Commun. math. Phys. 61, 261-266 (1978)

Unbounded Derivations of Commutative C*-Algebras

C. J. K. Batty

Mathematical Institute, University of Oxford, Oxford OX1 3LB, England

Abstract. It is shown that an unbounded *-derivation δ of a unital commutative C^* -algebra A is quasi well-behaved if and only if there is a dense open subset U of the spectrum of A such that, for any f in the domain of δ , $\delta(f)$ vanishes at any point of U where f attains its norm. An example is given to show that even if δ is closed it need not be quasi well-behaved. This answers negatively a question posed by Sakai for arbitrary C^* -algebras.

It is also shown that there are no-zero closed derivations on A if the spectrum of A contains a dense open totally disconnected subset.

1. Introduction

Unbounded derivations have recently become one of the most important branches of the theory of C^* -algebras, since they include the infinitesimal generators of the one-parameter *-automorphism groups representing time-evolution of quantum dynamical systems. Several authors have shown how results from Banach space theory take on special forms for C^* -algebras (see e.g. [2, 3]). In his recent survey of the theory of unbounded derivations [6], Sakai raised several questions concerning closed *-derivations. In this paper, we obtain negative answers to two of these questions.

Sakai proved that a sufficient condition for the commutative C^* -algebra $C(\Omega)$ of continuous complex-valued functions on a compact Hausdorff space Ω to have no non-zero closed *-derivations is that Ω should be totally disconnected, and asked whether this condition is also necessary [6, Problem 1.1]. We show here that it is not by proving that another weaker sufficient condition is that Ω should contain a dense open totally disconnected subset. This result has also been obtained independently by B. E. Johnson.

Let δ be a *-derivation of any C*-algebra A [δ is assumed to have dense domain $\mathcal{D}(\delta)$]. An element x of the self-adjoint part $\mathcal{D}(\delta)^s$ of $\mathcal{D}(\delta)$ is said to be wellbehaved if there is a state ϕ of A with $|\phi(x)| = ||x||$ and $\phi(\delta(x)) = 0$, and to be strongly well-behaved if $\phi(\delta(x)) = 0$ for all self-adjoint linear functionals ϕ in A^* with $\phi(x) = \|\phi\| \|x\|$. The set of all well-behaved elements will be denoted by $W(\delta)$. Then δ is said to be *quasi well-behaved* if the interior $\operatorname{Int} W(\delta)$ of $W(\delta)$ in $\mathcal{D}(\delta)^s$ is dense in $\mathcal{D}(\delta)^s$. Sakai [6, Theorem 2.8] showed that a quasi well-behaved *-derivation δ is closable, and that if δ is closed then $W(\delta)$ is dense, and he asked whether all closed *-derivations are quasi well-behaved. In [1] it was shown that the elements of $\operatorname{Int} W(\delta)$ are strongly well-behaved and that $\mathcal{D}(\delta)^s$ contains a dense set of strongly well-behaved elements, irrespective of whether δ is closed. Here we construct a commutative C^* -algebra with a closed *-derivation which is not quasi well-behaved, and give a general condition, slightly weaker than the property of being quasi well-behaved, for a *-derivation to be closable.

2. Existence of Closed Derivations

Let δ be a closed *-derivation of a commutative C*-algebra A, and let p be a projection in A. It may be proved that p belongs to $\mathcal{D}(\delta)$ by using either the Silov idempotent theorem as in [6, Proposition 1.11], or [2, Theorem 3] and the fact that any two distinct projections in A are distance 1 apart, or [2, Theorem 17] and a decomposition p = f(x) where $x \in \mathcal{D}(\delta)^s$, ||x - p|| < 1/3 and f is a continuously differentiable function with f(s)=0 ($s \leq 1/3$) and f(t)=1 ($t \geq 2/3$). Then $\delta(p)=2p\delta(p)$, so $\delta(p)=0$.

Theorem 1. Let Ω be a compact Hausdorff space containing a dense open totally disconnected subset Ω_1 . Then there are no non-zero closed *-derivations on $C(\Omega)$.

Proof. Let δ be a closed *-derivation on $C(\Omega)$. Each point in Ω_1 has a compact totally disconnected neighbourhood, and therefore has a neighbourhood basis consisting of sets which are both open and closed [4, Chapter II, §4]. Thus the projections in $C(\Omega)$ separate the points of Ω_1 from each other and from $\Omega \setminus \Omega_1$. If f is any function in $C(\Omega)$ vanishing on $\Omega \setminus \Omega_1$, then by the Stone-Weierstrass theorem, f is uniformly approximable by linear combinations of prejections, so $f \in \mathcal{D}(\delta)$ and $\delta(f) = 0$, since δ is closed.

Now consider g in $\mathcal{D}(\delta)$ and ω in Ω_1 . There is a function f in $C(\Omega)$ vanishing on $\Omega \setminus \Omega_1$ but not at ω . By the above, $\delta(fg) = \delta(f) = 0$, so $0 = \delta(fg)(\omega) = f(\omega)\delta(g)(\omega)$. Hence $\delta(g)(\omega) = 0$ for all ω in Ω_1 , and, since Ω_1 is dense, $\delta = 0$.

3. Well-Behaved Points and Derivations

Let Ω be a compact Hausdorff space and δ be any *-derivation of $C(\Omega)$. In order to study properties of δ it will be convenient to convert the definition of well-behaved elements of $\mathcal{D}(\delta)^s$ into a corresponding notion for points of Ω . Thus ω in Ω is said to be *well-behaved* if $\delta(f)(\omega)=0$ whenever $f \in \mathcal{D}(\delta)^s$ and $|f(\omega)| = ||f||$. We shall denote the set of well-behaved points of Ω by Ω_{δ} . It follows from [1, Proposition 7] that $\Omega_{\delta} = \Omega$ if and only if $W(\delta) = \mathcal{D}(\delta)^s$.

Proposition 2. Let f be a real-valued function in $C(\Omega)$ and let

$$\alpha_1 = \sup \{ |f(\omega)| : \omega \in \operatorname{Int} \Omega_{\delta} \}$$
$$\alpha_2 = \sup \{ |f(\omega)| : \omega \in \Omega \setminus \Omega_{\delta} \}$$

(where the supremum of the empty set is taken to be $-\infty$). Then for any $\varepsilon > 0$ and $\beta < \frac{1}{2}(\alpha_1 + \varepsilon + \operatorname{Min}(\varepsilon - \alpha_2, 0))$, there is a function g in $\mathcal{D}(\delta)^s$ with $||f - g|| < \varepsilon$ such that $W(\delta)$ contains the closed ball in $\mathcal{D}(\delta)^s$ with centre g and radius β .

Proof. If either $\operatorname{Int}\Omega_{\delta}$ or $\Omega \setminus \Omega_{\delta}$ is empty, the result is trivial, so we may assume that α_1 and α_2 are finite. It suffices also to assume that $f \in \mathcal{D}(\delta)$. Choose real numbers ε_j $(1 \leq j \leq 6)$ such that

$$\begin{split} 0 < & \varepsilon_j < 1 \\ \alpha_1 \varepsilon_1 + (1 + \varepsilon) \varepsilon_3 + (\alpha_1 + \alpha_2) \varepsilon_4 + \varepsilon_5 + \alpha_2 \varepsilon_6 < \alpha_1 + \varepsilon + \operatorname{Min}(\varepsilon - \alpha_2, 0) - 2\beta \\ \| f \| \varepsilon_4 < & \varepsilon_5 < \varepsilon \\ \varepsilon_2 + \varepsilon \varepsilon_3 < & \alpha_2 \varepsilon_6 < \varepsilon \ . \end{split}$$

Put $\varepsilon' = \operatorname{Min}(\varepsilon \alpha_2^{-1}, 1) - \varepsilon_6$. There exists ω_0 in $\operatorname{Int}\Omega_{\delta}$ such that $|f(\omega_0)| \ge \alpha_1(1-\varepsilon_1)$. We may suppose that $f(\omega_0) \ge 0$. There exists an open set V in Ω containing $\Omega \setminus \operatorname{Int}\Omega_{\delta}$, but which does not have ω_0 as a limit point, and which satisfies $|f(\omega)| < \alpha_2 + \varepsilon_2$ for all ω in V. Then there are functions g_1 and g_2 in $C(\Omega)$ with $0 \le g_j \le 1$, $g_1(\omega_0) = 1$, $g_1 = 0$ on V, $g_2 = 1$ on $\Omega \setminus \Omega_{\delta}$ and $g_2 = 0$ on $\Omega \setminus V$. Since $\mathcal{D}(\delta)$ is a dense *-subalgebra of $C(\Omega)$, there exist g_3 and g_4 in $\mathcal{D}(\delta)$ with $0 \le g_3 \le 1$, $||g_3 - g_1|| < \varepsilon_3$, $0 \le g_4 \le 1$ and $||g_4 - g_2|| < \varepsilon_4$. Let $g = f(1 - \varepsilon'g_4) + (\varepsilon - \varepsilon_5)g_3$. Then $g \in \mathcal{D}(\delta)$ and for ω in $\Omega \setminus V$,

$$\begin{aligned} |(g-f)(\omega)| &< \varepsilon' \, \|f\|\varepsilon_4 + \varepsilon - \varepsilon_5 \leq \varepsilon - (\varepsilon_5 - \|f\|\varepsilon_4) \\ &< \varepsilon \end{aligned}$$

while for ω in V

$$\begin{aligned} |(g-f)(\omega)| < (\alpha_2 + \varepsilon_2)\varepsilon' + (\varepsilon - \varepsilon_5)\varepsilon_3 \\ < \varepsilon - \alpha_2\varepsilon_6 + \varepsilon_2 + \varepsilon\varepsilon_3 \\ < \varepsilon \end{aligned}$$

Thus $||g-f|| < \varepsilon$. Also, for ω in $\Omega \setminus \Omega_{\delta}$,

$$\begin{split} |g(\omega)| + \beta < &\alpha_2(1 - \varepsilon'(1 - \varepsilon_4)) + (\varepsilon - \varepsilon_5)\varepsilon_3 + \beta \\ < &\alpha_2\varepsilon_6 - \operatorname{Min}\left(\varepsilon - \alpha_2, 0\right) + \alpha_2\varepsilon_4 + \varepsilon\varepsilon_3 + \beta \\ < &\alpha_1(1 - \varepsilon_1) - \alpha_1\varepsilon_4 + \varepsilon - \varepsilon_3 - \varepsilon_5 - \beta \\ < &\alpha_1(1 - \varepsilon_1)(1 - \varepsilon'\varepsilon_4) + (\varepsilon - \varepsilon_5)(1 - \varepsilon_3) - \beta \\ < &g(\omega_0) - \beta \ . \end{split}$$

Hence if $h \in \mathscr{D}(\delta)^s$ and $||g-h|| \leq \beta$, then $|h(\omega_1)| = ||h||$ for some ω_1 in Ω_{δ} , so $\delta(h)(\omega_1) = 0$ and $h \in W(\delta)$.

Proposition 3. Let f be a function in $\mathcal{D}(\delta)^s$, ε be a positive real number and suppose that $W(\delta)$ contains the open ball in $\mathcal{D}(\delta)^s$ with centre f and radius ε . Then Ω_{δ} contains all points ω of Ω with $|f(\omega)| > ||f|| - 2\varepsilon$.

Proof. Replacing f by -f if necessary, we may assume that $f(\omega) \ge 0$. Adjusting f by a small function in $\mathcal{D}(\delta)^s$ non-zero at ω , we may assume that $f(\omega) > 0$. There is a real polynomial p with p(0)=0, $p(f(\omega))=||p(f)||$ and $||p(f)-f|| < \varepsilon$. Then

 $p(f) \in \operatorname{Int} W(\delta)$, so p(f) is strongly well-behaved. Hence $\delta(p(f))(\omega) = 0$. Now suppose that $g(\omega) = ||g||$ for some g in $\mathcal{D}(\delta)^s$. Then $||f - p(f) - \lambda g|| < \varepsilon$ for small $\lambda > 0$, so $p(f) + \lambda g$ is strongly well-behaved. But $(p(f) + \lambda g)(\omega) = ||p(f) + \lambda g||$, so $\delta(p(f) + \lambda g)(\omega) = 0$. Hence $\delta(g)(\omega) = 0$.

Theorem 4. A *-derivation δ of $C(\Omega)$ is quasi well-behaved if and only if $\operatorname{Int} \Omega_{\delta}$ is dense in Ω .

Proof. Suppose δ is quasi well-behaved, but Int Ω_{δ} is not dense. Then there is a function g in Int $W(\delta)$ with $|g(\omega)| \leq \frac{1}{2}$ for ω in Int Ω_{δ} , but $g(\omega_0) = ||g|| = 1$ for some ω_0 in Ω . By Proposition 3, $\omega_0 \in \text{Int } \Omega_{\delta}$. But this is a contradiction.

Now suppose that $\operatorname{Int} \Omega_{\delta}$ is dense and f is a real function in $C(\Omega)$. Then in the notation of Proposition 2, $\alpha_1 = \|f\| \ge \alpha_2$, so that proposition shows that for $0 < \beta < \varepsilon < \|f\|$, there exists g in $\mathcal{D}(\delta)^s$ such that $\|g - f\| < \varepsilon$ and $W(\delta)$ contains the closed ball in $\mathcal{D}(\delta)^s$ with centre g and radius β .

In commutative C*-algebras, Theorem 4 often gives a convenient method of determining whether a *-derivation is quasi well-behaved. For example if Ω is a compact subset of the real line \mathbb{R} with no isolated points and δ is the derivation of $C(\Omega)$ defined by

$$\delta(f)(t) = \lim_{\substack{s \to t \\ s \in \Omega}} \frac{f(s) - f(t)}{s - t}$$

whenever this defines a continuous function, then Ω_{δ} consists of those points t in Ω for which

$$\sup \{s \in \Omega : s < t\} = t = \inf \{s \in \Omega : s > t\}.$$

It is easy to see that $\operatorname{Int} \Omega_{\delta}$ is the interior of Ω in \mathbb{R} . Hence (as may also be seen directly) δ is quasi well-behaved if and only if Ω is the closure of an open subset of \mathbb{R} . Similar considerations in the plane are involved in the construction of the following example of a closed *-derivation which is not quasi well-behaved.

Example 5. For $n \ge 1$ and $k \ge 1$, let $\alpha_{kn} = (k-1)2^{-(n-1)}$ and $\beta_{kn} = (2k-1)2^{-n}$. For $1 \le k \le 2^{n-1}$ and $1 \le l \le 2^{n-1}$, let E_{kln} and F_{kln} be the following subsets of \mathbb{R}^2 :

$$\begin{split} E_{kln} &= (\alpha_{kn}, \beta_{kn}) \times \{\beta_{ln}\} \\ F_{kln} &= [\beta_{kn}, \alpha_{k+1,n}] \times [\beta_{ln} - 2^{-(n+2)}, \beta_{ln} + 2^{-(n+2)}] \;. \end{split}$$

Note that the sets E_{kln} are disjoint, and if E_{kln} intersects F_{ijm} , then m < n and $E_{kln} \subset F_{ijm}$. Let

$$\begin{split} E &= \left(\bigcup_{n=1}^{\infty} \bigcup_{k,l=1}^{2^{n-1}} E_{kln}\right) \middle\backslash \left(\bigcup_{n=1}^{\infty} \bigcup_{k,l=1}^{2^{n-1}} F_{kln}\right) \\ &= \bigcup_{n=1}^{\infty} \bigcup_{k,l=1}^{2^{n-1}} \left(E_{kln}\right) \bigcup_{m=1}^{n-1} \bigcup_{i,j=1}^{2^{m-1}} F_{ijm}\right). \end{split}$$

Then E is a union of sets of the form E_{kln} . Let Ω be the closure of E, and Ω_0 be the set of points of the form (β_{kn}, β_{ln}) in Ω .

Unbounded Derivations of Commutative C*-Algebras

Suppose k. l, and n are such that E_{kln} is contained in E, and that $p \ge 2$. Then inspection shows that $E_{k'l'n'}$ is contained in E, where $(k-1)2^p < k' \le (k-1)2^p$ $+2^{p-1}$, $l' = (2l-1)2^{p-1}$ and n' = n+p. Now let (ξ, β_{ln}) be a typical point of E_{kln} , and put $n_p = n+p$, $l_p = (2l-1)2^{p-1}$ and choose k_p so that $|\xi - \beta_{k_pn_p}|$ is minimised. Then $(k-1)2^p < k_p \le (k-1)2^p + 2^{p-1}$, so $E_{k_pl_pn_p}$ is contained in E, and $(\beta_{k_pn_p}, \beta_{l_pn_p}) \in \Omega_0$. But this sequence converges to (ξ, β_{ln}) . Thus Ω_0 is dense in Ω .

Now define δ by $\delta(f) = g$ where g is a (necessarily unique) function in $C(\Omega)$ such that for (ξ, η) in E

$$g(\xi,\eta) = \lim_{\zeta \to 0} \zeta^{-1}(f(\xi+\zeta,\eta) - f(\xi,\eta)) .$$

Then δ is a densely-defined closed *-derivation. Consider the point (β_{kn}, β_{ln}) of Ω_0 and put

$$f(\xi,\eta) = \left[1 + (\xi - \beta_{kn} - 2^{-(n+2)})^2 + (\eta - \beta_{ln})^2\right]^{-1}.$$

Then f is well-defined on Ω and attains its maximum at the point (β_{kn}, β_{ln}) since Ω contains no point of the interior of F_{kln} . However $\delta(f)(\beta_{kn}, \beta_{ln}) > 0$. Thus (β_{kn}, β_{ln}) does not belong to Ω_{δ} .

Since Ω_{δ} does not intersect the dense set Ω_0 , $Int\Omega_{\delta}$ is empty so δ is not quasi well-behaved.

Although the derivation in the above example is not quasi well-behaved, it does have a slightly weaker property. Let δ be a *-derivation of a (non-commutative) C^* -algebra A, and J be a closed ideal of A which is invariant under δ in the sense that $\delta(x) \in J$ whenever $x \in \mathcal{D}(\delta) \cap J$. Then δ induces a densely-defined *-derivation δ_J of A/J defined by

$$\delta_J(\pi_J(x)) = \pi_J(\delta(x)) \quad (x \in \mathscr{D}(\delta)) \;,$$

where π_J is the quotient map of A onto A/J. Then δ is *pseudo well-behaved* if there is a family \mathcal{J} of closed invariant ideals J such that δ_J is quasi well-behaved, and $\cap \{J: J \in \mathcal{J}\} = (0)$.

In example 5, for each k, l, and n such that E_{kln} is contained in E, let

$$J_{kln} = \{ f \in C(\Omega) : f = 0 \quad \text{on} \quad E_{kln} \} .$$

Then J_{kln} is invariant, $\delta_{J_{kln}}$ is quasi well-behaved and $\cap J_{kln} = (0)$. Thus δ is pseudo well-behaved.

More generally, a *-derivation of a commutative C*-algebra $C(\Omega)$ is pseudo well-behaved if and only if there exists a family of closed subsets E of Ω with dense union such that for each E in Ω ,

 $f \in \mathcal{D}(\delta), \ f|_E = 0 \Rightarrow \delta(f)|_E = 0$

and the interior of E_{δ} (in E) is dense in E where

$$E_{\delta} = \{ \omega \in E : \delta(f)(\omega) = 0 \text{ whenever } f \in \mathcal{D}(\delta)^{s} \text{ and } |f(\omega)| = \|f\|_{F} \| \}$$

In particular if δ is pseudo well-behaved, then Ω_{δ} is dense in Ω .

Proposition 6. A pseudo well-behaved *-derivation on a C*-algebra A is closable.

Proof. Let x_n be a sequence in $\mathcal{D}(\delta)$ such that $x_n \to 0$ and $\delta(x_n) \to y$, and let J be an invariant ideal such that δ_J is quasi well-behaved. Then $\pi_J(x_n) \to 0$, $\delta_J(\pi_J(x_n)) \to \pi_J(y)$ and δ_J is closable [6, Theorem 2.8], so $\delta_J(y) = 0$. Since the intersection of such ideals is zero, y = 0.

There are analogues of Proposition 6 for Banach spaces. A condition [satisfied by any derivation δ with $W(\delta) = \mathcal{D}(\delta)^s$] which ensures that a densely-defined operator Z on a Banach space is closable was given in [5, Lemma 3.3], and a weaker condition of this type (satisfied by the restriction of a quasi well-behaved derivation δ to $\mathcal{D}(\delta)^s$) appears in the remarks following [1, Theorem 5]. In particular Z is closable if its domain contains a dense open set of weakly dissipative elements (see [1] for definitions). As in Proposition 6 it may be deduced that Z is closable if there exists a family of closed invariant subspaces of X with zero intersection, on whose quotients the operators induced by Z have dense open sets of weakly dissipative elements.

It does not appear easy to construct a closed *-derivation which is not pseudo well-behaved. In particular it is not clear whether every closed *-derivation of a simple C*-algebra is quasi well-behaved, or whether Ω_{δ} is dense whenever δ is a closed *-derivation on $C(\Omega)$. However we do have the following example of a *-derivation for which Ω_{δ} is dense, but which is not closable.

Example 7. Let K be the Cantor set, and define $\delta(f) = g$ where

$$g(t) = \lim_{\substack{s \to t \\ s \in K}} \frac{f(s) - f(t)}{s - t}$$

Then the discussion before Example 5 shows that δ is a densely-defined *-derivation on C(K) which is not closable, but K_{δ} is dense in K.

Acknowledgements. I would like to express my great gratitude to Professor Sakai for introducing me to the subject of unbounded derivations and raising the problems discussed in this paper.

References

- 1. Batty, C.J.K.: Dissipative mappings and well-behaved derivations. J. London Math. Soc. (to appear)
- Bratteli,O., Robinson,D.W.: Unbounded derivations of C*-algebras. Commun. math. Phys. 42, 253-268 (1975)
- Bratteli, O., Robinson, D. W.: Unbounded derivations of C*-algebras. II. Commun. math. Phys. 46, 11-30 (1976)
- 4. Hurewicz, W., Wallman, H.: Dimension theory. Princeton, NJ: Princeton University Press 1941
- 5. Lumer, G., Phillips, R.S.: Dissipative operators in a Banach space. Pacific J. Math. 11, 679-698 (1961)
- 6. Sakai, S.: The theory of unbounded derivations in C*-algebras. Preprint, Copenhagen University Lecture Notes (1977)

Communicated by H. Araki

Received February 20, 1978