

The suitability of this assumption for our problem will become clear in what
follows. For ε^O we use the notation

From the last section it follows that for 0 < |Im θ\ < π/3, σ(H0(ε, θ)) = 0. We use the
notation W(θ) for the numerical range of //0(1, θ), and d(z, θ) for the distance from
z to W(θ).

All of the properties of the operator in (3.1) will follow from an analysis of the
operator K(ε, θ z) = V(θ)(H0(ε, θ} — z ) ~ } . This operator is analyzed in the following
Proposition. We write K(θ z) = K(0, θ z).

Proposition IΠ.l. (i) The operator K(ε, θ z) is compact and jointly analytic in z and θ
forQ<\lmθ\<θ0 andε>Q.
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(ii) K ( ε , θ ι z ) - >K(θ;z) uniformly for (0, z) in compacts of

(iii) lim || K(ε, θ z) \\ = 0 for each θ with 0 < |Im θ| < Θ0.
d(z,θ)->oo

Proof. We write (for 0 < |Im θ\ < Θ0)

where the integral is over a suitable product of circles. From the quadratic
estimate it follows that J(φ,w) = ( — A + l)(H 0(ε, φ) — w)"1 is bounded and it is thus
easy to justify the formula

This implies that J is analytic in the set 0<|Imθ|<θ0, ze(C. Since
V(θ)(H0(ε,θ)-zΓ1 = V(θ)(-A + lΓ1J(θΐz\ part (i) is proved.

To prove (ii) we let χr be multiplication by the characteristic function of the ball
\x\ :gr, and first show that for fixed r

χ r ( K ( ε 9 θ ' , z ) - K ( θ ; z ) )

converges to zero with the stated uniformity. The norm of this operator is less than

HQ(θ)Γ^^-H^Θ}Γl\\. (3.2)

Using [(z - H0(θ)) ~ 1 , x j ] - (z - H0(θ)) ~1(-2ie~2epl )(z - H0(θ)) ~ l and the fact that
\\(H0(ε,θ)-zΓ1\\ ^(d(z,θ)Γl we see that (3.2) is bounded by

and thus converges to zero. The proof is complete if we can show that

with the stated uniformity in (θ, z) and in addition, uniformly in ε as ε JO. Firstly
note that by the quadratic estimate, ||( — A -hl)(z — H0(ε, θ))'1]} is uniformly
bounded in the stated region and thus it suffices to prove

(3.3)

Denote by B, the unit sphere in Jtf, and suppose C is a compact subset of
{θ :0<|Imθ|<00}. Then the set

has compact closure so that the convergence of 1 — χr to zero is uniform on S. This
proves (3.3).

To prove (iii), note that if z0 is fixed and



Dilation Anaίyticity in Constant Electric Field. I. 289

then G(z)*-^0 as d(z, θ)-+ao. This follows from the standard theory of generators
of contraction semigroups [35]. Thus

K(ε,θ;z) = K(ε,θ;z0)G(z)

so that \\K(ε9θιz)\\==\\G*(z)K(ε,0;z0)*\\-+Q. This completes the proof of
Proposition III.l.

The last proposition leads directly to interesting properties of the operator
#(ε,0) which we at last define for 0<\lmθ\<θQ and ε^O:

H(ε, θ) ΞΞ H0(ε, θ) + V(θ) , 0(H(ε, 0)) ΞΞ ®(H 0(ε, 0)) .

Theorem III.2. Suppose 0<Im$<00 and ε>0.
a) #(ε, 0) is closed.
b) 77ze family of operators {H(ε, θ) : 0 <lmθ < Θ0} is an analytic family of type

A (see [23] for a definition).
c) The spectrum of H(ε,0) is discrete (i.e. consists of eigenvalues of finite

multiplicity) and independent of θ. Further, the multiplicity of each eigenvalue is
independent of θ.

Remark. Given (b) of the Theorem and the methods of [3,11], part (c) follows
immediately. We give a short proof for the convenience of the reader.

Proof. The fact that H(ε,θ) is closed follows from (iii) of Proposition III.l which
says that V(θ) is H0(ε, θ)-bounded with relative bound zero. The spectrum of H(ε, θ}
is easily seen to be the set of z for which 1 + K(ε, θ z) is not invertible. (This follows
from the formula H(ε9θ)-z = (l + K(ε,θ;z))(H0(ε,θ)-z).) By the analytic
Fredholm theorem [27], l-fK(ε,0;z) is invertible except for a discrete set of z
(note that from (iii) of Proposition III.l, if d(z,0) is large, ||K(ε,0;z)|( <1). If
z0eσ(H(ε,θ))) then since U(φ)K(ε9θl \zQ)U(-φ) = K(ε,θι +φ;z0), we have
z0eσ(H(ε, θ}+φ)) for all real φ. Again by the analytic Fredholm theorem (and the
analyticity of K(ε, θ z0) in the variable θ\ since the set of all θ for which
1 -I- K(ε, θ z0) is not invertible is not a discrete set, it must be all of
{Θ:0<lmθ<θ0}.

The analyticity of (H(ε,θ)-z)~1 in θ clear and the fact that {H(^θ}} is type
A, i.e. the constancy of the domain of H(ε, θ), follows from the quadratic estimate.

The analytic Fredholm theorem also tells us that if E0eσ(H(ε, θ)} then
N

θ z))-1- Σ (z-E0Γ
nFn(^θ) + F(ε,θ;z) where F is analytic in a neigh-

borhood of E0 and Fn has finite rank. Thus for δ > 0 and small enough so that
r.: |z — £0| ̂ δ} — {EQ}, the projection

associated with the point E0eσ(H(ε, θ)) has finite rank. Thus E0 is an eigenvalue of
H(ε, θ) of finite multiplicity. Since clearly P(ε, θ E0) is analytic in θ (in 0 < Im0 < 00)
the dimension of its range is constant [23]. This completes the proof of Theorem
111.2.

We interpret the eigenvalues of H(ε, θ) as resonances which result when an
electric field of strength ε is applied in the xί direction to a system described by the
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Hamiltonian — A + V. It is interesting to note that even if —A + V has an infinite
set of eigenvalues accumulating at the origin, there are only a finite number of
resonances in any bounded region of the complex plane. This makes good physical
sense since the imaginary parts of the resonance eigenvalues are inversely
proportional to the lifetimes of the resonance "states", and the weakly bound
states with energies close to zero should have very short lifetimes.

In order to make the connection between the eigenvalues of — A + V and those
of H(ε,θ) more precise, we prove the following "stability" theorem and per-
turbation theoretic result. The proof is a direct translation of ideas in [8, 10] to the
Stark case.

Theorem III.3. Suppose E0 is a negative eigenvalue of — A -f V of multiplicity j. Then
for ε>0 and small, there are exactly j eigenvalues, counting multiplicity, ofH(ε,θ)
(lmθ>0) nearby and as ε|0, these eigenvalues converge to E0.

If E0 is non-degenerate, then the Rayleigh-Schrodinger series for the nearby
resonance is asymptotic and the remainder after N is bounded by

Remarks, a) The multiplicity of the resonance eigenvalue referred to in the theorem
is the algebraic multiplicity. Jordan blocks are not ruled out.

b) If the degeneracy is caused by a symmetry of — A + V which is also a
symmetry of H(ε, θ), (for example, possibly rotations about the 1-axis) then if by
restricting to an invariant subspace, this degeneracy is removed, the second part of
the theorem still holds without change. We hope to come back to this general
problem in [19].

c) Since the Rayleigh-Schrodinger series is real, the imaginary part of the
nearby resonance eigenvalue (in the non-degenerate case) evidently vanishes faster
than any power of ε as εj,0.

Proof. Suppose δ>0 is such that the disk Dδ = { z : z — E0\^δ} satisfies
Dδnσ(-Δ + V) = {EQ}, Dδr\W(θ1) = β for some Θ1 with 0<lmθί<θQ. We will
show that there is an εδ>0 so that for 0<ε^εδ there are exactly j eigenvalues
(counting multiplicity) of H(ε,θί) inside Dδ. This will prove the first part of the
theorem because the fact that δ can be taken arbitrarily small means that these
eigenvalues converge to £0 as ε JO, and because the algebraic multiplicity of an
eigenvalue of H(ε, θ} is independent of θ.

First note that [3, 11] E0 is an eigenvalue of multiplicity; of H0(Θ1) + V(Θ1) and
that σ(HQ(θί)+V(θl))nDδ = {E0}. Since ||X(θ1;z)-X(ε,01 ;z)||->0 as 40 un-
iformly for zedDδ (part (ii) of Proposition III.l) and since (1 +K(Θ1 z))"1 is
uniformly bounded on this circle, 1 + K(ε, θί z) is invertible for ze dDδ if 0 < ε ̂  εδ.
This means σ(H(ε,ΘJ)ndDδ = 0 for 0<ε^ε'δ. The algebraic multiplicity of the
eigenvalues of H(ε,θ1) inside Dδ is just the dimension of the projection
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It is thus sufficient to prove that P(ε,θί) converges in norm to

(z-HQ(θΐ)-V(θί)Γ1dz

as ε|0 for if \\P(ε,θ1) — P(θ1)\\ <1, the two projections have the same dimension.
Now

while

ε l O

The latter follows from K(ε,θl\z) — — > K ( θ l \ z ) and the strong convergence of

(z-H^ΘJΓ1 to (z-Jfoίfli))-1. Since $ (z-Jtf0(ε,01))~1ί/z = 0 and similarly

dDδ

\\P0(s9θl)-P(θ1)\\=^- J [(z-Hoίε^^-^ίε^^zjα+Xίε^i z))"1

as ε|0. This completes the proof of the first part of the theorem.
To prove the second part of the theorem we write the resonance eigenvalue

close to E0 as the ratio of two functions of ε :

/(ε)=

\z-E0\=δ

Here ( — A + V)ψ = E0ψ, ψθ=U(θ)ψ with Imθ>0, and δ is small enough so that
Dδnσ(H(ε9 θ)) = E(ε\ Dδr\W(θ] = 0. Note that ιpθ is analytic in θ for |Im θ| <Θ0 and
that f(ε)/g(ε) = (φ& H(ε, θ)P(ε, θ)ψρ)/(ψθ, P(ε, θ)ψθ) — E(ε). Here we have assumed that

ε is small enough that the denominator does not vanish. /We have

lim (ΨQ, P(ε, θ)ψθ) = (φg, P(θ)φβ) = (ψ& ψθ}
= (ψ> ψ} •]

We now expand the resolvent up to N terms and keep the remainder:

(z- H(ε, Θ)Γ ^εx^z-H^Θ)- V(Θ)Γ 1]ί
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We first bound \\(xί(z-H0(θ)-V(θ)Γ1)n'Ψθ\\ bY c"w! : From the work of Combes
and Thomas [15] it follows that for some α>0, ι/)θe^(eα'Xl') and
eβXl(z-H0(θ)- V(θ)Yle~^ is uniformly bounded in β, z and θ for |j8|^α, zεdDδ

and θ such that |Re θ\ is small and Jim θ\ is small enough that Dδ is bounded away
from W(G). Writing JR = (z-H0(θ)-F(θ))~1,j(^ι) = e~ α | x ι l / Λ we have

Since \\e

koc^lnRe~kalXίl/n\\^c if 0^/c^n and Ix^-"1*1'/"!^ en we have the desired
bound.

We thus have

\ I/ N

/Ί onJ- ϊ? ΓN + ! / I V k rn-J~ #' oN
an^ +KN+iε / L, bnε +KN+1S

0 / / \n = 0

where by analytic continuation back to 0 — 0

and |J?w(ε)| + |jRJv(ε)|^c i Ϋ + 17VΓ!. It is easy to see directly that the an and bn are real
00 00 GO

and that b0 = \\ψ\\2. If Σ cnχH= Σ α«xV Σ ^nx" as forma^ power series, it can be

shown that l)\εN+ί. The proof is not completely

trivial. We refer the reader to [31] where the result is stated and some hints for a
proof are given. This completes the proof of Theorem III.3.

After having shown that for small ε, at least certain of the eigenvalues of H(s, θ)
have something to do with the negative eigenvalues of — A + V, we should also
show that these eigenvalues have some connection with the operator
H(ε)= —A+εxί + V. With a strong enough assumption, we can make this con-
nection :

Theorem III.4. Suppose ε>0 and V( — AJr^x1 + ί)~1 is compact. Then
a) H(ε) = — A + &x 1 -f V is self-adjoint on ^( —
b) //Imθ>0 all eigenvalues ofH(ε,θ) lie in {z
c) If φ,ψ are dilation analytic vectors then fφ>ψ(z) = (φ,(z — H(s))~1ψ) has a

meromorphic continuation from Imz>0 to all o/C. The only poles possible are the
eigenvalues of H(ε,θ\ Imθ>0. The set of singularities {z:fφ^ψ has a pole at z for
some dilation analytic vectors φ and ψ} = σ(H(ε,θ)).
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d) If E is real and Eeσ(H(ε,Θ)) then E is an eigenvalue of H(ε).
e) H(ε) has no singular continuous spectrum. The point spectrum of H(ε) has no

point of accummulation.

Remark. For "reasonable" potentials, H(ε) will have no eigenvalues (see [2, 17, 33]
and [19]). In the latter reference a proof of the absence of eigenvalues in certain
regions is given in the N-body case using dilation analytic machinery.

Part (a) of Theorem III.4 is standard. The rest of the proof rests of Lemma III. 5
(which is trivial in the ε = 0 case). After one has the lemma the remainder of the
proof is a somewhat lengthy direct transcription of [3, 11] and thus we refer the
reader to the latter papers.

Lemma III.5. Suppose V( — A +εx t + /)"1 is compact and φ,ψ are dilation analytic
vectors with φθ and \pθ analytic in |Imθ|<y where y^θ0. Then if Imz0>0,
0<Imθ<y, and z0φσ(H(ε,θ)) we have

(φ, (z0 - H(s)Γ V) = (Φθ, (z0 - H(ε, Θ)Γ V,) (3.4)

where for a dilation analytic vector f we write fθ = U(θ)f.

Remark. We do not prove that (z - H(ε, 0))~ 1 -̂ -> (z - H(ε))~ * as #-*0 with Im θ > 0.

This seems to require mildly stronger assumptions about V than we have made. If
strong convergence is true then Lemma III. 5 has a trivial proof.

Proof of Lemma III. 5. The proof proceeds by showing that for a smaller class of
potentials, one can prove Eq. (3.4) by showing that (z — H(ε, θ}} ~ 1 — >(z — H(ε))~l

and then by approximating Fby such potentials. We do not attempt to find a large
class of Ffor which strong convergence as θ-»0 holds.

Let Vδ(x) = e~δ^V(x) for <5>0. We will show that for Imz>0

(i) Vδ(θ)(H0(ε,θ}-zΓ1-Vδ(~A+εxΐ-zΓ1 as Θ^Q with Im#>0.

(ii) Vδ(θ)(HQ(ε, θ)-zΓ1 ~̂ -» V(θ)(HQ(ε, θ) - z)" 1 as |̂0 if zφ W(θ) and θ is fixed

with Θ 0>|lmθ|^0.
Given (i) and (ii) the proof of Eq. (3.4) is easy. For suppose φ and ψ are dilation

analytic in |Im θ| < y. Let Hδ(ε, θ} = H0(ε, θ) + Vδ(θ) and Hδ(ε) =-Δ+εx1 + Vδ. Then

because of (ii), for small anough <5, z0φσ(Hδ(θ, ε)) and thus

is analytic in θ for 0 < Im θ < y. However fd is also independent of θ because if
φeΊR, U(φ) is unitary and thus fs(θ + φ) = fδ(θ). From (i) it is easy to see that

(z0 - /ί,M))~ ! = (z0 - //0(ε, Θ)Γ x
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as θ->0 with Im#>0 and thus (φ,(z0-Hδ(ε)Γίψ) = (Φθ9(z0-Hδ(ε9θ)Γίψθ) Now
we use (ii) to take the limit <5|0 on both sides of the above equation. The result is
Eq. (3.4).

It remains to prove (i) and (ii). To see (i) we write

Vδ(θ)(H0(ε,θ)-zΓ1 =

where B(Θ) = (-Δ + I)(x1 + iΓ1(H0(ε,θ)-zΓί. Note that

because Vδ(θ)(xί + i)(-Δ + I)"1 is analytic in θ for | Imθ|<0 0 . Since

Vδ(
xι + 0( - ̂  + 1)~ * is compact it is enough to prove that 5(0)* -̂  5(0)*. Now for

/e^, it is clear that 5(θ)*/->5(0)*/ because of the strong convergence of
(H0(ε,θ)-z)~1 to (-Δ +£*! -z)"1 (Theorem II.5). It remains to prove that \\B(Θ)\\
is uniformly bounded. The proof is exactly the same as in the Appendix of [5].

To prove (ii) for any θ with \lmθ\<Θ0 we need only remark that

V(θ)(H0(ε9 θ) — z)~l is a fixed compact operator while exp( — <5|x|eθ)^-> 1 as <5 JO as a
multiplication operator.

This completes the proof of Lemma III. 5.
We end this section by showing that translation analyticity can be useful as a

calculational tool in problems where the potential is not translation analytic but is
dilation analytic. We use the notation /α(x1,x2, ...,xn) = /(x1 +α, x2, ...,xw) and

Theorem III.5. Lβί ρ(x)-(2πσ2)~"/2β~χ2/2σ2, σ>0. Suppose F(#0(ε)-f /Γ1 is com-
pact and V(θ)( — A -h 1)~ 1 is compact and analytic in |Im θ\ < Θ0 with Θ0 < π/4. Then
Q*V also satisfies these conditions. In addition, (ρ*F)z(fί0(ε) + ί)~1 is an entire
compact operator valued function of z. //α<0, the spectrum o/H0(ε) + zεα + (ρ*F)ια

in Qa = {z:εa< Im z} coincides with σ(HQ(ε, θ) + (ρ*F)(θ))nββ ifO<lm θ < Θ0, and an
eigenvalue of the complex translated Hamiltonian has the same algebraic multiplicity
as that of the dilated Hamiltonian.

If EQ is an eigenvalue of H0(ε, Θ) + V(Θ) of multiplicity ), then for small σ and
for —a large enough, there are exactly j eigenvalues (counting multiplicity) of
H()(ε)-}-iεaJr(ρ^V)ιa near E0 and as σ->0, these eigenvalues converge to E0.

Proof. We first show that ρ*Fhas the same properties as V: It is easy to see that

(3.5)

where ρθ(x) = enθρ(eθx), and T(y)f(x) = f(x-y). If |Imθ|<00, fo*F)(- J + 1)"1

is a norm convergent integral of compact operators and thus compact. It is clearly
analytic in θ for |Imθ|<00.

Similarly

' = f Q(y)T(y)V(HΌ(ε) + i + εy^Γ1 T(-y)dy
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is also a norm convergent integral of compacts and thus compact. To prove
analyticity and compactness of (Q*V)z(H0(s)-\-i)~i we write

By the same argument as above this operator is compact and is clearly an entire
function of z.

That the spectra of H0(ε) + iεa + (ρ*V)ίa and H0(ε,θ) + (ρ*V)(θ) are the same in
the relevant region follows from the existence of a result analogous to Theorem
III.4 (c) in the translation analytic case [5]. To see that an eigenvalue of each
operator has the same algebraic multiplicity note that if P is the spectral projection
associated to eigenvalue E0 of the operator H0(ε) + ίεa + (ρ*V)ίa and similarly Q for
/ί0(ε,0) + (ρ*F)(0), then by integrating (φ,(z — H(ε))~'Lψ) around a small circle
centered at £0 we have

for a dense set of vectors from which φ and ψ can be chosen (say linear
combinations of Hermite functions). If Ran P has dimension JV, then there exist N
linearly independent vectors ψn = (fn)

ιa and φn = (gn)~la from this set such that
det {(</>„, P^)}ΦO. Then ψ'n = (fn)e, Φ'n = (gn)-θ satisfy det{(#,,Qv>i)HO and hence
Rang has dimension at least N. Reversing the argument gives
dim (Ran P) = dim (Rang). We remark that this same type of argument can be
used to show that for any E and Imθ1>0, Imθ2>0, the operators
H(ε, ΘJPfo Θ1 E) and H(ε, 02)P(ε, Θ2 E) are similar. Here

P(ε,θ;£) = (2πi)~1 § (z - H(ε, Θ)Γ 1 dz
\z-E\=δ

where σ(H(ε,θ))n{z:0<|z-E|^<5} = 0.
To see the stability result we proceed by using the same method as in the proof

of Theorem III. 3: Since as we have just shown the spectrum and algebraic
multiplicity of the eigenvalues of H0(ε)Jriεa + (ρ*V)ιa are the same as that of
H0(ε, θ) + (g*V)(θ) (in the relevant region) it is enough to prove the same result with
H0(ε) + iεa + (ρ*V)ia replaced by H0(ε,0) + (ρ*F)(0). A glance at at the proof of
Theorem III.3 shows that it is sufficient to show

as σ|0 for fixed θ with 0<lmθ<Θ0. From Eq. (3.5) it follows that

Since V(Θ)(—Δ + 1) Ms compact, it follows that

lim
|y|-K)
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Since j £0001^-*0 as σjO for each <5>0 the result follows by a simple
\y\>*

argument.
We remark that a Gaussian ρ is clearly only one of a large class of smoothing

functions which will perform the desired function.

IV. Discussion

To most physicists, the word "resonance" evokes thoughts of exponential decay
and poles in scattering amplitudes. The former is an experimentally observed fact:
Suppose a system described by a Hamiltonian H with an isolated eigenvalue £0

and eigenvector ψ is perturbed to H + εW, and suppose E0 dissolves into
continuous spectrum as soon as ε >0. Then for small ε if a state corresponding to ψ
is prepared at time 0 the probability that the state at time t is still ψ, i.e. the number
\(ψ,e-it(H + εW)ψ)\2, behaves as e~Γt.

Unfortunately, this cannot be an exact result for large ί in most situations. For
if H + εWis semibounded then the Paley-Wiener theorem prevents a bound of the
form

\(ψ,e-it(H + εW)ιp)\2^ce-Γt (4.1)

from being true [32]. However in the Stark case, H(έ) (for ε>0) is not
semibounded. In fact as has been stated, in many cases one can prove that H(ε) is
unitarily equivalent to multiplication by x1 on L2(IR"). In this case it is easy to
display vectors ψ for which the bound (4.1) is satisfied. The question which the
author finds interesting is whether the eigenvectors of the hydrogenic
Hamiltonian, H=—A—Z/\xl satisfy (4.1) when W = xλ. This problem and its
extension to more general interactions seems to involve a much more thorough
understanding of the structure of the resolvent (z — H(ε, θ)) ~j than has been given
here. In particular one needs to have a more detailed analysis of σ(H(ε, θ}). This
leads to another question. In Theorem III.l it was noted that even though
Hydrogen has a infinite set of eigenvalues, H(ε, θ) has only a finite number of
eigenvalues in any compact set. A conservative hypothesis might be that H(ε, θ)
has an infinite number of eigenvalues En(ε) in one-one correspondence with those
of hydrogen and that |Im£w(ε)|-»oo as π->oo for fixed ε>0. It is entirely
conceivable to this author, however, (based on some very imprecise physical
intuition) that in fact σ(H(ε, θ)) is finite.

An answer to these two questions seems to require a much more global
analysis of the problem than we have presented here.

Let us return to the second response of the physicist: poles in the scattering
amplitude. There is a large literature which shows that in many cases, complex
eigenvalues of —Ae~2θ+V(θ) (ImθΦO) do appear as poles in the scattering
amplitude (see [32] for a list of references). In the Stark case, perhaps the first
question which arises is "which scattering amplitude?". A scattering operator can
be constructed from the wave operators introduced in [5, 17]. Is there a physically
observable object associated with this operator which has the complex eigenvalues
of H(ε,θ) as poles?
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Our final question concerns the calculation of the imaginary parts of the
eigenvalues of if(ε, 0). Their calculation seems difficult especially for a potential
falling off as slowly as the Coulomb potential. Can Oppenheimer's [26] original
calculation of the hydrogen Stark lifetimes be duplicated using dilation analytic
machinery?
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