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Abstract. In a different paper we constructed imaginary time Schrodinger
operators Hq = — \A + V acting on L9(lRn, dx). The negative part of typical
potential function V was assumed to be in L°°-f Lq for some p>max{l,n/2}.
Our proofs were based on the evaluation of Kac's averages over Brownian
motion paths. The present paper continues this study: using probabilistic
techniques we prove pointwise upper bounds for ZΛSchrόdinger eigenstates
and pointwise lower bounds for the corresponding groundstate. The potential
functions V are assumed to be neither smooth nor bounded below.
Consequently, our results generalize SchnoΓs and Simon's ones. Moreover
probabilistic proofs seem to be shorter and more informative than existing
ones.

I. Introduction

The study of Schrodinger operator via probabilistic techniques originates in the
famous work of Kac [14]. Using Wiener's measure in the case of heat equation, he
made mathematically rigorous the heuristic prescriptions given by Feynman to
solve Schrodinger equation. Stimulated by Kac's paper, something of an industry
has developed, and the probabilistic approach is by now standard. To-day it is
clear that Brownian motion averages are a good device to define and study the
diffusion semigroup for fairly general potential functions V, and to prove the
negative infinitesimal generator is a suitable extension of the formal differential
operator —\A + V. See for example [18, 10, 1, 11, 5, 16 and 4], Let us note that in
most of these papers V was assumed to be bounded below. Thanks to [2,
Theoreme 1] or [4, Theorem 2.1] this restrictive hypothesis can be weakened.
Moreover nice spectral properties have been proved by means of similar tech-
niques (see for example [9, 15, 2, and 4]).
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The present paper is written in the same spirit as the above mentioned ones. It
deals with the asymptotic behavior of the various eigenstates.

For a complete review of all the results on Schrόdinger operator that can be
proved by path space integral methods we refer to [22], and we mention [7] and
[8] for using stochastic processes to view the same problems from a slightly
different point of view.

Although some of the results presented here are essentially known, our proofs
are new and surprisingly short. While these results agree with those found using
differential equation techniques, as desired, it is informative to probe their
anatomy in the path space picture. The main novelty of the paper is the use of
stochastic process techniques to study pointwise bounds for ZΛSchrόdinger
eigenstates. We generalize all the W.K.B. type estimates of [21] which were proved
to hold for C^-potential functions V. Furthermore, when F-»oo at infinity we
prove exponential fall-off of the eigenfunctions, even though V is not assumed to
be bounded below as it is the case in [23] and [21]. The last section of the paper is
devoted to the study of pointwise lower bounds for the groundstate eigenfunction.
Our desire to get lower bounds was motivated by the study of hyper and super
contractive estimates via logarithmic Sobolev inequalities (see [12, 6, 19 and 4]).

We would like to emphasize the fact that, even though the probabilistic
approach is powerful in that it does not require any smoothness assumption on the
potential functions, it provides us with constants in the rate of exponential fall off
which are far from being optimal. It should be worthwhile to push the techniques
in order to obtain better ones.

The relation of our results to certain problems in quantum field theory should
not be unnoticed. Indeed, even though the discussion of this paper is confined
solely to the study of quantum mechanical Hamiltonians, our work has been
motivated, in large measure, by a potential applicability of the concepts and
methods we use to fundamental problems in quantum field theory. We hope the
present work serves to stimulate further research in this direction.

To keep the bibliography to a moderate length, we have adopted the
convention that "see reference [x]" means "see reference [x] and the papers
referred to there in ".

II. Notations—Prerequisites

In this paper n ̂  1 is a fixed integer, | denotes the Euclidean norm of 1R" and Lp

and Lfoc stand for the usual Lebesgue spaces with respect to Lebesgue's measure
onlRΛ

Let us introduce now the standard path space realisation of Brownian motion:
Ω = C(IR+,IRn) is the space of continuous functions from 1R+ into IR", for each ί^O,
Xt is the coordinate function:

Xt = Ωaω-»xt(ω) = ω(ί),

3* is the smallest σ-field relative to which all the functions Xt, for ί^O, are
measurable and the collection of probability measures {H^ xelR'1} is defined as
follows. W is the unique probability measure on (Ω, ̂ ) such that:

(i). jy{X0 = 0} = l,
(ii). Xt —XtQ,...,Xtn—Xtn_^ are independent, Gaussian, mean zero and their

variances are tl — ί0,... ,tn — tn_ί, whenever 0^ί0<ί1 < ... <tn.
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W is the so-called Wiener measure (see for example [13, Chapter 1] for several
constructions). Now, for each xeIR", the probability measure Wx is defined by:

= W{τ_x(A)}

where τx is the path translation :

[τxω](f) = x + ω(f) xeIR",

Expectation with respect to Wx is denoted by the symbol EWχ.
Now, let us review briefly results of [4] which we use in the sequel. If V is a

measurable function on 1R" which admits a breakup V=Vl — V2 with J^eL^, V1

bounded below, F2^0 and V2eLp for some p> max {1,^/2} then the formula:

$V(Xs)ds
o

xeIR" (2.1)

defines a strongly continuous semigroup {Tt t ̂ 0} on Lg for all qe [1, oc[. Among
the smoothing properties of these semigroups let us mention that Tt is a bounded
operator from Lq into U for all extended real numbers q and r in [1, oo] provided
q^r and g is finite. Furthermore, if ί>0, Tt is a bounded operator on L°° and if
/eLg with q finite, [7J/](x) converges to zero when |x| goes to oo. Finally, if
^ι6Atc/2' Ttf is a continuous function whenever ί>0 and / is in any Lebesgue
space [a measurable function g belongs to L^c

α if for any compact set K in IRn there
is a real number p(K)>α such that gίκeLp(k\ where ίκ denotes the indicator
function of K}. The proofs of these results depend essentially on the crucial
estimate:

r J
o

(2.2)

which holds for all ί^O, for some positive constant kε, with:

ε = l — n/2p and c(p) = (2π)~n/2p(l—p~1)(]-~p~1}n/2 (2.3)

and where || ||p stands for the L^-norm.
Let us call Hq the negative infinitesimal generator of the semigroup {T

acting on ZA Then it is proved in [4, Section IV] that Hq is a reasonable self-
adjoint extension of the formal differential operator —^Δ + V. In fact Hq is
bounded below and H2 coincides with the usual Schrodinger operator defined as
sum of quadratic forms.

We end this section with two estimates on some sup-functionals of Brownian
paths. First let us note that for each a > 0 and each t > 0, we have :

where the first inequality is obtained via Levy's maximal inequality for sums of
independent random variables and where σn_ 1 denotes the area surface of the unit



100 R. Carmona

sphere in IRΛ Consequently there is a constant c (which depends on n) such that for
any £>0 and any a>0 we have:

(2.4)

Second we prove, in the linear case (i.e. n = 1) a lower bound which we will need in
Section IV.

Lemma 2.1. // n= 1 and if a, a and t are positive real numbers which satisfy :

α < a/2 and a2 > t ,

then for any xe [ — (a — α), a — α] we have :

8ί (2.5)
2ty2πt

Remark 2.1. We want to emphasize the fact that the constants in (2.5) are
irrelevant; in fact for α such that 0<α<<2 and a2/t suitably bounded below (by a
constant which depends on α), relation (2.5) holds provided 1/2 and 9/8 are
replaced by suitable α-dependent positive constants.

Remark 2.2. The boundedness below assumption on a / y t cannot be dropped
without modifying the right hand side of (2.5) because the left hand side of (2.5) is
bounded above by FK0{sup0<s< ί[λr

s|^α}, and the latter converges to zero faster

than any power of a/yt (see for example [3, Lemma 2]).

Sketch of Proof. The proof is easy but requires lengthy computations. That is why
we merely outline what a complete proof should be.

Since the left hand side of (2.5) is an even function of x, we prove (2.5) only for
x^:0. In this case a lower bound is clearly given by:

The joint distribution of sup 0< s< rpfj and Xt is known (see for example [17,
Corollary 5.3]). Thereby /(x) can be computed explicitly. It is easy to check that /
is differentiable and that its derivative is negative which implies :

/(x)^/(α-α) xe[0,α-α].

Now, in order to conclude, we write /(α — α) as the sum of an alternate series
the first terms of which possess standard equivalents. Π

III. Upper Bounds for Eigenstates

For each constant a > 0 and each real valued function / on IR" we use the following
notation:

f(a\x) = M{f(y);\y-x\^a} xelR".

When a is a positive function /α(λ)(x) will be shortened into /α(x).
The following assumption will be implicit through this section:

V is a real valued function which possesses a breakup V=Vί—V2 with VleL\oc and
VI bounded below on one hand, and F2^0 and V2eLp for some p>max (1, n/2} on
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the other. q^\ is finite and ψ is any Lq-Schrodinger eigenstate, namely we have
Hqιp — Eψ for some real number E.

In fact the upper bounds we prove are easy consequences of the following:

Lemma 3.1. For each £>0, for each xelR" and for each α>0 we have:

(3.1)

[ exp[-2ί71

α(x)]-hc[(α/j/ί)max{0 "~ 2 )+l]

exp[-2πnfF1-α2/2t]]1/2

where the constants c(p\ ε, kε and c are those of (2.3), (2.2), and (2.4).

Proof. Since ψ is an eigenstate of Hq with eigenvalue JE, then, it is a TΓeigenstate
with eigenvalue e~lE and, consequently a bounded function. Thus:

Now:

exp

e x p \ 2 \ V 2 ( X s ) d s \ } . (3.2)A I J Z. x Λ / I ) \ /

0

-2ίn(^)ds
L o

_ _aPg>α} (3.3)

and the conclusion follows from the conjunction of (3.2), (2.2), (3.3), and (2.4). Π
Our first estimation was obtained in [21] for C°°-potential functions V.

Proposition 3.1. // we assume that:

outside a compact set for some positive constants y and m, then for each positive real
number δ which satisfies δ<y1/2mm/2(m + l}m + 1 there is a real number D(δ) for
which:

", \ψ(x)\ ^D(δ)exp[-< (3.4)

Proof. Since ψ is bounded, increasing D if necessary, it suffices to prove (3.4) for |x
large enough. Now for β>0 and 0<α<l let us plug:

α = α(x) = α|x| and ί = ί(x) = j87~ 1 / 2 |xΓ ( m~ 1 }

into (3.1); then for each δ<mm{2β(l-a)2m,oc2/2β} relation (3.4) is satisfied.
Letting α and β vary independently concludes the proof. Π
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Proposition 3.2. // we assume that :

(3.5)

then, there are positive constants D and δ for which :

VxelR", \ψ(x)\^De~δM. (3.6)

Proof. Without altering relation (3.5) it is possible to choose the breakup
V=vί-V2 such that:

As above it suffices to prove (3.6) for |x| large enough. In fact we assume that |x| is
sufficiently large in order to have V"(x) > (α + E)/2 with α(x) = |x|/2. Finally we set
£(x) = β|x|, and if β>ΰ is small enough, the existence of δ follows from (3.1). Π

The conclusion of the next proposition is known as SnoΓs result (see [23] and
[20] and it worths pointing out that the existing proofs require the boundedness
below of the potential function V.

Proposition 3.3. Let us assume :

Then for each <5>0 there is a positive real number D(δ)for which:

VxelR", \ψ(x)\^D(δ)e-*M.

Proof. From (3.1) there are positive constants c t and c2 such that:

2. (3.7)

If δ > 0 is fixed, let M be a positive number which satisfies :

M-E-φ)1/ε||F2||yT(ε)1/ε2-1 + 1 / ε>(5. (3.8)

Now, let β > 0 be small enough in order to have :

and let α>0 be such that:

where a(x) — x|/2. Finally, if we set φc) — j8|x| and if we plug all this in (3.7) we obtain :

^which, because β<l and by (3.7) concludes the proof. G
The last result of this section gives an explicit dependence of the decay of the

eigenstates on the behavior of the potential function near infinity. These estimates
are usually guessed via heuristic arguments of W.K.B. type.

Proposition 3.4. Let us assume that :
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// moreover there is a positive function on 1R", say α, such that:
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for some positive constant α and for x outside a compact K, then there are positive
constants d and δ such that:

VxφK \ψ(

Proof. It suffices to plug } = a(x}V1(x)~112 in (3.1).

IV. Lower Bounds for the Groundstate Eigenfunction

This section is devoted to the proof of lower bounds on the fall off of the ground
state eigenfunction of Hq. Our interest in this problem comes from our desire to
obtain hyper and supercontractive estimates via logarithmic Sobolev inequalities
(see [4, Section V]). In addition to the hypotheses made in Section III on F, E and ψ,
we assume in this section that F1 eL^"/2 and E is the infimum of the spectrum of Hq.
Then, it was pointed out in [4, Remark 4.4] that a simple consequence of
Feynman-Kac's formula is that ψ can be chosen everywhere positive and locally
bounded away from zero.

Lemma 4.1. For each x — (x1,... ,x")eIR"\{0} and each positive real numbers
α l s . . . ,α π , α 1 ; . . . ,α π , fcl5...,bπ and t which satisfy:

a]>i, cLj<aj/2, and l(\_-apa^r\\_-xj-bp -xj + b^])>ap j=l,...9n

where 1(1) denotes the length of the interval /, then we have:

- Logψ(x) ^-Et- Logε(b) + n Log(2ί |/2πί ) -

tsup{Vl(y);\yj-xj\<ajJ=l,...,n} (4.1)

where ε(b) is a positive constant depending only onb = (bl9..., bn), and where we used
a superscript j to denote the j-th coordinate of the elements of 1R".

Proof. If we set :

and:

A

then we have :

- ί

s exp ί V2(Xs)ds
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where EP{Φ A} means expectation, with respect to probability P, over paths lying
in A,

}. (4.2)

Now, by definition of the probability measures Wx we have :

=
7 = 1

α 2 8 ί (4.3)
/ = ι

where we used, first the fact that, with respect to W0, the {X/ ί^O} are n
independent one dimensional Brownian motion processes starting from the origin,
and second, Lemma 2.1.

Finally the conjunction of (4.2) and (4.3) gives the desired conclusion. Π

The following result was proved in [21] under more restrictive conditions on
the potential function V. Namely V was assumed to be infinitely differentiable. In
fact Lemma 4.1 seems to be useful to estimate the fall-off of the groundstate
eigenfunction under mild regularity assumptions on V.

Proposition 4.1. // furthermore we assume that:

*Ί(x)^y|x|2 m (4.4)

outside a compact set for some positive constants y and m, then we have :

VxelR" φ(x)^Dexp[-(5|x|m+1) (4,5)

for some positive constants D and δ.

Proof. Since ψ is locally bounded away from zero, enlarging D if necessary it
suffices to prove (4.5) for |x| large. Now, for x |>l let us set:

t = \x\-(m-l\ α^l + lx ' l, .̂= 1/2 and &.= ! for ; = !,...,«.

The assumptions of Lemma 4. 1 are clearly satisfied. Moreover, by (4.4) we have :

sup{Vί(y)',\yj-xj\<aj, j= 1, ...,n} ^y24m\x\2m

provided x is assumed to satisfy |x|>(m/8)1/2. Pluging all that in (4.1) we obtain:

" 9n 9
- X Log(l + M)+--xΓ-1 + -|xr+

7=1 4 4

which implies (4.5) with any δ>y24m + 9/4. Π

For similar reasons we have :

Proposition 4.2. Let us assume that there is a positive function t which is defined and
bounded outside a compact set and which satisfies :

(i) |x|2^ί(x)[c1F1(x) + c2]/or some positive constants c1 and c2,
(ii) ί(x)sup{Fr

1(););|}; /-x /Ί^max{ί 1 / 2, |x /|}7 = l, ...,π}^c3F1(x) + c4 for some
positive constants c3 and c4.
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Then, there are positive constants dί and d2 such that for each xelR" we have:

-Logιp(x)^d1Vί(x) + d2. (4.6)

Example 4.1. If we assume that:

V x eR", a'lxfe^W + c'^V^xϊ^a^e^ + c

for some positive constants α', α', α, α, ε, b, and /? which satisfy:

0<β<l and 4^ / 2 -l<ε<l,

and real constants d and c, then, (4.6) holds.

Example 4.2. Let l/1 ?..., C7n be bounded below measurable functions on 1R such
that:

n n

V x elR", X αyl//*') -f c\ ̂  Fx(x) ̂  X b^/x-O + c'2
J = l j = l

for some constants c\ and c'2 and positive ones α 1 ?..., απ, b1 ?..., bπ. Furthermore let
us assume that for each j we have:

sup {17/x O \yj - xj\ g max {1, \xj\}} ^ c{ [//*') + c{

outside a compact subset of IR and for some constants c{ and c{. If moreover we
assume

\x\2^c1Vi(x) + c2

outside a compact subset of IR" then (4.6) holds.
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