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Fluid Dynamical Limit
of the Nonlinear Boltzmann Equation
to the Level of the Compressible Euler Equation

Takaaki Nishida

Department of Applied Mathematics and Physics, Kyoto University, Kyoto, 606, Japan

Abstract. The nonlinear Boltzmann equation for a rarefied gas is investigated
in the fluid dynamical limit to the level of compressible Euler equation locally
in time, as the mean free path ε tends to zero. The nonlinear hyperbolic
conservation laws obtained as the limit are also the first approximation of the
Chapman-Enskog expansion.

§ 1 . Introduction

The dimensionless Boltzmann equation in the kinetic theory of gases can be
written for the mass density distribution function F(t,x9v), ί^O, xeR 3 , i elR3 in
the form (cf. [4])

where s is the mean free path and

^ ^ ^ ^ ^ . (1.2)

Here, V=\v — vJ\, υ' and v'^ are the velocities after the interaction of the molecules
whose velocities were v, v^ before the interaction, and r, φ are the polar coordinate
in the impact plane. Also F^ = F(t, x9 υj9 F

f = F(t,x,v% F^ = F(t,x,v'^) and G^ G',
G'^ are defined analogously. Define the summational invariants

{!P/}J?=1 = {l,ι;//=l,2,3),ϋ2}, (1.3)

which satisfy

dυ = 0 for j = l,2 5. (1.4)

The hydrodynamical quantities are defined as follows: The mass density and fluid
flow velocity are given by

Q(t9x)=SF(t9x9υ)dυ, (1.5)

u(t9x)=-$υF(t9x9υ)dυ. (1.6)
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The velocity relative to the mean is given by c = υ — u. The stress tensor and heat-
flow vector are defined by

(1.7)

(1.8)

Ptj = J cfjFit, x, v) dv = Pίj + pδij,

where p = ΣPkkβ is the scalar pressure and ptj is defined by (1.7). The internal
energy per unit mass is

e=r$-c2F(t,x,v)dv.

The conservation laws for ρ, u, e can be written in the form.

dt

d_
dt

where the equation of state is that of "the ideal gas", i.e.,

(1.9)

(1.10)

(1.11)

The system (1.10) is not closed by itself, because for P(j and qt we need the higher
momentum of F. But if the distribution function F(t, x, v) is locally Maxwellian, i.e.,

(u(t,x)-v)2

2Rτ(t,X) y

then the conservation laws (1.10) can be simplified by pίj = qi = ® to

(1.12)

(1.13)
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The latter, supplement by (1.11), is now closed and may be considered as the
compressible Euler equation derived from the Boltzmann equation. The system of
nonlinear hyperbolic conservation laws (1.13) is also obtained as the first
approximation of the Chapman-Enskog procedure. The second approximation is
the compressible Navier-Stokes equation [1].

Following Grad [6, 8] we consider the Boltzmann equation (1.1) for gas
molecules with cut-off hard potentials in a neighbourhood of the absolute
Maxwellian state:

M(v) = (2π)-3/2exp(-v2/2). (1.14)

Taking initial data

F(0,x9v) = F(x,υ), (1.15)

whose deviation from the absolute Maxwellian state (1.14) is assumed to be small
0(ε), we solve the initial value problem (1.1), for fixed ε, locally in time [5, 7] and
globally in time [18, 19, 14] and [17]. The solutions of (1.1) decay to the absolute
Maxwellian state as ί-> + oo.

Asymptotic problems of the Boltzmann equation as the mean free path ε-*0
and asymptotic relations to the hydrodynamical equations as determined by the
Chapman-Enskop expenasion have been considered by Grad [7] for the "semi-
linear" Boltzmann equations

% ^ ( L 1 6 )

and

ϊ ^ (U7)

[Compare them to the full Boltzmann equation (2.14).] He showed as ε->0 that the
solution of (1.16) is asymptotic to that of linearized Euler equation in a finite time
interval 0 ^ ί ^ ί 0 < o o and that the solution of (1.17) is asymptotic to that of
linearized Navier-Stokes equation in 0<ί<ί o /ε. The asymptotic problems have
been also considered by McLennan [10], Ellis-Pinsky [2, 3], and Pinsky [16] for
the linearized Boltzmann equation (2.22).

In the present paper we consider the asymptotic problem for the nonlinear
Boltzmann equation (1.1) or (2.14) as ε->0, at the level of the nonlinear
compressible Euler equation, in the class of analytic functions in a finite time
interval 0 ^ ί ^ ί 0 < o o . In §2 we summarize some results on the linearized
Boltzmann equation and define a scale of Banach spaces of analytic functions. In
§3 we solve the initial value problem for the nonlinear Boltzmann equation (1.1)
for εe(0,1]. It is equivalent to solve a nonlinear integral equation (3.1) by use of
the solution of the linearized Boltzmann equation. Then it is shown that there exist
the analytic solutions for the nonlinear integral equation (3.1) with small analytic
initial data (3.3) in a finite time interval independent of εe(0,1]. For this purpose
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we use the spectral theory (cf. § 2) of the linearized Boltzmann equation and an
abstract nonlinear Cauchy-Kowalewski theorem in a scale of the Banach spaces
(cf. [12, 13]). This abstract theorem is an improved version of Ovsjannikov's [15],
where it is used to get the local existence of analytic solutions to the initial value
problem for incompressible fluid motion with a free surface (cf. [11]). In §4 the
asymptotic behavior of solutions of the nonlinear Boltzmann equation as the
mean free path ε tends to zero is investigated for a finite time interval. The
convergence of the solution Fε of the Boltzmann equation (1.1) to the locally
Maxwellian distribution Fo as ε->0 is proved by the uniform estimate and the
equicontinuity in fe(0, ί0) of the solution with respect to εe(0,1] and by the
nonnegativity of the solution. Thus it is shown that the Boltzmann equation with
small analytic initial data can be approximated locally in time as ε-*0 by the
compressible Euler equation (1.13). An analogous asymptotic problem was
considered in [9] for the Broadwell model of the Boltzmann equation for a simple
discrete velocity gas by using [12, 13]. But the arguments in §4, especially the
treatment of the initial layer, also apply to the Broadwell model and improve the
results in [9]. In the Appendix, we prove the nonnegativity of solutions of the
Boltzmann equation for non-negative initial data.

§ 2. Notation and Preliminaries on the Linearized Boltzmann Equation

Letters x, v, fcelR3 denote independent variables, Lp( ) ( = x , u , o r k) denotes the
Lebesgue space of measurable functions whose p-the power ( l ^ p < + oo) is
summable in 1R3 with the usual norm |/ | L p ( < ) . H\x\ /^0, denotes the Sobolev
space of L2(x)-functions, the derivatives of which, up to and including order /,
belong to L2(x) H\k) is the Fourier transform of H\x) with the norm

I/law Ξ 1(1 + fc2)"2 M)\LHk) = \f\mx) (2.1)

H denotes the Lebesgue space of square summable functions in (x, z;)e]R6 with the
norm

ll/H =($\f(x,v)\2dxdvy'2. (2.2)

Let us introduce the partial Fourier transform in x of feH as

ftKυ)=y^ie-*'*f(x9υ)dx (2.3)

and denote H = {f;feH}. For feH, we define

\\?\\2=l\f(k9υ)\2dkdυ=\\f\\2. (2.4)

Definition2.1. We set H0=H and for each />0, we define Hι as the Hubert
subspace of H consisting of all ίίz(x)-valued L2-functions of i eIR3 with the norm

t W ^ ) 1 ' 2

 ( 2 5 )

+k2)ι\f(k,v)\2dkdv)ll2= 11/11, < oo.
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Definition 2.2. For each m, Z^O, we define Bml as the subspace of H consisting of all
tf(x)-valued continuous functions of veR3 with the property

{l+υ2rl2\f{',υ)\Hlix)-+0 as | t , | -oo. (2.6)

The norm for feBml is defined by

= s u p ( l + t ; 2 r / 2 | / ( , % I ( k ) < o o . (2.7)

It is easy to see that by Fubini's theorem

ll/llz^Cll/llm>/ for m>3/2, Z^O, (2.8)

and that by Sobolev's lemma if feBml for m, Z>3/2, then / is bounded and
continuous in x, v.

Definition2.3. For any Z^O, we define the scale of Hubert spaces St = [] Ht ,

where

H' 0 = H " (2 9)

111/111,.,,= lle'*' /(fc,»)«, < 00}.
Definition 2.4. For any m, Z^O, we define the scale of Banach spaces Sml

= I J £ > 7

with the property

l f e l/ ) = 0} . (2.

Then the functions /(z, t;) of # z ρ or 5m>/>ρ are analytic in z = x + iy for |j;| <ρ and
belong to L2(z) for any fixed y, \y\ <ρ. The following lemma concerning our scale of
analytic functions is fundamental in applications of the abstract nonlinear
Cauchy-Kowalewski theorem (cf. Propositions 3.1 and 4.1).

Lemma2.1. For any Z^O, the scale of Hilbert spaces St has the property:

III | f c r / ( M I I I ^ ^ ^ Ill/Ill^ (2.12)

for any feHlρ and any ρ'<ρ,

The proof is easily obtained by the definition of the norm ||| |||2 ρ, if we note that

Selklρ/(ρ-ρT for any
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In order to linearize the Boltzmann equation (1.1) in a neighborhood of the
absolute Maxwellian state, we set

F(t,x9υ) = M + M112 f(t,x,v). (2.13)

If we substitute (2.13) into (1.1) and follow the arguments [6,7] for gas molecules
with a cut-off hard potential, we obtain the following equation ϊor f(t,x,v) £Ξ>0,

3 , i e l R 3 :

Here L is a nonpositive linear operator acting on υeW*? with the properties that

(LfJ)L2(v)S0 for /,L/eL2(z;), (2.15)

and

Lf=0 iff / e { ^ }7

5

=1 = {M 1 / 2,ι;.M 1 / 2,ι; 2M 1 / 2}. (2.16)

L can be decomposed as

L=-v(v) + K in L2(v), (2.17)

where v(v) is a monotone nondecreasing function in \v\ satisfying

l + |ι;|)J vo,v1 positive constants, (2.18)

and K is a compact selfadjoint operator on L2(v) with the following smoothing
properties:

\\\KΩl,ι.βm\ΩL-i.ι.β

 f o r any m 2:1,

for some constant κ = κ{m)<cc and for any ρ^O, /^0.
The nonlinear operator

vΓ(f, g) = \\ {f% +f'J -/</«, -faWivJ1!2 Vrdrdφdv^ (2.20)

acts on uei? 3 and is bilinear i n / a n d g. It has the following estimate, which will be
used in the proof of Propositions 3.1 and 4.1.

Lemma2.2. Let f(x,v), g(x,υ)eBmXβ forρ^0,l>3/2, m>5/2. Then (xpp vΓ(f,g))LHυ)

= 0,j = l,2,...,5,and

I vΓ(f, g)\\\hβ£ C\\\Γ(f,g)\\\m!lie Ί

scιιι/ιiL> ι > ριιyL, I > ί. J (2.21)

Proof. The first inequality follows easily from (2.8) and (2.18). The second
inequality is proved by the argument in [7] and the Hausdorff-Young inequality.
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In fact we have for 1 = 2

L,2,β = sup (1 + υψ2 \ew β(l + k2)Γ(f, Qf (k, υ)\LHk)

SC{suP(ί + v2r2\e^'f(k,υ)\LHk)}
2)• {sup(l + v2T12- | e | k | fi(l + k2)g(k, v)\LHk)}

+ {sup(l + υ2r2|el*l"(1 + k2)f\LHk)} {sup(l + vψ2

S C{sup(l + v2)ml2 |βl*l«(l + k2)f\LHk)}

• {sup(l+v2rl2\eWc(l+k2)g\L2(k)}

= C\\\f\\\m,2J\g\\\m,2,e.

This completes the proof of the lemma.
Our aim in the remainder of this section is to summarize some results on the

linearized Boltzmann equation

dt Jdxj ε ε
(2.22)

ε "~

Consider the two operators

(2.23)

with the common domain D(-ΛA =Dl-Bε\ maximal in ifί5 /^0. The operator

-Λε generates a strongly continuous semigroup in H^ given explicitly by the

formula

e ^ f = e - > f ( x - t-υ,v^ = y^ii2$eik *<*Λέkϊ(k,υ)dk, (2.24)

where

Aεk=-iεk v-v(v). (2.25)

Since Bε = Aε + K and K is a bounded perturbation, the linearized Boltzmann

operator - Bε also generates a strongly continuous semigroup < exp - Bε \> in Hιε I \£ /Jί^o
for any εe(0,1].

We have the following result.

Theorem 2.1. The linear Boltzmann semigroup is represented by
t Λ t

eε f'== I e x eE fik v^dh- (2 26)
(2π) 3 / 2 J '
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for f(k, v)eHι, where for each fceIR3

Bεk= -iεk v-v{υ) + K (2.27)

is an unbounded linear operator on L2(v) with domain D(Bεk) = {feL2(v),
BεkfeL2(v)}, Bεk generates a strongly continuous contraction semigroup on L2(v)
such that for any t ̂ 0 , feL2(v\

eε (2.28)

Furthermore there exist δ, βv β2 > 0 such that the following Eqs. i) and ii) are valid
for any feD(Bεk).

i) For any k, \εk\ < δ

έkf+e"PlZ1(εk,t/s)f9
(2.29)

where Up e^ are the eigenvalues and the corresponding eigenfunctions of Bεk. They
have the expansions

ufβk)= Σ aln(iε\k\r
n = l

ej(εk)= X eM(k/\k\)
n = O

where ajn are constants, aj2>0 and

(ej( - εk), en(εk))L2(v) = δjtn, j , n = 1,..., 5.

ii) For any k, |εfc|><5

Ώ

f=eε f+e

 ε Z2(εk9t/ε)f,

where

Zhk,t/ε)f= limi- ] yZ(-βJ + iγ,εk)fdγ,
J

,εk) = (λ-AεkΓ
1(I-K(λ-AεkΓ

1Γ1K(λ-Aεky

and

\Z{εk,t/ε)f\LHΌ)ύC\f\LHv)9

C being independent of ε, fc, ί^O.

Proof See Ellis-Pinsky [2], Ukai [19], and Nishida-Imai [14].

(2.30)

(2.31)

(2.32)

(2.33)
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Proposition 2.1. The linearized Boltzmann operator -Bε also generates a strongly

continuous semigroup in Bm ι ρ(m > 3/2, Z ^ 0, ρ §; 0) and satisfies a uniform estimate

(2.34)

/ The first part comes from the property (2.11) oϊBmlρ;cί Ukai-Nishida [20]
and also Shizuta [17]. It follows from (2.26), (2.28), and the Plancherel equality
that for any feHltQ, Z^O, ρ^O, any ί^O, and for any εe(0,1]

for any m>3/2, Z^O, ρ^O, C being independent o/εe(0,1].

dk

= \\U \\\l,Q'

\\m,l,ρIn order to get the estimate in

It is easy to see that for any ρ^O, /^0, m^

m,l,Q '

It follows from (2.19), (2.36), and (2.37) that

L2(v)

we use the relation

(2.35)

(2.36)

(2.37)

for any feBjtltβnHltQ {j = 0,1,..., m inductively) and ρ ̂ 0. Thus if m> 3/2, then (2.8)
gives (2.34).

This completes the proof.
In addition to Theorem 2.1 and the uniform bound (2.34) for εe(0,1], we need

the Holder continuity in ί, uniformly for εe(0,1]. of solutions of the linearized
Boltzmann equation. It will be formulated in Proposition 2.2 after the following
two auxiliary lemmas.

Lemma 2.3. Let feBmJρ (ρ^0,Z,m>0) and consider cxpl-AA fin ί^0,εe(0,1],
\ε J

Then we have for 0 < σ <min(l, Z, m)

(t-s\
eε J-eε

<c m,l,ρ (2.38)

for 0<5<ί, where C is independent of εe(0,1].

Proof Remembering that

ίεk v)
'f(k,v)
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we have

T. Nishida

l-σ

) 2

- - (v(υ) + ίεk υ) - - (v(v) + ίεk v)

e ε — e ε

L2(k)

1-e
(v(v) + iεk- v)\ --(v(v) + iεk v)

2(/c)

t-s

ε

l-σ

v(v)
σ t — s

viv)v)\(t-s)k.v\σ

L2(k)

l-σ

\ 2
LHk)

L2(k)

= c
t-s

m,l,ρ '

This completes the proof.

Lemma 2.4. Let g(t)eBmlρ for each ίe[O, T] and for some ρ^O, /, m>0.

S U P Ill̂ Wlllm i β

 = C0 and assume

ίt-s\
/or

some σe(0,min(l,/,m)).
Then forO<s<t^T, T>0 arbitrary,

satisfies the estimate

ί - s
(2.39)
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where C is independent of εe(0,1].

Proof We have

\\\f(t)-f(s)\\\m-σ^σ,β

= \\]^Aε-g(t-τ)dτ-]e^Aε-g(s-τ)dτ\

129

m-σ,l-σ,ρ

A V
ε

V A V
z-{g{t-τ)-g{s-τ))dτ + \eε ε-g(t-τ)dτ

s/2

0

--(v(ι;) + iβfc ι;)V

e ε -(g(t-τ)-g(s-τ)) dτ

t

+ ί IllWτ+J
S/2 S

--{v{v) + iεk-v) V

ε ι

e ε -dτ
ε

ί - 5

The term VF in the second integral after the first inequality denotes the same
expression which appears in the first integral after this inequality. This completes
the proof.

-B
ε ε
-B

Proposition 2.2. Let feBmXQ for some ρ ̂  0, / >0, m > 3/2 and set fo(t) = eε ε f Then
we have for 0 < σ < m i n (1/2, Z, m — 3/2)

t — s
\m,l,ρ 5

m,ϊ,ρ '

(2.40)

(2.41)

C is independent of εe(0,1].

iV.β. Here we may note that the singularity \jf of the Holder coefficients near t = 0
corresponds to the initial layer of the rarefied gas motion described by the
Boltzmann equation.

Proof We recall the representation of fo(t) in Theorem 2.1:

= J + J =
\εk\<δ \εk\>δ
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12 has the representation

ί
\εk\>δ

73 can be treated in the same way as in Lemma 2.3:

•»e

Λ ρ for 0<σ<min(l,/,m-3/2).

To estimate / 4 we consider the integrand

)

flz{-β2-iy,εk)fdy

y ( 't~s \ •—y y'

The estimate

is given by (2.32) and (2.33). I6 can be treated as follows:

.sγ

e

ιTZ(-β2~iγ,εk)fdy

• t ~ s

ι — y

e ε

We claim that Z2{β2, εk, s/ε, t/ε) is weakly absolutely convergent for

(1 + |εfc|2r/2(l + v2γ12 f{k, υ)sL2(v),

and

\Z2 KHV) ̂  C(ί + \εk\ψ2 \(ί+v2Y'2 f\LHv),
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where C is independent of fc, 0 < s < ί and εe(0,1]. In fact

Λ s

131

t-s

K(-β2- ίγ - Aεk) ~* f(k, v), (-β2 + iy- A*k) ~' g(k, v))LHv)\dγ

c ί M

1 / 2

for 0 < σ < 1/2. Thus for εe(0,1]

t-s

To prove the Holder continuity of J^ί), we can treat it by (2.29) in the same way as
73(ί) and J4(ί) except for the term

ί
}εk\<δ
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But this can be treated as follows:

ϊΣ ί
7=l\|εfc|<<5

l-a

7=1 \\εk\<δ

(t-s

--aj(εk)

l-σ 1/2

+ fc2) 2

Since we have shown (2.40), we can use the expression (2.36) to obtain the desired
estimate (2.41), where the first term is estimated as in Lemma 2.3 and the second
term is estimated by (2.40) and the smoothing properties of K (2.19). In fact

τ

0,l-σ,ρ

o ε

SC sup \\\fo(τ)\\\^σtί

s t

0

0,l-σ,ρ

t-s

o s/

O,l-σ,ρ

<C t-s (2.42)

The same is true in the norm Bjκι_σ ρ for j = l , 2 , ...,m — 1 and in the norm
Bm_σl_σQ. This completes the proof of Proposition 2.2.

§3. The Solution of the Nonlinear Boltzmann Equation for εe(0,1]

In order to get the solution fε(t) of the nonlinear Boltzmann equation for any
εe(0,1] in a finite time interval (independent of ε) we use the abstract nonlinear
Cauchy-Kowalewski theorem in the scales of Banach spaces Sι and SmJ (/^2,
m^3), this theorem has been formulated in [12] and [13].
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Making use of the linear Boltzmann semigroup e x ρ - £ ε in (2.26), we use that

the nonlinear Boltzmann equation (2.14) is equivalent to the integral equation

fε(t) = <**' / + j e~^Bc - vΓ(fε(s), fε(s))ds. (3.1)
0 ε

Definition. Give /^2, m^3, and suitably small α>0, we denote by IB the Banach
space consisting of all continuous function f(t) from t in BmJρ such that

NJJ}= sup | | | / ( ί ) | | | w Z β ( l- ίMρ 0 -β))<+oo. (3.2)
O^t<a(ρo- ρ)

iVβ[/] defines a norm on IB.
We seek the solution fε(ή of (3.1), for any εe(0,1], in the space IB, At the same

time, we get an estimate for/ε(f), uniform for εe(0,1], provided that the initial data

/(0)=/eB m > ; > β o (ρ o >O,/^2,m^3) . (3.3)

Theorem3.1. Consider the initial data fsBm>ι for some ρ o > 0 , 1^.2, m ^ 3 so that

β o < + oo. (3.4)

Then there exist Eo>0,a>0 such that for any f with £ [ / ] <Eo the Equation (3.1)
has the unique solution fε(t) for any εe(0,1], any te[0,a(ρo — ρ)\ (ρe[0,ρ0) fixed).
Uniformly for βe(0,1], /ε(ί) satisfies the bound

\\\fe(t)\L.ι,β^CE\J] (3.5)

for any ί, ρ as above.

Consider the function h(ή defined by the quadratic term

Λ(ί) = j e~Bε - vΓ(f(s% g(s))ds, (3.6)
o ^

where / and g are any functions satisfying JVβ[/], ΛΓfl[#]< + oo. A proof of
Theorem 3.1 is based on the following proposition:

Proposition 3.1. Let f g satisfy Na\_f~\, Na\_g]< + oo. Then we have

Nb[K]^CRNb[_g-]^CRNa\_g-] for any b<a, (3.7)

where R= sup |||/(ί)|||M z β .

0 ^ ρ < ρo

Proof Noting that {eJ(0)9vΓ)L2iΌ) = {ψj9vΓ) = 0, j = l , ...,5, Theorem2.1 gives the
following:

o (2π)3/2 ί
εk\<δ [j=

ε

i •Z1(εfc,ί/β)(v/T[ett χdk

rfs.+ ί \e ε ~(vΓγ +e~ * μ2-Z2(εk,t/ε)(vΓγ\eikxdk
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Define β o=min(v o, βv β2). Taking the norm in Ht Q gives

θ[{\εk\<δ

\εk\>δ

\εk\<δ

£Cj(f(H-*2)'

1/2

\\z2\\2)\(vrγ\i(v)dk

d s

IKHI,,, ds

for some choice of ρ(s)e(ρ,ρ0 —s/α); we have also used Lemma 2.1. Using the
property of vΓ from Lemma 2.2, we have for m ^ 3 , I*z2

\\\h{t)\\\, ^

\\\f(s)\L.ι,β \\\9(s)\L.ι.βds

This is valid for 0 < t < b(ρQ — ρ),0^ρ< ρ0, where b is any number less than a such
that ρ<ρ(s)<ρo-s/b. Hence

ds * e ε

1 —
ds

If we now choose ρ(s) = (ρ0 — s/b + ρ)/2, we have

sup |||Λ(ί)lllI>ρ(l-ί/ίKβo-β))
0 ^ t < b ( )

sup

o-ρ))t

o ί~t/b(βo-Q)

(3.8)
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In order to obtain Nb[h] from (3.8) we note that (3.6) is equivalent to

t t-S Λ t t~S Ίζ

It follows from the Definition (2.10) of ||| |||m)1>β and the smoothing properties (2.19)
of K that for 0^ρ<ρ0 and 0^t<b(ρo-0) '

IIIΛ(t)llloAβ = \e *SAc-vΓ{f,g)ds+)e *SΛc-k(s)ds

t t-s

ε
t t-s

0,1,ρ

S sup I <
v 0

V o
t-s

ε ί-s/b(ρo-ρ)'

t
v(0)

ds

£CRNb[jg-]/{l-t/b{ρ0-Q)}.

Repeating the same argument inductively for 7 = 1,2, ...,m- in the norm ||| | | | j Λ e

gives

IIIMOIIL / Λ — CRN Jqλl{1 — t/b(ρn — ρ)\

in 0 ^ ρ < ρ o ? O^t<b(ρ0 — ρ). This completes the proof of Proposition 3.1.
Now we introduce a successive approximation scheme to solve (3.1).

go(t)=\e~^B'-vΓ(fo(s),fo(s))ds,
o ε

(3.10)

9 lit) = ί e~Bc ~ WfM 9o(s)) + vΓ(go(s), fo(s))} ds,
o ε

gβ) = } e' S BΛ- {vΓ(fn(s), gn_ M + vΓ(gn_ &), /„_

=/o(0+

(3.H)

Since we assumed that fe Bmlβo {ρ0 > 0, / ̂  2, m ̂  3 fixed) it follows from (2.34) that
for any ρe[0,ρ 0) and any t ϊ O

A β ϊ c\\\f\\\mAβo Ξ R0 . (3.12)
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To estimate go(t) in ||| |||m t ρ we proceed as in the proof of Proposition 3.1

I vΓ(fo(s), f0(8)11 Js
0 ε t-s

ί t Γe~
SC sup |||vΓ(/0(s),/0(S))|||^o + J ds

for 0 ̂  t ̂  αo(ρo — ρ), 0 ̂  ρ < ρ0, where a0 is any positive number. Thus we get

Hl0o(ί)IIUβ ̂  C(a0 + ί/β0) \\\f\\\itltQ0 ύ CRl.

Therefore for any a0 > 0 fixed, we arrive at

μo= osup H M O I I U ^ C ^ . (3.13)
O^ί^αo(ρo-ρ)

Then it follows from (3.13) and (3.11) that

lll/i(ί)IIUβ^Λo+^o (3-14)

in 0 ^ ρ < ρ o , 0 ^ ί ^ α o ( ρ o - ρ ) .

Define aγ =α o >O,

an+1=an(l-l/(n+m for n=l,2, . . . (3.15)

and

Nn[.g-\=Nan\_g-] for n-0,1,2,... . (3.16)

To estimate g^t) we can use Proposition 3.1. In fact we may assume from (3.12),
(3.13), and (3.14) that by taking Ro suitably small

for 0 ^ ρ < ρ o , 0 ^ ί ^ α 1 (ρo — ρ)9 where R>0 will be chosen small later.
Therefore Proposition 3.1 gives that

sup
o = e <

 QO

= CRμ0 < + oo .

Hence for O^ρ<ρ 0 , 0^ί<α 2 (ρ 0 —ρ)

and this gives for 0 ^ ί < α 2 ( ρ 0 - ρ )

α2/α1

ί-a2/a1
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We will require that for k = 1,2,...

Σ i ? la + K,+*o<* (3 Π)
j=ί ί-aj+l/aj

Then we obtain for 0^ρ<ρ o , 0 ^

Hence we can construct gk+ x(ί) in (3.11) and use Proposition 3.1 again to conclude
that

k. (3.18)

Now we choose R such that

μ ^ μ o ( / + l Γ 4 7 = 1,2,... . (3.19)

In fact if we assume this is true for μk, then we find from (3.18) that

provided

)Ίc. (3.20)

Hereafter fix R as in (3.20). At last we can choose Ro so small that (3.17) is valid for
this choice of R. In fact it follows from (3.15), (3.19), and (3.13) that

(3.2.1)

provided that Ro is small. Because of (3.12), this is achieved if | | | / | | | m Λ ρ o is small.
Therefore we arrive at the desired estimate for /c = 0,1,2,...

IIIΛ+i(0IIL.I>ρ<Λ (3-22)
00

for 0 ^ ί < α ( ρ o - ρ ) , O ^ ρ < ρ 0 , where a = ao\\ ( l - ( / + l )~ 2 )>0. Furthermore for

fc 0 l 2

^μk/(ί - t/ak{ρ0 - ρ)) ̂ μj{\ - t/a(ρ0 - ρ)).

Thus, we have shown
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Since Σμk< + oo, it follows that the fk converge to some fε(t) in IB for any εe(0,1]
fixed. Also (3.22) gives

\\\fa(t)\L.ι.Q^R ^ 0^ί<α(ρ o -ρ), (3.23)

where R is independent of εe(0,1].
The limit function fε(t) is the desired unique solution of (3.1). This completes

the proof of Theorem 3.1.

§4. Fluid Dynamical Limit as ε-»0 to the Level
of the Compressible Euler Equation

In order to take the limit of fε(t) as ε->0 we need more than the uniform bound
(3.5) for/fi(ί) in εe(0,1]. For this purpose we show the Holder continuity oϊfε(t) in t
uniformly for εe(0,1]. Let us consider the initial data f(0)eBmJ ρo (ρo>O, /Ξ>2,
m^3), for which Theorem3.1 holds; i.e., if

IH/(θ)IIUβ o=£[/]<£o, (4.1)

then the corresponding solution fε(t) satisfies the uniform bound

lll/εWIILΛρ^CE[/] for 0^ί<α(ρ o -ρ), 0 ^ ρ < ρ o . (4.2)

Definition. For 0<σ<l/2 fixed and ί^σ, m^3,

p \
0<s<t<α(ρo-ρ)

0 ^ Q < Qθ

sup \\lf(t)-f(s)lL^.J^f^m. (4.3)
() { tS J

Theorem 4.1. Let the initial datafφ) satisfy (4.1). Then there exists Eί>0(Eί ^ £ 0 )
such that if E\_f~\<Ev then the solution of (3.1) is Holder continuous in t:

, (4.4)

where Cι is independent of εe(0,1].

Before we prove this theorem, we reconsider the quadratic term (3.6):

ί t_Ξ_s_

h{t)=[e ' ε~vΓ(f(slg(s))ds, (4.5)

where f(s\ g(s) are any functions which satisfy the bounds

lll/IIL,I>ρ, \\\g\L,ι,e<R, (4.6)

[for 0 ^ ί < α ( ρ o — ρ), O ^ ρ < ρ o ] and which are Holder continuous:

M α [/ ] ,M α [#]<+(X) . (4.7)

The proof of Theorem 4.1 depends on the following proposition.
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Proposition 4.1. Let us consider h(t) in (4.5) with f(t\ g(t) satisfying (4.6) and (4.7).
Then for the same σ and any numbers s, t satisfying 0<s<t<a(ρo — ρ),

(4.8)

(4.9)MJih]£CR(R+Mβ[g-]+Ma[f]),

where C is independent of εε(0,1].

Proof of Proposition 4.1. We have

ίB'h(t) - h(s) = )ίB' - Γ(f(t - τ), g(t - τ))dτ

ίBc
- {Γ(f(t - τ), g(t - τ)) - Γ(f(s - τ), g(s - τ))} dτ
ε

By Theorem 2.1 we have

1 j e» '\Σ*'™U-ek\V-f(f,g))ejίεk)

J
\εk\>δ

Z2(εk,φ)-f(fg)dk\dτ

For /,, we have

ί <
\εk\<δ

7α^ek>, i/Λ//

τ ) j

),g(τ))|||ί>e(τ)

where we can set ρ(τ) = (ρ 0 + ρ — τ/a)/29

2a
dτ^CR2{t-s)σ
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The other terms in Iγ can be treated as follows.

where β0 = min(v(O), β1,β2)-
Now we estimate J2, noting that if s/3<t — s, then I2 may be estimated in the

same way as Iv

12 = ί *** - {Γ(f(t - τ) -f(s - τ), #(ί - τ))
o ε

+ Γ(f(s-τlg(t-τ)-g(s-τ))}dτ.

Since each of the two terms in the integrand can be treated analogously, we treat
the first term here. We have

j e^Bε - Γ(f(t - τ) -f(s - τ),g(t - τ))dτ
o £

1
= -

o (2π)
*'™{ejί-ek\lήejίεk)

^εk, τ/ε)-Γ\dk

\εk\>δ

eίk χe ^ ε Z2(εk,τ/ε)-fdk\dτ
ε J

ί
\εk\<δ

-aj(εk) f

iWpvΓ)eβk)e*-*dk dτ

ρ(τ)-ρ

Mm — σ,l — σ,ρ(τ)

t-s

t

ρ(τ)-ρ

t-S

(τ-(t-s)) 1-
ρ(τ)-ρ

oτσ{Φo-έ?)-(ί-

0 s/3

s / (l-ί/α(ρ o-ρ)f
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Setting jS0=min(v0, βl9 β2\ we estimate 79, 7 1 0, and J n as follows.

]e~β°^- \hΓ{f{t~τ)~f{s-τ),g{t-τ))%_σJτ
0 ε

ί-s VSΛ -βo

τ

T

a(ρo-ρ)

f_s y /s/2 s

\ o si:

Thus the desired estimate (4.8) is obtained. Now the procedure for obtaining (4.9)
from (4.8) is analogous to that used in Proposition 2.2; i.e., we use the expression
(3.9), Lemma 2.4, and the argument for (2.42) with the smoothing properties of K
(2.19).

This completes the proof of Proposition 4.1.

Proof of Theorem4.ί. Since the initial d a t a / e £ m / ρ o (ρ o >0, Z^2, m^3) satisfies
(4.1), the solution fε(ή of (2.14) exists and satisfies lίl/e(ί)IIL,z,ρ^

C£ for any ee(0,1].
Also

fε(t) = #B'f+ \e~^Bε-Γ(fε(slfε(s))ds. (3.1)
o ε

Remembering the definition of M α [/J in (4.3) and using Proposition 2.2 and
Proposition 4.1 we have the following for / > σ, m ̂  3:

sup C| | |/ | | | m > I > β (l-t/α(ρ o -ρ)r
0<s<r<α(ρo-ρ)

0 ^ Q < Qo

Therefore if C £ < 1 , then

where C, C l 5 E is independent of εe(0,1].
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This completes the proof.
From Theorems 3.1 and 4.1 we conclude the following: the solution fε(t) is

bounded in the norm ||| | | | m ί ρ for O^t<a(ρo — ρ) (O^ρ<ρ 0 ) , uniformly for
εe(0,1]; in the space Bm_σJ_σρ, fε(ή is σ-Holder continuous in ί, uniformly for
εe (0,1], for t in any compact subset of the interval (0, a(ρ0 — ρ)) [where ρe [0, ρ0)].
Therefore by the Ascoli-Arzela lemma we can choose a convergent subsequence
{fε.}, where ε ^ O , such that

fε.{t)->f0{t), for 0 < ί < α ( ρ 0 - ρ ) , O ^ ρ < ρ o . (4.10)

The limit function satisfies the bound

and is σ-Hδlder continuous (0 < σ < 1/2):

— ^ V. (4.12)

1 — t/a(ρ0 — ρ))J

Now we turn to the original mass density distribution function

Fε(t,x,v)=M{v) + M(υ)ll2fε(t,x,v), (4.13)

where M(v) is the absolute Maxwellian state. FJf) satisfies the original Boltzmann
equation

— i + Σ Vj—
ε- = -Q(Fε,Fε). (1.1)

dt j==1

 J dxj ε

Integration with respect to t gives

t 3 dF (s x v)
Fε(t9x9υ)-Fe{09x9υ) + J £ vj

 E\9 ? ' ds
Oj=l OXj

= -\<2(Fε(s\Fε(s))ds for 0 < ί < α ( ρ o - ρ ) , 0 ^ ρ < ρ o . (4.14)
ε o

Noting the uniform bound (4.2) on fε(t) for εe(0,1] and the convergence (4.10)
along the subsequence ε7 ->0, we can conclude from (4.14) that

\Q(Fo(s)9Fo(s))ds = 0 (4.15)
o

for any t satisfying 0 < ί < ^ ( ρ o — 0) (O^ρ<ρ 0 ) , where Fo(t,x,v) = M(v)
+ M(v)1/2f0(t,x,v).

We now state the main theorem.

Theorem. Assume that the initial data F(x,υ)~M + M1/2 f(x,υ)^0, that ρ(0,x)
= §F(x,v)dv>0 for any xeR3, and that f(x,v)eBml Qofor some ρ o > 0 , /^2, m ^ 3 ;

s e t III/HL,/,ρo

 = £ and ^et a be cis in Theorem 3.1. If E<Eί, where Ex is defined
in Theorem 4.1, then for any εe(0,1] the solution Fε(t,x,v) of the nonlinear
Boltzmann equation (1.1) with the initial data F(x,v) exists in Bmlρ for

90 —ρ) ( 0 ^ ρ < ρ o ) and is nonnegative there. Furthermore the limit
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lim Fε(ί, x, v) = F0(ί, x, υ) exists in BmΛρfor 0 < t < a(ρ0 -ρ)(O<ρ< ρ0) and F0(ί, x, υ)

is locally Maxwellian. Hence its hydrodynamical quantities satisfy the nonlinear
hyperbolic conservation laws (1.13).

Proof. The existence of FE(t) and of the limit F0(t) along a subsequence as ε-*0 is
proved above. At the same time for each εe(0,1] the conservation laws (1.10) are
satisfied by the hydrodynamical quantities (1.5) ~ (1.9) of Ffi(ί, x, υ). They can be
integrated in t

(4.16)

where the initial data for the hydrodynamical quantities ρε, uε, eε are given by (1.5)
(1.6), and (1.9) with F = F(x, υ) and are independent of εe(0,1]. It follows from the
mass conservation law for Fε(t, x, v) (dρjdt + dρεuεj/dxj = 0) that ρfi(0, x) = ρ(0, x) > 0
implies ρ ε(ί,x)>0 for 0^t<a(ρo — ρ), 0 ^ ρ < ρ o , and any 86(0,1]. The non-
negativity of Fε(t,x,v) follows from that of Fε(05x5ϋ) = F(x,ί;)^0 for fixed ε > 0
(proved in the Appendix). The convergence of Fε to F o as ε->0 gives (4.16) with ε = 0
for the hydrodynamical quantities ρ, u, e of F o . Since F0(ί, x, v) ̂  0 and ρ(ί, x) > 0, it
follows from (4.15) [i.e., β(F0(ί, x, v\ Fo(ί,x,ϋ)) = 0] that Fo(ί,x,t;)>0 and so
F0(ί, x, v) is locally Maxwellian. When F0(ί, x, v) is locally Maxwellian, we conclude
that pij = qj = 0. Therefore (4.16) with ε = 0 simplifies to

(4.17)
dXj

Now the bounds (4.11) on /0(ί) carry over to F0(ί). Hence the terms on the right
hand side of (4.17) are differentiable in t for 0 ^ ί < α ( ρ 0 —ρ) (O^ρ<ρ 0 ) . Thus
differentiating (4.17) in t gives the desired nonlinear hyperbolic conservation laws
(1.13), where the initial data are given by (1.5), (1.6), and (1.9) with Fo(0,x,t;)
= F(x, v). It follows from the uniqueness of the solution of the initial value problem
for (1.13) that all sequences of Fε as ε->0 give rise to the same system (1.13) in the
limit.

This completes the proof of the theorem.
Finally we note that the hyperbolic system (1.13), supplemented by (1.11), has

two genuine nonlinear characteristic fields in the sense of Lax. Hence in general
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shocks will form in finite time even for the analytic initial data. Thus another
detailed considerations are necessary to get the fluid dynamical limit globally in
time at the level of the compressible Euler equation or at the level of the
compressible Navier-Stokes equation.

Appendix. Non-Negativity of the Solution of Boltzmann Equation

The unknown function F(t,x, v) of the Boltzmann equation denotes the mass
density distribution function of the gas and for physical reasons should be non-
negative whenever the initial data is non-negative. But it seems that the non-
negativity is not proved explicitly either for Grad's local solution [7] in a
neighborhood of the absolute Maxwellian state or for the global solution [18, 19,
14]. Here we prove it in the following form:

ψ ^ l W t ) ) in t * 0 , (A.1)

(A.2)

TheoremA.l. Let F(x,v) = M(υ) + M(v)112/(x,υ)kθ, and f(x,v)eBml for some
m^.3,1^.2. Then there exist two constants Eo>0 and ί o > 0 such that if\\f\\mtl<E0,
then there exists a unique non-negative solution to (A.I), (A.2) in OϊίfίSεί0.

The solution is obtained by an iteration which preserves the non-negativity.

(A3)

n = 0 , l , 2 , . . . , (A.4)

where dΩ = Vrdrdφdv^, F'n = Fn(t, x, v') and so on. If we substitute Fn(t, x, v) = M(v)
+ M(v)ί/2fn(t,x,v) into (A.4), we get

df+ l(ή Aj() + -Γ^Ut), fn+1(t))
dt 6

ε (A.5)

Λ + i(O)=/, n = 0,l,2,...,

fo(t)=f,

where v(ϋ), K is the same as (2.18) and (2.19) and

J (A.6)

g, f) = ^{f'g1*

The latter may be estimated as in Lemma 2.2 (cf., [7]). Thus our aim is to prove the
convergence of this iteration scheme. It is based on the following proposition.
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Proposition A.I. Consider the initial value problem

1 v

= -{Kg(t)+vΓ2(g(t),h(t))},
S

(A.7)

= maxl sup \\g(t)\\ml, sup \\h(t)\\m>ι).

Let g(t) and h(t) be continuous functions in te [0, T] with values in Bml (m, Z^2), and
set

(A.8)

Then there exists a constant 0 < C < o o such that if CG<1, (A.7) has a unique
solution f(t) which is continuous for ίe[0, T\ with values in Bml and satisfies the
estimates:

(A.9)

Proof T h e solut ion of (A.7) is given by the i terat ion

(g(t), W) (A. 10)

Since g(t) and /ι(ί) are continuous functions of ί for te [0, Γ] with values in
Bml(m,I*t2), we see that Kg, Γt(g,h) and Γ2(g,h) are continuous functions of
ίe[0, T] in Bm,. The latter satisfy the estimates

\\Kg\\mtlSκ\\ \\mA

(A.11)

Equations (A. 10) are equivalent to

-vΓfafβds, n=0,l,2,.

/o(0=/

(A. 12)
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Thus we have for CG < 1

sup ll/0(s)llmii^ll/llm)i

sup

<
1-CG

For 7 = 0,1,2,...,», let

Then by (A. 12)

^ L ^ 2 +CG

Also by (A.12)

sup Il/B + I(s)-/B(s)llm > /^CG sup ll

sup

Therefore the iteration (A. 10) converges to the solution of (A.7) and the estimate
(A.9) is a consequence of (A.13). This completes the proof of Proposition A.I.

Now we return to the iteration (A.5) and the proof of the theorem. Let C

denote the constant in (A. 11). Provided that sup ll/n0)llm Z< 1/C, the equations in

(A. 5) may be solved successively for fn+1 in terms of/„ because of Proposition A.I.
In fact, we prove that if the initial data is so small that

11/11 W f Zgl/24C, (A.14)

then

G π = . = max ) i o Sup < l l / . ( s ) | l m ^4l l/ l l m ^l/6C, n=0, l ,2 , . . . . (A.15)n
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By Proposition A.I with g=fQ{t)=f and by (A.14), we have

sup
I — C l l / ! l m > /

provided that

- ί ^ l / 4 . (A.17)

ε

Then for ί^ε/4/c, we have

sup H/^-ZoWlL.^II/ll^. (A.18)
Let (A.15) be true for 7 = 0,1, ...,w, as the hypothesis of induction. Then by
Proposition A.I we have

^yll/llm > (

where (A.15)n is used. Thus/B + t(f) is well-defined for n=0,1, . . . and satisfies (A. 15).
Also the difference hn(t)=fn+1(t)—fn(t) satisfies the equation

= - {Khn_ Λί) + vΓ2(fn(t), hn_ ^f)) (A.20)

+vΓ2(hn_ M fn-M- vACB- iW. /«(ί))},

It follows from (A. 15) and Proposition A.1 that the following estimate holds for

ε

sup \\K_
0 < < ί

Therefore as n-+ + cofn(t) converges to f(t) in Bml, 0 ^ . ί < — , which gives the

solution of Boltzmann equation. This completes the proof of Theorem A.I.
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N.B. Since the uniqueness of the solution of the initial value problem for the
Boltzmann equation is known in a neighborhood of the absolute Maxwellian state
(cf. a remark of Shizuta [17]), the solution we obtain coincides with Grad's
solution [7].
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