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Symmetry Breaking
for a Non-linear Schrδdinger Equation
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St. John's College, Oxford OX1 3JP, England

Abstract. We define a notion of stability for molecular states and show that the
stable ground states of a molecular Hamiltonian are not unique (break ro-
tational symmetry) if the atomic masses are greater than certain finite critical
values. The stable ground states are stationary with respect to a new non-linear
Schrδdinger equation, which is exactly soluble in certain simple cases.

§ 1. Introduction

There has been some interest recently [2,12,13] in the problem of the quantum-
mechanical justification of the concept of molecular structure. The problem is to
explain why it is that in most situations, excluding possibly those of extreme
isolation, the wave function of a molecule seems to be not an eigenstate of the
Hamiltonian, but one of a class of slowly time varying states which are more stable
in some sense.

In this paper we propose a precise definition of stability and prove the exis-
tence of stable ground states (Sect. 2). In Sect. 3 we show that for large enough
atomic masses and typical two-body interactions the stable ground states are not
unique. The breaking of the rotational symmetry of the Hamiltonian which occurs
is closely related to the problem of molecular structure, as was pointed out by
Woolley [12]. We study the anharmonic oscillator in some detail and show that
reflection symmetry (parity) breaking does not occur for small masses and that
there is an associated phase transition for finite values of the various parameters.

Having proved in Sect. 2 that the stable ground states satisfy a certain non-
linear Schrodinger equation, we devote Sects. 4 and 5 to an analysis of the as-
sociated time-dependent one-body Schrδdinger equation. Although non-linear we
show that it is exactly soluble even in three space dimensions, and clarify some
geometrical properties of the solution related to the Euclidean symmetry of the
equation. Finally in Sects. 6 and 7 we sketch two possible approaches to the
"derivation" of the non-linear Schrδdinger equation, firstly using a second quan-
tised linear Hamiltonian describing the interaction of an atom with an external
phonon field, and secondly by reference to a collective model of nuclear structure.
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For the sake of simplicity we confine our exposition to the case of two spin zero
atoms interacting in three space dimensions, so that wave functions ψ are unit
vectors in L2(ΪR6). Much of our analysis can be carried out for n-body systems but
there is much extra complication which we prefer to avoid. We therefore assume
that the electronic structure has been eliminated by the Born-Oppenheimer me-
thod, so that the atoms interact by an effective potential which is attractive at long
range and repulsive at short range (precise conditions are given in the next
section).

If {βj?=ι are the position operators on JΊf , three for each particle, and ρ is a
density matrix on ^f, we define

and for α>0 minimise

over the set X of all normalised density matrices. The weight W(Q) may be in-
terpreted either as the energy of polarisation of the medium in which the atoms
travel, or as a measure of the stability of the state ρ of the atoms. From its form we
see that W(ρ) is unchanged by translation or rotation but decreases as the distri-
bution of the state in position space becomes more concentrated. The single
undetermined parameter α>0 measures the total influence of the surrounding
medium and presumably increases with its density. In the extreme low density
regime we may put α = 0 and recover thee usual quantum mechanical theory.
These are precisely the circumstances where the justification for the molecular
structure hypothesis is least clear [13].

We point out that the above procedure is entirely analogous to one of the
derivations of Gibbs states. Namely

may be characterized as the density matrix which minimises

the second term again being non-linear and representing an influence of the sur-
rounding medium.

From this point onwards however the two discussions proceed along entirely
different lines, for W(ρ) is a concave function on the convex set .AT. This implies that
if the functional does take a minimum value then it takes that value on the pure
states (extreme points of X). We therefore reformulate the problem as one of
minimising

(Hψ,ψy+oι,W(ψ) (1.1)

over all ψ with \\ip\\ = 1, where α>0 and

,ψ>-<QiΨ,ψ>2} (1.2)
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§ 2. Existence of the Minimum

We assume that the Hamiltonian H on Jf = L2(ΪR6) is of the form

where x1 ?x2e]R3 are the coordinates of the two particles and V is a pair potential
bounded from below. We also assume that V is continuous and central, although
this is not needed for several of the theorems. The Hamiltonian is defined as a
quadratic form sum and is invariant under the Euclidean group.

We define the domain of the weight W to be

Dom(FF)- Π Όom(Qi)
i = l

on which it is non-negative. We wish to minimise

for α>0, where ||φ|| = l and

ιpeQ(H)r\Όom(W)

for all sufficiently large constants C. Any such minimum is called a stable ground
state of the Hamiltonian H.

The following theorem has much in common with results of Lieb and Simon
[7, 8] on the existence of Hartree-Fock minima for molecular Hamiltonians.

Theorem 2.1. A stable ground state exists if

V(x)< lim
r~ »• oo

for all xelR3.

Proof. Let

and let ψn be a minimising sequence, so that

and

We further suppose, as we may, that the centre of mass of each wave function is
at the origin. If

-K-inf{F(x):xeIR3}

and

HQ=--l—A<-- — A20 2m 1

 1 2m2

 2
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then

<H0ψn,Ψn> + W(ψn)^K + E+ί. (2.1)

The left-hand side of (2.1) is invariant with respect to space translations of each
particle separately. Therefore there exist space translations U(an,bn) where
an, bπelR3 and mlan + m2bn = Q, such that if φn = U(an,bn)ψn then

and

for all i and n. Since H0 + α ]Γ Qf has compact resolvent the set

is norm compact and there is a subsequence, which we still denote by φn, such that

lιm\\φn-φ\\=V.
/!->• CO

Moreover

for all i, by the convergence of the φn, and the uniform boundedness of (Q?φn, φπ>.
If we can show that cn = (bn — an) is bounded then we can pass to another

subsequence and assume

lim an = a lim bn = b.
n ->• oo π -> oo

Defining

ι/J=ί/(fl,b)*φ

we see that

lim ψn = ιp lim ^Qtψn,ψny = (Q#\ tp> .
π -> oo π -> GO

But

/ / 6
T 7 V1 X Λ 9_1_ J/ _L QJ \ / ^ f

ί= 1

by the lower semicontinuity of the quadratic form of any semi-bounded self-
adjoint operator. Therefore
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To prove that the sequence cn is bounded we use the equality

<Hψn, ψB> + W(ψH) = /(f/o + α Σ <2?) <?„, </>„) + /„ (2.2)
\ \ ί = l / /

where

ι«=ϊ$v(χ-y- ϋ W*> y)\2d3χd3

y . (2.3)
Now j|(l + x2 + y2)\φa(x,y)\2d3xd3y

This implies that there is a constant B such that

λ-2 + > 2 ̂  B2

Now define

so that D>0. Then / < ; - D if | c ^ 5 while

if cπ| is greater than some constant A. For ψn to be a minimising sequence it is
therefore necessary by (2.2) that \cn ^A for all large enough n.

Theorem 2.2. A stable ground state exists if

lim F(x) = + co .
|x|->oo

Proof. We assume that F^O, and copy the proof of the previous theorem until the
last part. We deduce from (2.2) and (2.3) that

which implies that the sequence cn is bounded.
We next point out that stable ground states do not always exist. For any

potential V which is strictly positive and vanishes at infinity it is clear that cn-»oo
for any minimising sequence ψn, so that there is no norm convergent subsequence.
However, if the potential combines short range repulsion with long range attrac-
tion existence may be proved for large enough atomic masses. We conjecture that
this restriction on the masses is also necessary.

Theorem 2.3. Suppose that lim V(x) = 0 and that V(x)<Qfor some xeIR3. Then a
|*|-κχ)

stable ground state exists ifml and m2 are large enough.

Proof. Once again we modify only the last part of the proof of Theorem 2.1. If
cπ-»oo then /„-»() which implies that

lim {(Hψn,ψny + *W(ψn)}= lim (ίπo + a £ β?
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Thus the stable ground state exists if

But by taking φ to be a C°° function with support in a small neighbourhood of the
minimum of V we see that

lim inf {<Hφ,φ> +otW(ιp}}
mι,m 2 - > oo \\ψ\\ = 1

We mention, because of its possible computational value, that the above
Theorems all have Hartree versions, where one minimises over wave functions ψ

Theorem 2.4. If ψ minimises <#φ, φ> -f aW(ψ) subject to \\ip\\ = 1 then

6

for some real E, this equation being interpreted in the quadratic form sense on

Proof If φεQ(H)nΌom(W} and <φ,y;>=0 and ||φ|| = l then

φ cos Θ + φ sin θ), ψ cos θ -f φ sin θ> + α FF(ψ cos θ + φ sin θ)

for all real 0. Differentiating at Θ = Q we obtain

6

i= 1

;ψ, φ> - 2<βiV, V> (β ,̂ Ψ>} =0 .

Therefore if

ί= 1

we see that

whenever <φ,t/;)=0 and ||φ|| = 1. This implies that ξ = Eψ for some £.
We have now associated the functional

with a non-linear Schrodinger equation (NLSE)

dw 6

ί-^=Hφ + « Σ {eι

2V-2<βίV,φ>eίφ}. (2.4)
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It is easy to verify formally that any solution of this equation satisfies \\ψt\\ = 1 for
all ί if it does so at ί = 0, and that

is constant in time.

§3. Symmetry Breaking

Since both the Hamiltonian H and the weight W are invariant under the Euclidean
group the uniqueness of the stable ground state of

(Hψ,ψy+aW(ψ] (3.1)

is intimately related to the question of symmetry breaking. Indeed even for the
question of existence we had to break translational symmetry, since there are no
translation invariant unit vectors in J .̂ For the rest of the section we assume that
wave functions have centre of mass at the origin and consider only the problem of
symmetry under the rotation group S0(3).

It is clear that if the stable ground state ψ of (3.1) is unique then ψ is invariant
under S0(3). If α = 0 the ground state (which is only square integrable after elim-
inating the centre of mass motion) is known to be non-degenerate for very general
interactions between distinguishable atoms [11, p. 207]. On the other hand in
quantum chemistry the molecular structure hypothesis allows one to talk about a
molecule having a particular orientation with respect to the laboratory coor-
dinates, and so suggests that the wave function of an unexcited molecule is not its
quantum-mechanical ground state. Now it is to be expected that although the
ground state is non-degenerate there are excited states whose energies differ from
the ground state energy by an extremely small amount. It has been shown in [4, 5]
for example that the difference between the first two energy levels of the anhar-
monic oscillator Hamiltonian

w=~p2+ie4-ie2

decreases very rapidly as w->oo, so that one has ground state degeneracy at
m= + 00. One therefore sees that superpositions of the lowest eigenstates of a
molecular Hamiltonian may break rotational symmetry while being very
nearly stationary in time.

The weakness of the above discussion is that no particular prescription is given
for determining which superposition of the eigenstates is relevant for the problems
of quantum chemistry. Our method resolves this difficulty at the cost of introduc-
ing a single undetermined parameter α > 0.

We emphasise that unlike the ordinary anharmonic oscillator [1, 4, 5] the
ground state degeneracy of the following theorem occurs for finite values of the
atomic masses.

Theorem 3.1. Suppose that the potential V takes its minimum value A only when x\
= r0>0. Then the stable ground state of H with centre of mass at the origin is not
unique and breaks rotational symmetry provided the atomic masses are large enough.
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Proof. If ψ has centre of mass at the origin and is spherically symmetric then
< φ , φ>=0 for all i. Hence

i = ι
2

{ V(x — y) -f ax2 4- ay2 :x,

However as we have already shown

lim [min

and the hypothesis on F implies that A<A'.
The symmetry breaking above is associated with a phase transition. Namely

the parameter space

{m1 , w2, α) : m3 > 0, w2 > 0, α > 0}

may be divided into two regions depending on whether the ground state is unique
or not. For any α >0 it is not unique for sufficiently large ml and m2. It seems likely
that for any α >0 the ground state is unique for small enough m1 and m2, but we do
not have a general proof.

To clarify the position we analyse in some detail a simple example, which is
probably fairly typical. We consider two atoms of equal mass interacting anhar-
monically in one dimension with Hamiltonian

The explicit expression for W is

W/(ψ) = <β>,V>+<β2V.V>

We consider the breaking of reflection symmetry, where

in the case α= 1. It is useful to define K = \P2 + Q4 and to denote its eigenvalues in
increasing order by £0,E15 ... and the corresponding normalised eigenvectors by

Theorem 3.2. The functional <Hφ,φ> + W(φ) has a unique minimum subject to \\ip\\
= 1 and

>Ψ>=0 (3-2)

if and only if

<&Aψ>-m1 / 3<ρφ,φ>2>,E0 (3.3)

for all unit vectors φeL2(IR) such that φφφ0.

Proof. Because the centre of mass is at the origin
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which on rotating coordinates may be written as

\2m 1 2m

and then by a scale transformation as

Let Fn denote the eigenvalues of (^P2 + Q2) in increasing order and φn the
corresponding normalised eigenvectors. If (3.4) has a unique minimum subject to
the condition (Q2Ψ>ψy=Q > which corresponds to (3.2), then by reflection sym-
metry the minimum satisfies (β^, φ)— 0 which implies that ψ — φ0®φ0. We
therefore have to determine whether

(3.5)

for all unit vectors φΦι/;0(x)φ0 with (Q2ψ, φ>=0.

NOW ψ = *ζn®<P Where H = 1 and |2 = 1 > S0

with strict inequality unless α0 = l and αM = 0 for all n^l.
Therefore (3.3) implies (3.5) unless α0 = l, αn = 0 for all n^l and ξ0 = φ0, that is

unless φ = φ0®φ0. The converse is similar.
We have already shown that reflection symmetry is broken for large enough m.

It is easy to use Theorem 3.2 to obtain upper bounds on the critical mass. For
example if ψa denotes the translate of φ0 by a distance a then

= E0 + 6a\Q2ψ0, ψ0> + α4 - m1/3a2

which is less than £0 for small a if

We next prove that reflection symmetry is not broken for small masses.

Theorem 3.3. If

then the stable ground state is unique subject to having its centre of mass at the origin.

Proof. Write ψ = uψ0 + vφ where ( |φ| | = 1, <φ, φ0>=0 and |M|24-|ι;|2 = l.

Since <βφ0^o>=0

> ψ>\
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SO

Therefore

^ \u\2E0

which is greater than E0 if v φ 0 and

(l-2m1 / 3)E1-2m1 / 3>£0.

While quantitatively poor, the above theorems establish that there is a critical
mass 0 < m < oo such that if m > m the minimum is not unique and breaks reflection
symmetry, while if m<m the unique minimum is equal to ψ0.

We now describe a technique which enables one to determine in to any degree
of accuracy. Let Ln be the linear span of φ0, . . . , ιpn _ ± and let mn be the largest mass
for which

has a unique minimum, necessarily at tp0, in the subspace Ln. We consider the
constants mn to be computable since they depend on finding the minimum of a
continuous function on the unit ball of Cπ. For example

It is clear from their definition that mn decrease monotonically as n-^ao.
Moreover since linjφj is a quadratic form core for K, it is easy to verify that

l imm M = m. (3.6)
n-+ oo

The point of the following theorem is that it controls the rate of convergence in
(3.6).

Theorem 3.4. Ifεn is defined by

then

Proof. If || ψ || = 1 we may write ψ = uξ + vη where \\ξ\\ = 1, \\η\\ =1, ξeLn,

|w|2 + |y|2 = l. Then

, O +
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Therefore

for any ε, λ > 0. It follows that

<Kφ,φ>-m1/3<βvw

£ u\2{(Kξ, O -(1

+ |ι;|2{<

Putting

and noting that (Kη,ηy^:En, we see that the minimum is unique provided

(1-f ε)3m<wn

and

These estimates are implied by the pair

(l+ε) 3 w<m n

and

K-8(m2)
2/3(H-ε-1)2^£0.

This yields the stated lower bound on m, the upper bound being trivial.

§ 4. An Exactly Soluble Non- linear Schrόdinger Equation

Our discussion in Sect. 2 led us to the NLSE (2.4), which is of some interest in its
own right. Such equations raise many interesting problems at the foundations of
quantum mechanics. For example one has to reconsider ab initio the definition of
mixed states [10], macroscopic causality [3] and the measurement problem [6].
One of the main difficulties concerns scale invariance, that is whether H(λψ)
= λH(ψ) for all λe (Γ. This can be achieved for our problem by redefining

which necessitates no changes in our above results because we always assumed
that | |τ/; | | = l.

In this section we study the "free" one-particle NLSE on L2(1R3) which, after
normalisation, may be written as
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We let <£ denote the quadratic form domain of the harmonic oscillator

and for p,^eIR3 define

Note that <£pq is a subset of ££ but not a linear subspace.

Theorem 4.1. For all φe^ there is a unique solution φt=Utφ of the NLSE (4.1)
such that φte^ for all t. Moreover Ut maps ^pq onto ^p^q+pt and coincides on J£pq

with a linear unitary operator.

Proof. Given any solution one verifies that

so that one can rewrite the NLSE as

But this is a linear Schrodinger equat ion which is exactly soluble for ψe^pq. For
notational simplicity we write down the solution only in one space dimension.

If

(4.2)
dt 2 dx2

and we define

then a straightforward computation shows that

- -dt 2 dx2 2

for a suitable choice of the phase function Θ(p,q,t). Putting H = \(P2 + Q2) we see
that the solution of (4.2) is

The fact that the evolution operator Ut:^pq-^^piq + pt is essentially linear,
together with the observation that each £fpq is a dense subset of Jf , allows one to
extend Ut from ^pq to a unitary operator on ^f. This is not a good idea however,
since one gets a different extension for each choice of p, q, as indeed one must
because of the nonlinearity of the original Schrodinger equation. The point is that
although the solutions of the NLSE satisfy \\Utψ\\ = \\ip\\ for all φe^f and ίeK,
there is no way of extending Ut to a continuous map on the whole of Jf . Apart
from a special class of states discussed below, it seems that the NLSE makes sense
only for ψe^7. One may summarise the nature of the NLSE by describing
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pq as a fibre bundle with fibres <gpq and base space IR6, and Ut as a one-
pq

parameter group of fibre bundle automorphisms of $? .

Theorem 4.2. For each p, geIR3 and neΊL^ there exist solitary wave solutions of the
NLSE with position q at time zero, momentum p and excitation number n.

Proof. If φn is the nth excited state of the harmonic oscillator then

Therefore

is a solution of the NLSE. But since φn is an eigenvector of H

so

as required for a solitary wave.
The space reflection (Rψ)(x) = ψ( — x) may be used to produce another simple

class of solutions of the NLSE. If ψeJήf then there is at most one pair (p,q) such
that

0ψ=±UpqΌψ. (4.3)

If φe J^ and if (4.3) holds then

but (4.3) can serve to define the position and momentum of certain states which do
not lie in <£ . For such ψ one may define

as generalised solutions of the NLSE.

§ 5. Generalisations of the NLSE

The non-linear Schrodinger equation of Sect. 4 possesses solitary waves which
move classically with momentum p and position (q + pt). These waves also possess
internal excitations which evolve as for the harmonic oscillator. One may interpret
these excitations as internal structure of the particle induced by the non-linearity,
or, more plausibly, as oscillations due to the medium in which the particle is
travelling.

It is natural to ask to what extent these results depend upon the precise form
(4.1) of the NLSE. In this section we investigate this problem for a NLSE in one
dimension, of the general form

i*jL = ±-P>ψ + v(Ψ) (5.1)
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where

V(ψ) = Σ

and φeL2(IR), αr:L
2(IR)— >IR being homogeneous of degree zero to ensure scale

invariance of the NLSE.
We let Ua be the space translation

(Uaψ)(x) = ψ(x-a)

and for the sake of precision assume that there is a dense linear subspace 5£ in
L2(1R) which contains C^°, is invariant under all Ua and has the further property
that for all ψe<£f, (5.1) has a unique solution within & for all

Lemma 5.1. Ifψt is a solution of(5Λ) in <β then

:<Pφ (,V f>=- Σ ra,.^t01 ,._0

The NLSE is invariant under space translations if and only if

~\(Uaψ) (5.2)

for all αeIR, ψ<Ξ ̂  and s = 0, ...,n.

Proof. The first two results are straightforward computations. For the third we
note that space translation invariance is dependent upon

or equivalently

Σ αs(v06V= Σ *r(Ua
s=0 r=Q

which may be rewritten as

Σ αs(v)βsV'= Σ Σ ^.(U

Equation (5.2) then results from the fact that ιρ, Qψ, . ,Qnψ are linearly inde-
pendent in L2(IR) if φφO.

It is important to realise that space translation invariance does not imply the
conservation of momentum

~
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in the non-linear case. As a simple example consider

dw
Theorem 5.2. Suppose that the NLSE (5.1) is translationally invariant. If -~- is a

which describes a particle moving with constant acceleration.

Theorem 5.2. Suppose that the NLSE (5.1) is

linear function ofψ on the (nonlinear) subset

^0^{φG^:<βφ,φ>-0}

of 5£, in the sense that αr(φ) are constant on J2?0, then

/or α/ί ipe^ and some c0, ..., c?J

Pro<9/ We put φ = Uaψ where α= — <βφ, φ>/<ψ?ψ>. Then <Qφ, φ>^0 so
and the linearity assumption implies that

αr(<p) = cr (5.4)

for some constants c0, ...,cπ independent of φ. Now Eq. (5.2) leads to the formula

and hence to
n i

_ y Λ^

Li L^ i
s = 0 r = s \ά,

=
r = 0 Γ <V,Ψ> J

Theorem 5.3. // m addition to the above conditions, the subset

is invariant under the time evolution then

for some c0, c2e!R.

Proo/ By Lemma 5.1 the subset ^00 is invariant if and only if

for all t/ e^oo, which necessitates cr = 0 unless r = 0 or r = 2.
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This last theorem provides a degree of post hoc justification for our original
choice of W. While much of Sects. 2 and 3 can be reproduced for other similar
choices of W, it seems likely that further developments, for example of scattering
theory, will depend upon the explicit solubility of the single particle problem. The
theorem states that the W chosen in Sect. 1 is the only one of polynomial type for
which the NLSE has space translation invariance, conservation of momentum and
exact solubility in the sense of linearity of the Hamiltonian on Jδf0 (as defined in
Theorem 5.2).

§ 6. Quantisation of the Medium

Since the non-linearity of our Schrδdinger equation was motivated by reference to
the polarisation of a medium in which the atom is travelling, one might hope that
by explicitly introducing that medium in second quantised form one could recover
the NLSE.

Noting the analogy between Choquard's functional

^0(φ) =

and ours, written in the form

~

one can write down an appropriate second quantised linear Hamiltonian, which is
a modification of that describing the polaron (see [9] and references cited there).

We define

where

and

a*(k) being the creation-annihilation operators of a phonon field at the point k of
momentum space. We define

ίk x + a(k)eίk x}dk

where we assume that / is spherically symmetric and

oo. (6.1)

An upper bound to the ground state energy of H may be obtained by using
states of the Hartree type, namely ψ = ψa

(8)ψb where ιpa is an atomic state and ψb a
state of the phonon field, both being of unit norm.
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Theorem 6.1. The quantity

<Hψa®ψb,ψa®ιpby (6.2)

is minimised by taking ιpb to be a coherent phonon state and ιpn an atomic state which
minimises

where

σ(x) = ί|/(/c)|V^/c. (6.3)

Proof. If we define ρ(k) to be the Fourier transform of

ρ(x) = \ψa(X)\2

then a direct computation shows that

<Hψa®ψb, ψa®ψby = - — (Δ\pa, ψay

+ < j (ωa(kYa(k) + g(k)a(k)* + g(k)a(k)}dkψb, ψby

where

) = f(k)ρ(k)

lies in L2(IR3). For fixed ψa the ground state of the phonon term is a coherent state
with energy

= —ω 1 JJ σ(x —

So if we minimise (6.2) first with respect to ιpb and then with respect to φfl we
obtain the stated result.

It is formally clear that for large atomic mass m, ̂ (φ) should be minimised for
a state which is concentrated in a very small region in space. But if (x — y) is very
small

σ(x-y)==β-~(x--y)2

by (6.1) and (6.3), with α, β g^O. Therefore for large atomic masses S\(ψ) is approxi-
mately equal to

$2(\p)=. —j \V\p\2 dx — ω""1 \\\β (x — y)2\\ψ(x)\2\ψ(y)\2dxdy

=î
which is the expression we started with, up to a self-energy renormalisation
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The above discussion produces a relationship between the Hamiltonian H and
the weight W, but little more. It is unclear why one should minimise (Hψ,ψy only
for states ψ of Hartree type, and whether this gives the ground state energy (or
more precisely the bottom of the spectrum of H, which possesses no bound states)
exactly in the asymptotic limit w-»oo. It also remains to be seen whether there is a
similar relationship between the dynamics for H and for the NLSE.

The following discussion shows that such a dynamic relationship must nec-
essarily be asymptotic not exact. We define solitary waves with respect to a
Schrodinger equation

i^=H(ψ) (6.4)

on a Hubert space Jf7 to be a family of unit vectors ιppqeJ4? with the following
properties

(i) The solution of (6.4) at time t with initial state ψpq is of the form

(ii) ψpq and ιpp,q, are linearly independent unless p = p' and q — q'.
(iii) ψpq depends norm continuously on p, q.

Theorem 6.2. No linear Schrodinger equation possesses solitary waves.

Proof. Given ^φO let

θelR

Using (iii) let \p\<δ imply

Now choose p and ί >0 so that q = pt and |p| <δ. Then by (i) if H is linear

and

so

contrary to the definition of a.
We finally mention a conjecture about how solitary waves may occur for the

second quantised Schrodinger equation in spite of the above theorem. First recall
that since the medium has an infinite number of degrees of freedom, no single
Hubert space representation is adequate to describe all its excitations. It is possible
that the polarisation of the medium due to the atom is so substantial that each
solitary wave of the NLSE is associated with an inequivalent representation of the
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CCR algebra for the medium. In this case Theorem 6.2 would not be applicable
since the states ψpq would all lie in orthogonal Hubert spaces and condition (iii)
would not hold.

§7. A Simplified Nuclear Shell Model

In this section we give another "derivation" of the NLSE for a model
Hamiltonian of a type which is popular in the analysis of nuclear structure. For
simplicity we assume that we have n nucleons of mass m and spin zero moving in
one space dimension. If the nucleons have wave functions φreL2(lR) and are
attracted harmonically to their collective centre of mass then their equations of
motion are defined in the model as

iΊϊΓ = :Lpϊφ'+Ύ{Q'-q(t}}Zφ' (ΊΛ}

where

Theorem 7.1. Ifψ= (X) φr then the dynamical Eqs. (7.1) and (7.2) are equivalent to

where

Proof. This is a consequence of the well-known identity

Σ {e,.
r = 1 r, s

and together with

While mathematically trivial, the theorem is interesting in that Eq. (7.3) can be
interpreted as arising from a harmonic potential between all pairs of nucleons
together with a nonlinear term of the usual type acting on the centre of mass. If the
internal degrees of freedom are separated in the usual manner then the centre of
mass evolves according to our NLSE.

Since (7.1) is a linear time-dependent Schrodinger equation. φ l 5 ...,φn are or-
thogonal for all times if they are so at time zero. Thus there is no problem in
accommodating Fermion statistics.
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We see as in the previous section that the NLSE seems to be theoretically
related to the Hartree condition. It would be valuable to find a deeper explanation
of this phenomenon.
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