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Abstract: Using an approach inspired by the theory of the anomalous
divergence of the axial vector current, we derive trace formulas for the
resolvents of Dirac operators on open spaces of odd dimension. These
formulas readily yield index theorems for these operators. As applications we
determine the index of the Dirac operator for a particle of arbitrary isospin in
the background field of a static system of SU(2) monopoles and we find
formulas in essentially closed form for certain determinants involving these
operators.

Introduction

It is the purpose of this paper to give an elementary analytical proof of an index
theorem for Dirac operators on open Euclidean spaces arising in Minkowski
space-time Yang-Mills theories. We use basically an extension to open spaces of
the index formulas in terms of traces of the propagation operators for the heat
equation.

The index theorem has so far been applied to physical systems that can be
stereographically projected onto a compact manifold [1]. Thus for the case of
pseudoparticle configurations in Euclidean (imaginary time) Yang-Mills theory in
four dimensions, it has been used to determine the number of zero eigenvalue
modes of the Dirac equation and the number of independent parameters of self-
dual or anti-dual solutions [2].

The possibility of compactifying the problem is the basic feature of these
systems that makes the Atiyah-Singer [3] index theorem applicable.
Compactification is actually necessary on a more fundamental level in these cases:
to make the problem well-defined; precisely the operators involved are not
Fredholm on the open space. The even dimensionality of the projected manifold
guarantees that at least a priori the index problem can be non-trivial.
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However, examples are known of Dirac equations in Minkowski space of an
odd number of space-dimensions with non-degenerate static (time-independent)
modes [4]. Writing such a Dirac equation in the form

0 L

where L is an elliptic operator on odd-dimensional Euclidean space, we see that L
has a nonvanishing index.

Unlike the case of the pseudoparticle configurations, the index problem for L is
well-defined on the open space, as we show in the next section. On the other hand,
a compactification of the problem, which may be possible, will necessarily lead to
an inequivalent index problem: the index of any elliptic differential operator on an
odd dimensional compact manifold is known to be zero [3]. Thus the static modes
in the type of situation described above must be explained by an index theorem on
open Euclidean space.

We derive such an open space index theorem for Euclidean space of odd
dimension. This theorem can also be proved more simply by using topological
methods, as explained in the note by R. Bott and R. Seeley following this article.
Our proof however only exemplifies the possibility of the use of the heat equation
in open space index theory. The general idea is to use traces of the type [5]

or

Tr

On a compact manifold, either of these traces gives the index for any value of t or z
(for s > 1). On an open space we get the index by taking the limit t->oo for the first
one or z->0 for the second. Although the first trace is defined for a much wider
class of problems, we use the second one, with s = 1, which only happens to make
sense due to the special form of the Dirac operator. The nice feature of this trace is
its connection with the so-called anomalous divergence of the axial vector current
[6]. A physicist will have no trouble recognizing this connection in the disguise of
Proposition 1.

The class of Dirac operators that we study arises in Yang-Mills theories with
both gauge and Higgs fields [4]. The most general Dirac equation appearing in
this context is given by (1.1) below where At(x) is related to the gauge field and Φ(x)
to the Higgs field. We begin by giving the background on these equations. In Sect.
II we then describe how the trace of the resolvent above can be computed and then
used to derive index theorems for first order operators. In Sect. Ill we use these
ideas to derive explicit trace formulas and the index theorem for our Dirac
operators in odd dimension. Finally in Sect. IV we apply our results to systems of
fermions and SU(2) monopole configurations. We conclude by discussing the
relation of our results to the anomalous divergence of the axial vector current and
to anomalous determinants.
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I. The Problem - A Class of Fredholm Operators

The index problems that we are concerned with in this paper arise from Dirac
equations in Minkowski space-time of n space and one time dimensions. Such
equations are of the general form

Here tp(x, ί) is a 2pm-component spinor. The 2p x 2p Dirac matrices are given by

δι oj P"ι[ίp 0

where the n p x p matrices δι satisfy a Euclidean Dirac algebra:

The tensor product in (1.1) is just the tensor product of the finite-dimensional
matrices. Finally the coefficients At(x\ Φ(x) are given by Hermitian mxm matrices.

They are assumed differentiable and bounded in x, and furthermore lim A(x) = 0

and Φ(x) approaches a homogeneous function of order 0 as |x|-»oo.
We can separate the time variable letting ψ(x,t) = ψ(x)eiEt and express (1.1) as

an eigenvalue problem of the form:

where L is a first order pm x pm matrix differential operator on R":

(1.3)

U is the Hubert space adjoint of L.
We are interested in the static (ί-independent) solutions of (1.1), i.e. the E = 0

eigenspace of (1.2). For these solutions (1.2) implies

Lψ_=0

Vψ+=0.

Thus the dimension of the E = 0 space is given by k = k+ +k_, where
k+ =dimKer(L t), k_ =dimKer(L). We cannot in general determine fc, but we can
find a formula for

index(L) = k_ -k+= dimKer(L)- dimKer(L j)

in terms of the behavior of the operator L at GO in 1R". This formula will determine
k in the particular cases where either k+ or k_ can be found a priori.

The operator L is regarded as a linear transformation on the Hubert space
[L2(IR")]pm and the adjoint is defined with respect to the inner product in this
space. Now choose the domain of L to be those functions in \_L2(JRP)Ym that are
also in [iϊ 1[IRn)]p m, the first Sobolev space. L is a closed operator on this domain
and the above definition of the index agrees with the usual one for the bounded
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operator

given by

index (Z) = dim Ker (Z) — dim (Ran Z).

To see this, observe simply that KerZ = KerL and (RanZ) = KerZΛ For the first
note that KerZcKerL, since H1(Rn)cL2(Rn\ and KerLcKerZ, since Lφ = 0
implies that iδidiφ = Bφ where B is bounded and this in turn implies that
φelH1(W)γm, hence also in KerZ. That (RanZ) = KerL τ follows from the
definition of the adjoint.

By definition [7], L is Fredholm if both fc_ and k+ are finite and L is closed. It
follows that if L is Fredholm, RanL is closed. Now if L is Fredholm, so are L\
LL\ and UL. Since LU is self-adjoint, the fact that Ran^L1") is closed implies
that if 0 is in Spec (LL*) (the spectrum of LL1"), it is an isolated eigenvalue. Similarly
for UL. Conversely, it is easy to see that if UL is Fredholm, so is L. We will use
these facts below.

A simple criterion for self-adjoint operators to be Fredholm is the following. If
A and B are self-adjoint operators such that A^B [which means that
(φ,Aφ)^.(φ,Bφ) for all φ~\ and B is Fredholm then A is Fredholm. This is an
immediate consequence of the minimax principle [8].

A property of the index [7] which is extremely useful in the derivation of the
index formula is its homotopy invariance. We only need in this paper the following
restricted version of this property: If ί->L(ί) is a norm continuous map of the
inverval [0,1] into the space of Fredholm operators then index(L(0)) = index(L(l)).

A related invariance property [7] that we shall make use of below is under a
perturbation that is compact relative to the original operator. By definition if ffl is
a Hubert space, B\3#'-*tf> is compact relative to L:D(L)-+Jf, D(L)CJ^, if B is
compact as an operator: D(L)->jf where D(L) is equipped with the norm

It is therefore important to determine a general class of Fredholm operators as
the setting for a given index problem. For our problem, we will restrict ourselves to
a class no larger than that given by (1.3), with the conditions on At(x), Φ(x)
preceding that equation. We need however precise conditions that tell us when an
operator of the form (1.3) is Fredholm. These we state as a corollary to the
following theorem of Seeley [9] on differential operators on IRn.

( P \a

i-x—) be a differential operator from the Sobolev
oxj

space [# f e + w(IR")]M to [#fc(IR")]M where the aa{x) are bounded and their derivatives
are continuous and vanish at oo. Then A is Fredholm if there are constants c and C
such that

Σ
|α| = m

(i.e. A is uniformly elliptic) and

Σ
\a\ ^ m

We use multi-index notation: α = (α,J...,αl — = — . . . —
\oxj oxi dxt
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is bounded away from 0 for \x\ ^ C. Conversely, if A is Fredholm from [Hm(IRn)]M to
[L 2 (R n )] M then there exist such constants c and C.

Since our deformation arguments on the index are restricted in the class of
operators of the form (1.3), all we need in this paper is the sufficiency statement of
this theorem for operators of the form (1.3). Although we state the following
theorem as a corollary, we give an independent elementary proof, which is possible
because of the very special form of the operators that we study.

Corollary. The operator L defined by (1.3) is Fredholm if \Φ(x)\^B for \x\^C,
where B, C are positive constants. The index of L is equal to the index of Lif L is an
elliptic operator such that

for | x |>C, where U(x) is the Hermitian unitary matrix \Φ(x)\~x Φ(x),
|φ(χ)| = [φ(χ

Proof. Let

L is Fredholm if and only if L1 is Fredholm since the fact that the At{x) are
bounded and vanish at oo implies that the term δ^A^x) in (1.3) is Lx-compact, by
the Rellich lemma [10] (see above). Now notice that

Since Φ(x) is C°° and asymptotically homogeneous we have

\x\

where B is such that \Φ(x)\2>B. The operator on the righthand side has a discrete
spectrum of eigenvalues of finite multiplicity contained in (— oo,23), so that if B>0
it is Fredholm. Then so is L\LX and therefore Lγ as well.

The one parameter family of operators

ί g 1, is a homotopy of Lx to L within the class of Fredholm operators defined
by the first part of the theorem. Thus L has the same index as Lλ and L.

Remarks. Seeley's theorem tells us that the sufficient condition given in the
corollary above for (1.3) to be Fredholm is also necessary. Thus, in particular, if it
is not satisfied, the spectrum of UL and LU will be a continuous spectrum
consisting of the entire positive real line.

To see how this corollary follows from Seeley's theorem, consider the symbol
i . We have

which shows that \σ(L)\ is bounded away from zero as |x|-> oo if and only if \Φ{x)\ is.



218 C. Callias

Finally note that the conclusions of the corollary do not change if we add an
L00 lower order term vanishing at oo to L.

II. General First Order Operators

We now derive some general formulas for first order elliptic operators with
arbitrary coefficients. The crucial results are Proposition lb) and Lemma 1. If
certain conditions are satisfied, as described in the statements of the results, these
formulas readily yield the index theorem. The proof of the latter in the next section
consists, in fact, in verifying these conditions. We first give a general formula for
the index of arbitrary operators on a Hubert space.

Keeping in mind the setting described above, we consider an arbitrary
operator L, which is assumed to be closed on a dense domain D(L) in a Hubert
space K which is the direct sum of M copies of another Hubert space H:

M

K= (J) H. Then L is a matrix of operators on H:L = [L i j ], z,7 = 1, . . . 5 M. Each of

the Ltj is closed on a domain D(L^ C H. Now given an operator A = \_A{f\ on K we
define the internal trace of A, denoted by trA, to be the following operator on H:

M

with domain f] D(Au). The point of this definition is that although A may not be

trace-class on K, it is possible that XxA is trace-class on H. Thus we specify how a
possibly undefined trace is to be calculated on K.

For L as in the preceding paragraph, the operators LU and UL are self-
adjoint and positive, where U is the Hilbert-space adjoint of L. If z is not a non-
negative real number, (LV + z)~ι and (L^L + z)'1 are bounded operators on K
and

Γ 1 ] (2.1)

is a bounded operator on H. Let

/(z) = TrB z, (2.2)

where Tr denotes the trace in the Hubert space H: If {φk}k=ι is an orthonormal
OO

basis for H,ΎrB= £ (φk, Bφk). Under certain assumptions, the index of L is given

in terms of the trace of Bz on H, as described in the following lemma.

Lemma 1. Suppose K, H, L, Bz are as above and furthermore L\D(L)-+K is
Fredholm and Bz is trace-class on H, and Tr\Bz\ is bounded for z in a domain C in the
complex plane having z = 0 as a limit point. Then

index (L)= lim/(z).
z->0

Proof Since L is Fredholm, UL and LL1 are Fredholm and the zero eigenvalues
oϊ VL and LV are isolated (see previous section). Obviously, Ker(LtL) = Ker(L)
and Ker(LLf) = Ker(Lf). Let P+ be the projection on Ker(LfL) and P_ the
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projection on Ke^LL1"). Then the operator

— t r P + - t r — j -KrP_=£ z -ιrP + +trP_

is trace class since Bz is and JP+, P_ are finite dimensional projections. Further,

lim J3z = 0 strongly. Let {φk}^=1 be an orthonormal basis. Then the series

fc = 1

converges absolutely and uniformly for ze C and the limit of each term as z-^0 is 0.

Thus limTrj5z = 0 and
z->0

lim f(z) = lim Tr Bz + Tr P + - Tr P _ = index (L).
z->0 z->0

The following lemma provides the bridge between the region z->0, where the
index is computed according to Lemma 1, and z->oo where Tr Bz is computed
explicitly as a function of z.

Lemma 2. FPϊί/z α// the assumptions and definitions preceding Lemma /, suppose Bz is
trace-class for z in a domain C. Then f(z) = ΎrBz is analytic for zeC.

Proof. Let {φk}™=1 be an orthonormal basis for H and let

/*(*)= Σ (Φk>BM-
k = l

Then each fN(z) is analytic and fN(z) is bounded for all N and all z in a compact

subset of C. Thus /(z) = lim /N(z) is analytic in C.
]V-^oo

Proposition 1 below gives an identity (a) for arbitrary first order elliptic
operators. This identity can be used under certain conditions to calculate the
function f(z) introduced above and, therefore, the index. That these conditions
together with the assumptions of Lemmas 1 and 2 are satisfied by the operators of
the kind introduced in (1.3) will be shown in the proof giving the index of these
operators. The reader should not be distracted by the complicated formula (2.4)
below, as it will in fact give zero contribution in the case that we study in the next
section.
Proposition 1. Let L be a first order elliptic differential operator on the Hilbert space

M

K=©L2(1R"):
1

L = iδi(x)di + iΦ(x),

where δι{x), Φ(x) are M x M matrices of smooth functions. Let Bz and f(z) be defined
by (2.1) and (2.2) respectively, and suppose z is not a negative real number or 0. Let δ\
Φ denote the multiplication operators by δ^x) and Φ(x). Then
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a) Bz is an integral operator with kernel Bz(xj) which satisfies for x^y

2BM>y)=(έ+w)JUx'y)+A*{x'y)'
where Jι

z(x, y\ Az(x, y) are the kernels of the integral operators

JΪ = itτ(UUL + z)-1δi*)--itτ(L\LLi + z)-1δi) (2.3)

and

^ ] , (2.4)

where [4,5] = ΛB - BA, δ\ he) = ^ ϊ ^ .

b) Suppose that Bz(x,y) is continuous near x = y and the function Jι

z(x,y)
introduced in a) is finite and differentiable for all x, y (even x = y). Then a) implies

and, if Bz is trace-class,

2/(z)= lim J Ji

z(x,x)dSi
K i

1^1where S1^1 is the (n— \)-sphere of radius R and dSt is the vectorial surface element on
the sphere.

Proof. We work backwards the steps that led us to study the index problem for
first order operators. Define

'0 V

acting on K © K and the 2M x 2M matrix

(0 A \
which anticommutes with every matrix of the form 1 . Further let

/ o δHx)\α ι ( x ) = ClV ,.;. x ;\.
\o(x)} 0 /
\ /

Let Gλ{x, y) represent the kernel of the integral operator representing the resolvent

Note that H can be represented in the form

where
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By elliptic regularity, Gλ(x, y) is smooth in both x and y for x Φ y since it satisfies
the equations

^ j + iA(x) + λ\ Gλ(x, y)=0, (2.5)

[G(^y (x, y)[iA(y) + A] = 0 (2.5')

for xΦy. We note that Giλ is given by

- ] 0 \

V ~iλj[ 0 (LtL + A T 1 ) ' ( 1 6 )

From this formula we easily see that

Bz{x9y)= -iz1/2tτlyGizl/2{x>y)lι

Adding (2.5') to (2.5) multiplying by y on the left, taking the trace, using the
cyclic property tr^lE^trE^l and noting that y anticommutes with aι{x) and Λ(x)
we get

2Bz(x, y) = (J^ + ̂ ) Φ, y) + Az(x, y),

where

J'z(x, y)=-i tr {γa'{y)GhU2{x, y))

and

Az(x, y)=-itτi y(α'(x) - oφ)) -^-j Gizi/2(x, y) \

-itr{y(A(x)-A(y))Gizidx,y)}.

Using (2.6) and computing the trace over the block form we find the formulas (2.3)
and (2.4).

Remark. The conditions of Proposition lb) can be relaxed as follows. Instead of
assuming that Jz{x9y) is differentiable we may rather just require that Jι

z(x,y)

4- ΣuλJ
ι

zλ(x,y) is differentiate (C1) for some zλ, ocλ (depending on z, zλ) [11].

Then assuming the remaining conditions are satisfied the equations in Proposition
lb) are replaced by linear combinations of such equations with the coefficients
above.

Finally we note that essentially the same equations can be written on an
arbitrary orientable manifold by letting Bz(x, x)-*Bz(x, x)dnx, Az(x, x)
~^Az(x,x)dnx, diJ

ι

z(x,x)->dJz(x, x) for a suitable (n — l)-form Jz(x,x).

III. An Index Formula for Dirac Operators

The general Proposition of the preceding Section is of particular practical value in
the case of Dirac operators. As the simplest application we derive an index
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formula for the operator in (1.3) by showing that the conditions in Proposition 1b)
are satisfied and then using the identity for the function f(z) given there in fact we
find the explicit form of this function. The result is stated in Theorem 2 below,
whose proof rests on Lemmas 4 and 5. The note following this article discusses
how our result fits in the context of a more general index theory on Rn.

Theorem 2. Let L be a first order differential operator on 1R* n odd, which up to L00

zero order terms vanishing at oo is of the form

p (3.1)

where the δι are constant pxp matrices, p = 2 ( n ~ 1 ) / 2 , satisfying the algebra

(thus p is minimal for this algebra to be satisfied), Φ(x) is anmxm Hermitian matrix
of C^-functions such that \Φ{x)\^B>0 for | x | ^ C , B, C constants further Φ(x) is
asymptotically homogeneous of order 0 as x->oo. Let U(x) = \Φ(x)\~1 Φ(x). Then the
index of L is given by

index(L)= ( — ) 2 lim f tr[[/(x)(<il/(x)r * ] , (3.2)

w/iere (dUf 1 is ί/ie (π— l)st power of the matrix dU with the differentials being
multiplied by exterior multiplication S^1 is the (n— l)-sphere of radius R.

Remarks. In the proof below we will obtain index (L) as /(0) where f(z) is defined
by (2.2). If Φ in the definition of L above is unitary, we will prove the following
simple explicit formula for f(z):

1 — (33)

The formula (3.2) for the index remains essentially the same if n is even, and it
gives trivially that index (L) = 0 in that case, for any L of the form (3.1).

Proof of the Theorem. We prove the theorem using Proposition lb). The crucial
Lemma 4 below depends heavily on the algebra satisfied by the δ\ That algebra
alone implies the following important facts:

A) If n and k are odd and k< n,

tr{δh...δik) = O. (3.4)

If n is even, (3.4) is true for all odd k.
B) If n is odd and the order of the matrices δι is 2{n~1)/2, i.e. the minimal one

required to satisfy the algebra <5I<5-7' + (5J'<5I = 2<5I"/', we have

tr(δίl...<5ί") = ( 2 ί f ^ c i l ί% (3.5)

where ε1'1 --Λn is the fully antisymmetric symbol in n diemsions. (3.5) is proved by
using a representation of the δι in dimension n in terms of those in dimension
n-2.



Axial Anomalies and Index Theorems on Open Spaces 223

These properties of the matrices δι will be responsible for the cancellation of
the singularities in the traces that we use in the proof of the theorem.

In Proposition 1 we invariably encounter the objects (LU + z)"1 and
" 1 . We first obtain a useful form for them. We have

2. ( 3 > 6 )

To proceed we need the following

Lemma 3. Suppose that V(x) = Aι

H(x) where At(x) are Hermίtian matrices of bounded
functions and the derivative is taken in the sense of distributions. Let V be the
multiplication operator by V(x). Let Qz = ( — d2 + z)~ί where Rez>0. Then there is a
unique bounded operator Wz such that (φ,Wzψ) = (Q±/2φ,VQll2ψ\ whenever
Q\l2φ, Ql^xpe^iW). (Here Q}J2 is defined by the spectral theorem.) In other words

extends uniquely to a bounded operator on the space of L2-vectors.

Furthermore W\ = W-zand || W2\\ <7W—τ \\A\\ where ||A|| = sup | |^(x) | | and \\A\x)\\
(Rez) x.i

is the norm of A\x) as a finite dimensional linear transformation.

Proof Let φ9ψeSf(Rn). Then by the definition of V,

(φ9 Vψ)=-\ id^{x)^A\x)xp{x) + φ(xγAί{x)diψ(x)~]

which implies the estimate

\{φ, Vφ)\£\\A\\ IΣ(\\di<Kχ)\\ • llvWII + \\<Kχ)\\
i

^ φ , { - d 2 + Rez)φ)ίl2(Ψ,(-d2 + Rez)ψ)1'2.

Now - δ 2 + R e z g ( - 3 2 + z) 1 / 2 (-δ 2 + z)1/2, so that we obtain the estimate

\(Φ, vΨ)\ g - ί - \\A\\(φ, Q; 1I2Q-; 1I2ΦY'2-(Ψ, Q-; ll2Q; 1 / 2

V ) 1 / 2 .
ΪS.QZ

Letting φ = Ql/2φ\ ψ = QιJ2ψ' we see that {Q\12 , VQ\12 ) is a bounded sesquilinear
form on a dense subspace of the Hubert space, so that Wz is defined uniquely. The
estimate on the norm of Wz follows from the estimate on (φ, Vψ) above.

Returning now to the proof of the theorem let Rez>0, and

Rz is compared with Qz = (— δ2 + z) ~1. Both Rz and Qz are integral operators with
kernels Rz(x,y), Qz(x, y). We have the following simple facts

(a) μyg | |ρ j^^_ H β̂ in^c',
Kez
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Thus if z is real and positive, Qz(

(c) " "- " ' N1 ' " 6

\χ-yΓι

Qz(x,y) is C00 away from x = y. Near x — y it behaves like \x — y\~n + 2. Rz(x,y)
behaves similarly. The singularities of Rz{x,y) are conveniently studied by the
expansion

in which the r t h term blows up like \x — y\~n+1+r near x = y.
Now in terms of Rz define the operator

Q
which is bounded by Lemma 3, with | | Z J < - — . For Rez large enough we then

xve z
have

We are now ready to prove

Lemma 4. Let L be as in (3.1) and Jι

z(x, y) Λz(x, y) be defined as in Proposition 1. For
Rez positive and large enough:

a) If n=l, Jz{x,y) — Jz,{x,y) is differentiable near y = x for any z' with Rez ; >0.
b) If n = 3, Jz(x,y)-\-oιJι

z,(x,y) + βJι

z,,(x,y) is differ entiable near y = x, where

z"— z z — z1

= n β = -.

c) // ̂ ^ 5 , Jι

z(x,y) is differ entiable.

For all n, lim Az(x, y) = 09 and Jι

z(x, y) is continuous in x and y.

Proof. From (2.3) we see that Jι

z{x,y) is the kernel of the integral operator.

J^iivίδ'ViW +

Using (3.7) we obtain

Z2k+1Rl12

Z2

z

kRl12 (3.8)
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Now L + L1" = 2iδidi<g)lm, L~U = 2ίlp(g)Φ(x). Using the trace identities (3.4) we see
that both series above start with a high power of Z z. If n ̂  3,

(3.9)

If n = 1, the full series (3.8) contributes to J z . Using the expansion of Rz in terms
of Qz referred to above, we can study the regularity of each term in (3.9) near y = x.
For n ^ 5 w e find that all terms are C 1 but for n — 1 or n = 3 the lowest terms in (3.9)
exhibit singularities which can be cancelled by forming linear combinations of Jz 's
with different z's. It is straightforward to check a) and b).

The statement about Λz(x, y) follows if we note that in our case

and use (3.7) again. The singularities of the resolvents disappear and

\imAz{x,y) — ΰ follows from the presence of Φ(y)—Φ(x).

y-*x

Lemma 5. Let Bz be defined by (2.1) where L is given by (3.1). Then for Rez >0, Bz is
trace-class and Tr|B z | is bounded uniformly on compact subsets of the domain

Rez>0. Furthermore, lim T r | £ z | = 0 .

Proof. We use (3.7) to find

= Zz

z 1 7 Z z

L i ~ " Z / z J

Γ Z " + 2

(3.10)

» - 1
2 Γ ^ n + 2

?

Each term, except for the last one, in the sum is identically zero because of (3.4). It
only remains therefore to estimate the trace of

k ^ z | (3.11)

We estimate each of these terms separately.

(a) tτtRl'2Zn

zR
1J2^^μxdx1...dxnRz(x,xί)Rz(xvx2)

To merely indicate how the estimate that is quoted below for this quantity comes
x

about, assume that Φ(x) depends everywhere only on —. Now the integral can be
|x|

estimated by one of the same form with Rz replaced by Qz and z by (Re ]/z)2. The
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latter is then equal to (Re ]/z) n 2/, where / is a finite constant. To see this, rescale

the variables of integration according to x- r, and to verify the convergence
Rel/Γ

of the integral change variables by x -^x + j/f. The ^-integrals converge because of
the exponential behavior of Qz. The x-integral converges because as x—>oo,

gn...i«ιτ[gfiφ(χ_(_yj #3iyΦ(x + yj] (3.12)

goes to zero faster than |x|~". In fact5 it tends to zero at least as fast as |x|~" because

d^(x)~ — but note that as |x |^oo the arguments of the Φ's become approxi-

mately equal while the presence of the ε-symbol guarantees that

εh...in t r idhΦ(x)... δinΦ(x)] = 0

identically, so that (3.12) actually approaches zero faster than \x\~n.
Thus we conclude

(b) For the second term in (3.11) we note that

Tr Rί/2_ . P i / 2 R1'2
1

1 - Z 2
Rl12

1 1
• + •

W+z UL + z

Now Tr|ZJ + 2 | ^Tr[β^ /

e

2 | ^(g)Φ > ί |βέ /

e

2 ]" + 2 as can be seen from the integral
representation of the trace. Now use the estimate, for positive operators A, B [12]

Tv(B1/2AB1/2)m^Tv(Bm/2AmBm/2)

to get

which is finite (writing the trace in Fourier space). In fact, we get

so that

Tr Dl/2.

(Rez)1. f i+3
Γ.

The results of (a) and (b) establish the lemma.
We are now ready to apply Proposition 1 and Lemma 1 to prove the theorem.

For convenience we make the replacement Φ(x)->ί/(x) = |Φ(x)|~1Φ(x) outside a
compact region containing the zeros of Φ(x). It is then understood that we take the
limit as this region becomes a set of discrete points. This is legitimate because of
the uniform convergence of the integrals involved in the final answer. Note that in
this limit Rz^>Qz+ί. Lemma 4 tells us that Proposition 1 applies and

2/(z)=lim f dSίJί

z(x,x)-2Σ*λf(zλ)+Σ l i m ί ^x,x), (3.13)
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where the constants <xλ are specified for the various dimensions by Lemma 4. So we
need to compute lim dS^x, x) as an (n — l)-form on S"~ *. Thus only terms that

-R->oo

behave like \x\~n+1 are significant in J^x.x). We determine them using (3.9). It is
easy to check that the k — 0 terms in the infinite series in that equation are the only
ones that have an \x\~n+1 behavior, while the remaining ones vanish at infinity
faster than |x|~n + 1. Thus two terms are relevant

(1) 2

A simple integration by parts on x 1 together with the fact that ivδiδjδ\...,δin~
•=z(2ίfn~i)l2&ιJH 'Λn'2 shows that the contribution from this term is zero.

(2)

Changing variables of integration to yt = x — yi9 we see that to lowest order in |x|
this is

The integral can be evaluated easily using Fourier transform it is equal to

1 1 I 1 1 1

(2π)n}K F'(p2+z+iγ 2z("~v+1 (n-l\ π*""1"2 (ί+zf'2'

Thus we see that the quantity on the right-hand side of (3.2) has appeared as a z-
independent factor in f dS^x, x). Call that quantity N. We have obtained for the
Jl constructed from L of (3.1) with the replacement Φ(x)->t/(x)

so that, by (3.13),

Now take the limit Rezλ-»oo and use Lemma 4 for the aλ and Lemma 5 for

lim f{zλ) to get
Rez^->co
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which proves (3.3) for Φ(x) unitary and Rez large. Now use Lemma 2 to continue
to z->Ό and get (3.2) by Lemma 1.

Example: n=l. To illustrate our results and how our approach actually goes
beyond merely providing a formula for the index, we consider the case n= 1. The
operator (3.1) is now of the form

L = i—
ax

where A(x) is C°° hermitian matrix valued function on R. Besides the index
formula, a relation of the type (3.3) is valid for arbitrary A(x) bounded away from 0
as |x|->oo:

TV Δ Z _ _ \ _ 1 ^T^J * y u ϋ )
L L \ T f -r , T T- + , I 2 r . λί , _ \?.-ι1 17. r , A/ __\2π1 12 I W'X^J

if we assume that the limits lim A(x) = A( + oo) lim A(x) = A( — oo) exist and are
JC-> + oo χ-> — oo

finite. Thus in particular [13]

(3.15)
!p(+oo)

We see that, a bit surprisingly, the quantity on the left-hand side of (3.14) shares
with the index the property of in variance under L-compact perturbations.

The simplest case we can consider is with only one internal degree of freedom.
The index can be determined by explicit solution. Let

lim φ(x) = φ + , lim φ(χ) = φ_. Solving
Λ -^ + OO x~* — oo

Lxp_=O

Lψ+=0

we get

Then J|t/;_|2<oo if and only if φ+ >0, φ_ < 0 and j|tp + | 2 < o o if φ+ <0, φ_ >0,
while neither is integrable otherwise. This checks with formula (3.15) for the index.

In the more explicit instance

JJ (3.16)
— α x<0
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we can compute

7 Z

where G"(x, y) solves

7 - α<5(x) + α2 + z] G%x, y) = δ(x - y).
dx2

Letz' = (α2 + z)1 / 2. We find

( 7 ^ - i - V * ' \

where 0(x)= 1 for x>0 and 0 for x < 0 . This gives

z z \ cc

W + Z) (α24-z)1 / 2 >

This checks with (3.14). [Although (3.16) is not C00, our results still apply by a
limiting argument.]

IV. Application: Fermions in the Field of SU(2) Monopoles

As an application of the open space theorem that we derived, we study the Dirac
equation for an isospin-T particle in the field of a static (time-independent)
system of SU(2)-magnetic monopoles. More precisely, we have here n = 3, the
dimension of space in ordinary four-dimensional Minkowski space-time and the
potentials in (1.1) are given by

, (4.1)

where g, μ, m (the mass of the fermion) are constants and the index a runs from 1 to
3. The Ta are the generators of isospin rotations. They satisfy

Ί. (4.2)

Aμ

a, φa are the gauge potentials and Higgs fields of an SO(3) Yang-Mills theory
coupled with Higgs fields [μ is a space-time index and a is the SO(3) index]. The
static configuration

could arise as a static finite energy solution of the coupled Yang-Mills-Higgs
equations in the absence of fermions [14]. A'^x) are bounded and vanish at oo,
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while φa(x)φa{x)->l as x->oo. In a suitable interpretation, this configuration
represents a system of magnetic charges with total magnetic charge [15]

essentially the degree of φa regarded as a mapping S^-^Sj. Actually the only such
configuration that is known as a solution of the Yang-Mills equation is the
spherically symmetric one with unit magnetic charge [14]. It is not known whether
more complicated static solutions exist.

The formula of Theorem 2 reduces for n = 3 to

index (L) = - - — f tr (Ud Ud U), (4.4)
1O7U ^ ^

where U = \Φ\~1Φ. The index can be expressed simply in terms of the magnetic
charge as follows. Let λA(x), ψA(x) be the eigenvalues and eigenvectors of Φ(x):

Φ(x)ψA(x) = λA(x)ψA(x)

with Φ(x) given by (4.1), λjx) are just -T + m, - T + m + 1 , . . . ,T + m. (The index
only depends on m/μ, so we take μ = l.) Now it is easy to verify the elementary
formula

djU(χ)= Σ
A,B l*A\-

λA(x)λB(x)<0

• (ψA(x), djΦ(x)ψB(x)) ψA(x)y^B(
χV - (4-5)

Here ( , ) denotes the inner product in the finite-dimensional space of the matrix
Φ{x). We can now perform the matrix multiplications and the trace in (4.4)
working in the basis ψA(x). djΦ(x) is easy to express in this basis. At each point x let
φa(x), φ\{x\ φa

2{
χ) be an orthonormal set of 3-vectors. The linear combinations

T0(x)=Taφa(xl Tlx)=Taφa

i{x\ ί = l , 2 satisfy relations similar to (4.2). Now since
φa is a unit vector, we have

d.φ(χ) = dj(μφaTa + m) = 0 ^ + c2jT2 .

The matrix elements of Tf(x) in the basis ψA(x) are well known. Let the index A in
ψA(x) be just the corresponding eigenvalue of Φ(x)\A— — T, — T + 1 , . . . , T. Then

±δAB_1lT(T+l)-A{A + l)~]1/2+:

2:δAB+1lT(T+l)-A(A-l)']υ2

1 „

Let {m} denote the largest eigenvalue of φaTa smaller than m, or, if there is no such
eigenvalue, the smallest eigenvalue of φaTa minus one. (Note that m has to be
different from all the eigenvalues of φaTa for L to be Fredholm.) Then the only
terms that contribute in (4.5) are {A, B) = ({m}, {m} +1) or ({m} 4-1, {m}). With this
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information, a short calculation gives

tτ(UdUdU) = 2i[T{T+ 1)- {m}{{m} + ί)]cuc2jdxidxj,

Noting that

and recalling the formula (4.3) for the magnetic charge we get

For arbitrary μ in (4.1) m should be replaced by — in this formula. For N — ί, two

cases have been studied by explicit solution in the literature [4]. They correspond

to T = i J ~ l = - i , with index 1, and T= 1,1—1=0, with index 2. Our general

\μl {μ\
formula is in agreement with the explicit results.

Finally a remark is in order. No vanishing theorem is known to be valid for the
systems under consideration in this Section, i.e. it is not known whether it is
necessary that either k+ or k_ defined in Sect. 1 be zero. This is easily seen to be
true in the case of Euclidean SU(2) pseudoparticle systems [1]. In the case of
fermions in monopole fields it cannot be asserted whether VL or LU has no
bound states at all [16], so there is no easy vanishing theorem for this case.

Conclusion: Relation to Anomalies

We summarize certain points made in the paper and indicate how our derivation
of the index theorem is related to the theory of the anomalous divergence of the
axial vector current [6]. The first equation in Proposition 1b) or the regulated
version of it, as explained in the remark following the proof of the Proposition, is
familiar to theoretical physicists. Jz(x, x) is the vacuum expectation value of the
axial vector current operator for a Euclidean field theory in an external field z is
the mass of the quantum field. Bz(x, x) represents the so-called naive divergence -
the direct quantum counterpart of the classical divergence of Jz(x,x). Finally
Az(x, x) is the anomalous term in the divergence - a purely quantum effect. Lemma
4 shows that this anomalous term is zero for operators of the form (3.1). Unlike the
case of pseudoparticle configuration, it is now not the anomaly but rather the
integral of the axial vector current that gives the index, as indicated by the second
equation of Proposition 1b).

It is well-known in physics that the anomaly - the Az(x, x) - term is a result of
renormalization - the residual term after the regularizing cutoffs are taken to
infinity. On the other hand, the nonvanishing surface integrals that we have found
can be thought of as a different kind of anomalous effect. This can be understood
in terms of determinantal anomalies as follows.

We start with a theory for which one subtraction is sufficient to annihilate the
Az(x9x) term in Proposition 1. [That Az{x,x) can be cancelled by a sufficiently
large number of subtractions is apparent from the definition of Az(x, y) by (2.4).]
This would be the case for the one-dimensional example (3.14). The global version
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of Proposition lb), which we may now call the global or integrated axial vector
current equation, becomes

where

σ(z) = f

a surface term. In particular,

/(z)-/(α>) = σ(z)-σ(<»). (5.1)

The anomaly has been transferred to /(oo) and σ(oo). We emphasize that these
quantities represent global anomalies in contrast to local ones, in the sense that it

is not necessarily true that lim j Bz(xv x)dx = J lim Bz(x, x)dx.
z—• oo z - > oo

Now consider the determinant

D{z) = det {UL + z){LU + z)" x .

Formally, or else if L is a finite-dimensional matrix, D(z) = 1, Z^JR". Anomalies will
modify this result. Now use the following formula for the regularized determinant
of an operator A:

00 ds
In det AA~ 1^= J — Tv{e~sA-e~sA°) (5.2)

o s

to obtain

o s dz

= T r

provided the last trace exists, as it does in the case of the one-dimensional example
(3.14). For more general cases the argument can probably be refined but we will
not go into any details. Using (5.1) in (5.3) we obtain

/ z \ / { o o ) z

D{Z) = DA—\ e ^ ' - W ) - * " ) ] . (5.4)
\zo/

Thus/(oo) accounts for an anomalous power behavior of D(z) and σ(z) —σ(co) for
other variations from the constant value 1.

We now show how D(z) can be computed in essentially closed form. Specialize,
as an illustration to (3.14), to avoid complicated questions. Further assume A(x) is
asymptotically unitary in (3.14). Using

I ^
 Tr

 \
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one can show that

lim (e~tLfL-e~tLϋ) = 0

and

limD(z) = l

z-> oo

by making use of (5.2). Thus we find

7 1\ index (L)

where σ(z) is known by the results of Section 3:

σ ( z ) = T\ \ϊ]2 index (L).

Similar results are assumed to hold in higher dimensions. In writing (5.3) we
have to face certain technicalities with the traces. σ(z) is again expected to be
possible to express in closed form. Guided by the example at the end of Section 3
we are led to conjecture

a) σ(z) is invariant under L-compact perturbation.
b) σ(z) is given by (3.3) if Φ(x) is only asymptotically unitary. [This is a

consequence of a).]
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