
Communications in
Commun. math. Phys. 60, 277—290 (1978) Mathematical

Physics
©by Springer-Verlag 1978
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Abstract. The Lorentz process is the stochastic process defined by a particle
moving, according to Newton's law of motion, through static scatterers
distributed according to some probability measure in space. We consider
the Boltzmann-Grad limit: The density of scatterers increases to infinity
and at the same time the diameter of the scatterers decreases to zero in such
a way that the mean free path of the particle is kept constant. We show that
the Lorentz process converges in the weak*-topology of regular Borel
measures on the paths space to some stochastic process. The limit process
is Markovian if and only if the rescaled density of scatterers converges in
probability to its mean. In that case the limit process is a (spatially inhomo-
geneous) random flight process.

1. Introduction

H. A. Lorentz [1] considered the following simple mechanical model for the
motion of an electron through a solid: A single particle moves according to the
laws of Newtonian mechanics through fixed scatterers ("the solid") located in a
random fashion throughout space. We call the associated stochastic process—to
be defined more precisely in a moment—the Lorentz process.

Let x = {q,p)eU3 x IR3 denote the position and momentum of the moving
particle. We assume that it is enclosed in a bounded region A a U3 with smooth
boundaries dΛ. Upon colliding with the boundary the particle becomes specularly
reflected. The particle interacts with the scatterers by a spherically symmetric
potential VR of finite range R. The potential may have a hard core of radius α,
0 ̂  a ̂  R, and is twice continuously differentiable for a S | Q | Let (q). = {qι,>-.(l)€
Λj be a configuration of j scatterers. Then Hamilton's equation of motion, subject
to the boundary conditions coming from the hard core and the boundary of Λ,
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>

have unique global solutions Tt

iq)jx for all initial values xeΛxU3 such that
\q — q.\}za,i= 1,... J. For notational simplicity we extend Tt

{q)j to all A x U3

by Tt

iq)jx = x whenever \q — q.\< a for some I Then Tt

iq)j defines a one-parameter
group of canonical transformations. In particular, Tt

{q)j preserves the Lebesque
measure on A x ίR3.

Inside A the scatterers are randomly distributed according to some probability
measure μ(R) on Γ = [j Aj. Since scatterers are supposed to be identical, μ(R)\A.

is symmetric. (Equivalently, we could think of μ(R) as a measure on all finite
subsets of A.) Then, with (q)sΓ

is called the Lorentz process with respect to μ(R) starting at x0 and taking values
inΛx U3.

(Here a remark on generality is in order: Clearly, we did not define the most
general Lorentz process. One could think of other boundary conditions. The
potential could be chosen in a more general way. We are not restricted to three
dimensional space. The particle could move in an external force field, etc. We
will comment on some of the more interesting extensions in the final section.
We hope that the chosen assumptions illustrate the method best.)

Having defined the Lorentz process, one is optimistic enough to ask some
simple questions. Of particular interest to physicists are quantities related to the
transport properties of the Lorentz model. E.g., one would like to investigate
the mean square distance travelled by the particle in time t starting at q0 and
having uniform momentum distribution on {|po| = £>}. With no boundaries
and a uniform low density of scatterers, on physical grounds, one expects the same
long time behaviour as in the diffusion (Brownian) process, i.e. proportional to t.
This conjecture is backed up by machine calculations [2]. However, even for
the simplest distribution of scatterers, namely according to the equilibrium
(Gibbs) measure of a noninteracting gas, no such result has been proved. The
Lorentz process seems simply to be too complicated.

In view of such a lamentable situation, one could hope to approximate the
Lorentz process by some process which is easier to handle. (This is precisely what
Lorentz did along the lines of Boltzmann, although of course not with the present
day technical refinement.) Intuitively, the directions of the particle become
randomized through collision with a scatterer. Of course, the particle might
collide with the same scatterer twice which produces a memory effect. But, if the
range R of the potential is small, the probability of such recollisions should be
small also. Therefore, one expects the Lorentz process for small R to be close
to a random flight process where a particle leaves q0 with momentum p0, flies
in a time t a path of length \po\t, suffers shocks with a certain probability and
is at each shock deviated randomly with a distribution depending on the differen-
tial cross section of the potential.
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The task of the present paper is to make these ideas precise. We let the range
R of the potential VR decrease to zero. This would result in the free motion for
the particle. We therefore choose a sequence of probability measures μ(R) on Γ
in such a way that at the same time as R -• 0 the density of the scatterers increases
to infinity such that the mean free path of the particle remains constant. (This
is the Boltzmann-Grad limit.) Under suitable conditions on the sequence μ(R\
we show then that the Lorentz process converges to some stochastic process.
More precisely, the sequence of regular Borel probability measures P9iR) on the
space of paths Ω = X (A x (R 3 )^ 3 is the one-point compactification of IR3)

induced by the Lorentz process with respect to μ{R) with absolutely continuous
starting probability gdx converges in the weak*-topology of regular Borel mea-
sures on Ω to a probability measure P9. The stochastic process associated with
Pβ is Markovian if and only if the rescaled density of scatterers in every open
subset of A converges in probability to its mean. In that case the Markov process
P9 is a (spatially inhomogeneous) random flight process.

Gallavotti [3,4] proved in the special case of Poisson distributed hard sphere
scatterers in two dimensions that the single time distribution converges to the
single time distribution of the random flight process Pβ. We employ here a method
which was developed by Lanford [5] to derive the Boltzmann equation for a
hard sphere gas (for short times). We also rely on the extension by King [6] to
smooth potentials. It turns out that Lanford's method is a very powerful tool
to prove the convergence of a large class of processes in the Boltzmann-Grad
limit. We will comment on related work in the last section.

2. Correlation Functions and the BBGKY Hierarchy

We want to study the convergence of the Lorentz process x(t, x0) for a certain
sequence of measures μ(R) on Γ as R -> 0. The crucial point in order to control
the limit is to think of the Lorentz process as a mechanical system (i.e. a system
of many particles with a rather trivial time evolution) in the first place. Therefore
we investigate the time evolution of correlation functions and their limit as R -> 0.
Later on we will have the task to translate the "mechanical" information back to
information about the process itself.

The first part of this section is well known from statistical mechanics [7, 8].
Here, however, we have to adapt the various notions to the Lorentz process
and at the same time we want to introduce some notation.

Let Yj be the Banach space U{A x IR3) (g) C(Aj)symm with norm

| | p . | | .= sup J dx\pfic,(q)}\ (2.1)
(q)jeΛJ ΛxR3

7 = 0,1,... . Pj is symmetric in (^ 1 5 . . . ,^) . Let p = ( p o , p 1 ? . . . ) with PjCYj and
let Yz be the Banach space of such sequences with norm

|| p II z = sup z~j II Pj | |. (2.2)

z>0.
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We assume that the joint probability distribution for the moving particle
and the scatterers is given by feYz which is positive, symmetric in (q19...9qj)
and normalized to

)fj(xMj)l.
j=o J-

Then the correlation functions for/are defined by

Pj(x,(q)j)= Σ i^d(q')mfj+m(x,(q)j,(q')J. (2.3)

Clearly peYz. We extend this definition by linearity to all of Yz. The relation
inverse to (2.3) is given by

00 1

fj(x,(q))= Σ ( - IΓ ί --,d(q>)mpj+m(xMP(q'V. (2.4)
m = 0 Λmin.

The flows Tt

iq)j induce a time evolution on Yz by fpc, {q)) V+ffJ^x^q)) which
in term defines an evolution p h> Vt

(R)p on Yz. Vt

(R) is a strongly continuous bounded
group. (For correlation functions p coming from a positive / Vt

{R) is isometric.)
The limit we want to consider is more conveniently studied for the reduced

correlation functions. For/eY z they are defined by

(Q(R)p)j(xΛq)})= Σ ί ^d(q')mfJ+mMq)P(q')m) (2.5)
0 { \ ϊ \ ^ R \ \ ^ R } m '

R ^ 0. By a straight forward computation

with inverse relation

(βwp)/x,(9V= Σ ( - I)"" ί ^<M)mPj+m(xΛq)jΛq'n (2-7)
m = 0

Therefore QiR) Yz-^ Yz is bounded and invertible.
We have

l. (2.8)

The reduced correlation functions evolve as QiR)ρ h> Q(R)Vt

(R)p = U{R)Q{R)ρ.
U\R) is a strongly continuous bounded group.

To determine the generator of U[R) we assume that/is continuously differen-
tiable and of compact support. Then

(χ,ω, )=Σ ί ^<%') m
ί = 0 m=0 { k - q 1 7 1
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Using

f d

+ R2 J dσ(ώ)ώ-pf(q,q + Rώ),
s2

where ώ is a unit vector of the 2-sphere S2 and dώ is the surface measure, and
the symmetry oϊfj+m, we obtain

d

d t j ~% ' j t=o

-R2 J dσ(ώ)ώ-ppj+ ±(x9(q)j9q 4- Kώ)
S2n{g + i?ώeyl}

'δ(a\x,{q)j) (2.10)

with δ(α)(x, (̂ f̂ .) = 0 whenever | q - qt | < α, i = 1,... 9j9 and δ(α)(x, (̂ f̂ .) = 1 otherwise.
The set of equations (2.10) is called the BBGKY-hierarchy. It should be noticed
that the boundary conditions (hard core and the boundary of A) are contained
in the definition of Tt

{q)j.
We define on Yz the one parameter group of isometries

(2.11)

and for ρeYz with bounded momentum support

(2.12)

S2n{q + RώeΛ)

•δ^(x,(q)).

In (2.10) we would like to consider the collision term C ( R ) as a perturbation.
However, on Yz C

{R) is unbounded. We therefore construct an £/|Λ)-invariant
subspace of Yz on which C(R) becomes bounded. Let Yz be the set of all functions
peY z such that p. vanishes on the complement of {xeΛx U3,(q)jeΛj\\qi —

tτ\q\^a+t VR(qq^E
i = l

0,1, . . . . Then Yz is a closed l^-invariant subspace. For pe Yz

II &R)P I ύ || P ||zz(2(£ + sup I V{\q\)\)γl2. (2.13)

This proves

Theorem 1. Let pe Y*. Then for allt^O

ί dti - dtjS^it - ί 1 )C ( RR )

fc = 0
-SiR\t2 - t±)... CwSw{tk)p. (2.14)

The series (2.14) converges in norm. With reversed time integration (2.14) holds
also for t g 0.
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3. The Boltzmann-Grad Limit

The Boltzmann Grad limit is the following limiting procedure: In the BBGKY-
hierarchy (2.10) we consider a sequence of correlation functions p{R\R -> 0, such
that the rescaled correlation functions R2jp(R) = riR) have limits r.. Then, in
particular, P1(x,<ϊ1)~/Ϊ~2r1(x,#1) which means that the density of scatterers
goes to infinity. (However, the volume R3ρί occupied by scatterers goes to zero.)

We scale the potential as VR(q) = vί — I, where V is a fixed potential of range 1.

Under the scaling the mapping from incoming to outgoing momentum is preserved.
If the moving particle hits a scatterer it might happen that the collision time is
infinite, i.e. the particle needs an infinite time to reach the point closest to the
center of the scatterer. Twice differentiability does not exclude, for fixed incoming
momentum p, a dense set of infinite collision times, which would cause some
difficulties for proving the Boltzmann-Grad limit. To exclude this to happen
we assume that

{*)E-V(r)- =
J 2

2r2 "' r3 dr

r = \q\,a^r^ί, is fulfilled simultaneously only for a finite number of values
£ a n d / .

We first describe what the Boltzmann-Grad limit will look like and give then
a theorem stating how the limit is approached. For the convergence of the Lorentz
process it is of importance to ensure the "propagation of initial conditions"
(assumed convergence at ί = 0 implies the same kind of convergence at later time).

Let Yf = C(Λ x < y ^ E > j x C{Λj\ymm considered as a subset of Y. and let

Ϋf be the Banach space of sequences r = (r0, rx,...) such that r^e 7? and

s u p supz~ 3 \rpc,(q) j)\ = \\r\\z < c o .
j xΛΦj

Let S{t) be the one-parameter group of isometries on Ϋ^ defined by

(SityψM) = rj(T^x,(q)j) (3-1)

with generator L,

for reD(L). ((0) stands for no scatterer, i.e. I^(0) is the free motion with specular
reflection at the boundary.)
Let

and

dσ(ώ)ώ'p{rj+ί(q,p',(q)pq)

~rj+i(<l>P>(q)j,q)}, (3.2)



The Lorentz Process Converges to a Random Flight Process 283

where ώ points inwards for qedΛ, and where p' is the outgoing momentum to
the incoming momentum p colliding with the potential V at the point ώ. C gene-
rates a strongly continuous, bounded semigroup on Yz

E, therefore, so does L + C
on D{L) denoted by Ut = e(L+C)t, t ̂  0. For the past we define the strongly conti-
nuous bounded semigroup Ut = e(L~C)t, t ̂  0.

Let Γ.(t) = {(x,{q)j)eΛ xR3 xΛj\qφqtφ q.,,iΦ if = 1,... J and the curve
s h position of Γί^x, 0 <; s ̂  t for t ;> 0, t ̂  s <> 0 for ί g 0, does not intersect
ί!,...,ίj and does not intersect itself}. If (x,(ί)j)eΓj(ί) then we can choose #
small enough such that 71(|)jsuffers no collision within 0 ^ s ^ ί(resp. t^s^O).
We emphasize that Γ.{t) is noί symmetric under time-reversal, i.e. Γ.(t) φ J\( — t),
tφO.

Theorem 2. Let V satisfy (*) and /e£ p ( R ) e Y^R2 be a sequence of correlation functions
such that

(1) || ρ{R) || z / | ? 2 is uniformly bounded in R
(2) R2jp(jR) converges to r. with rsΫ^ uniformly on compact sets of Γ.(t0 — t)

as Λ - > O , | | | |

Then R2j(UlR)ρ(R))j converges to (Utr)j uniformly on compact sets ofΓp0) asR^O.
The proof proceeds in three steps. The main idea is to analyze a single scattering

event and to show that in the limit the probability for recollisions goes to zero.

Lemma 1. Let Σ(x, q1,R)<^ S2 be the set of all ώ's such that if a scaterer is adjoined
at q2 = q + Rώ the particle, moving according to T^l'q2)x, will collide within time
- t, t ̂  0, with either the scatterer at qx or the scatterer at q2 after having hit the
boundary of A at least once. Let Kγ <= Γχ(ί) be compact. Then

lim sup j dσ{ώ) = 0. (3.3)
R-+0 (x,qi)eKi Σ(x,qi,R)

Proof Since Kx is compact, we can choose R small enough such that scatterer
qί and scatterer q2 = q + #ώ do not overlap for all (x9q1)eKι. If ώ-p ^ 0, the
particle and scatterer q2 do not collide immediately. For R small enough Σ(x,q1,
R)n{ώ|ώ p^0} = φ. Let ώ p^O. Then the particle will immediately collide
with scatterer q2 backwards in time. If the collision is completed within time — ί,
let p' = Fp{ώ) be the momentum after collision. Then we can find a finite number
of cones, the union of which is denoted by ̂ (cR), each of them having vertex
at the origin, axis along a line of free motion hitting qx or rehitting q2 within — t
and opening cR such that Σ(x,qί,R)^F~1((^(cR)). By dominated convergence

lim J dσ(ώ)= J dσ(ώ). (3.4)

( ) is the set of vectors pointing along the lines of free motion leaving q and
hitting qγ or rehitting q within time - 1 . By conservation of energy |p | = \p'\.
By conservation of angular momentum p, p' and ώ lie in a common plane. Fix
the angle between ώ and p and rotate ώ around p. Then p' rotates along a cone.
If p is parallel to p' there is no further collision up to — ί. If p is not parallel to
p\ then there are only finitely many ώ's such that pfe%?(0). Therefore, by Fubini's
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theorem,

J

The collision time scales proportional to R. By assumption (*) on the potential
for given incident p there are finitely many ώ's for which there is an infinite collision
time. We can choose an open set Σ^ip) c S2 of measure smaller than ε such that
the collision time is uniformly bounded on S2\Γoo(p) for all (x,qx)eK1. The map
( x ^ J K J dσ(ώ) is continuous on K1 and, for R small enough such

Σ{x,quR)\Σ«>(p)

that the collision times are smaller than ί, monotonely decreasing. Therefore
by Dini's theorem we have uniform convergence o n K Γ

Lemma 2. Assume (1) and (2). Then for ti,t2>0,t1 + t2St,{SiR){tί)CiR)SiR)

{t2)riR))j converges to (S(ί1)CS(ί2» j uniformly on compact sets ofΓj(t0) as R -* 0.

Proof We use the following notation: (q\ p') = T^(q9 p) and (q"9 p") = T®J

2

 + '{q', p')
with scatterer adjoined at qj+1 — q' + Rώ. Then

^ j ώ'Prf^(q\fMj^ + Rώ).
s2

Let Kj c= Γj(t0) be compact. Then we can choose R small enough such that the
particle will not collide with any of the scatterers at q19...,qj within time — tί

for all (x,(<l)j)eKj' Furthermore, by induction to Lemma 1, there exists for small
enough JR a compact set G(x,(q).,R)czS2 such that for all ώeG(x,(q)j,R) and
all (x9(q)j)eKj the collision time with qj+1 = q' + jRώ is smaller than ί2, (b) for
all ώeG(x,(q)j,R) and all (x,(q)J)eKj there is besides the possible initial collision
between the particle and scatterer qj+1 neither a collision between the particle
and scatterers q19...9qj nor a collision between the particle and the scatterer
qj+1 after hitting at least once the boundary of A within time - t2, (c)

j dσ(ώ) < ε
S2\G(*,<«)j.Λ)

for all (x,(q)j)eKj. By the uniform bound (1) it therefore suffices to study

- J dσ(ώ)ώ'prf^(q",pff,(q)pq
f + Rώ).

G{x,(q)j,R)

We define

κj+1 = { ( ^ p ^ « ) J + 1 | ( χ , ^ ^

Then, by definition of G(x,(q)j,R),Kj+1 c ΓJ+1(t0 - t) and, by continuity of the
free motion and the continuity of the collision p = p' \+ p", Kj+ x is compact. Since,
by assumption, r^\ converges uniformly on Kj+ 1torj+ί, we conclude that

uniformly on K. as JR -> 0.

Proof of Theorem 2. By induction to Lemma 2 (S{R\t - ί1)C (J?)... C(R)S(tk)r{R))j con-
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verges to (S(t — tί)C...CS(tk)r)j uniformly on compact sets of Γj(t0). Therefore,
by the uniform bound given by Theorem 1 and by assumption (1), (U[R)r{R))j
converges to

£ J dt±... dtk(S(t - t±)C... CSit^j = (U/).

uniformly on compact sets of Γj(t0) as R -> 0

4. Convergence of the Lorentz Process

L e t X.. = C(Λj)symm a n d let Xz b e t h e B a n a c h s p a c e of s e q u e n c e s p = (pO9p19...)

w i t h PJGXJ a n d s u p s u p z~j\pj{{q)j\ = | |p\\ z < o o . p. is s y m m e t r i c i n ( g 1 5 ...,<?,.).
jZO (q)jeΛJ

Let Jίz be the set of symmetric probability measures on Γ such that its correlation
functions (defined as in (2.3)) are in Xz. We can now state our main result.

Theorem 3. (i) Let the potential V satisfy (*). Let μ(R)εJίzjR2, R-+0,bea sequence
of probability measures on Γ such that the probability that two scatterers are closer
than R is zero and such that its correlation functions p{R)eXz/R2 satisfy

(1) I p{R) I z/R2 is uniformly bounded in R,

(2) R2jp(R) converges to r. with reXz uniformly on compact sets of Γ.=
j \ ϊ i i ' l j } R O

Let P9(R) be the regular Borel probability measure on Ω= X {Ax R3). induced

by the Lorentz process with respect to μ{R) with starting distribution gdx,gGl}{Λ x
U3). Then

pg(R) _+ pg

in the weak-*topology of regular Borel measures on Ω.
(iί) The coordinate representation process {Ω,P9, {Xvt ^0}} is a Markov

process {in the wide sense) if and only if

In that case, let the Markov semigroup {Pt \ t > 0} be defined by

Then {Pt\t^£ 0} is a strongly continuous, posίtivίty preserving contraction semigroup
on C^Λ x U3). The domain of its generator D coincides with the domain of the

generator p — off\-*f° Tt

{0) and on this domain D is given by
dq

f{q,p) + r1{q) J dσ{ώ)ώ'p{f{q,pf)-f{q,p)} (4.2)

where ώ points inward for qsdA and where p' is outgoing momentum to the incoming
momentum p colliding with the potential V at —ώ. (4.2) are the backwards equation
of the strong Markov process {Ω,{Pχ\xeΛ x IR3},^}} where Px is the measure
starting the process at x,Pβ = \dxg{x)Px.
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Proof. ad(i): We have to show [9] the weak convergence of all cylinder distri-
butions, i.e. if 0 < t1 < ... < tn and if / x,. . . 9fn are continuous and of compact
support, then we have to show the convergence of

as R -> 0. We prove the case n = 2; n > 2 follows then by induction. Let / : A x
ίR3 -> C be continuous and of compact support. For peXz, Yz9 Y2

£, Ϋf we use the
short hand//9 = (/p o,/p 1 ?...). By the group property 7J() and by the definition
of the correlation functions

(4.3)

Let 6 = sup I V(Iq|)|. If pe Y2

E, then β(R>p, (£>(R)Γ V e ϊ f + 6 Therefore ^ ( R ) p =

6 F r o m t h e D y s o n e X p a n s i o n (2.14) it follows that for

/ 2 ^ II ̂ (R) II,/*, exp [zί(2£ + 2ft)1/2]. (4.4)
From (2.6) and (2.7) we conclude that

R2

-V^-σ<*»| | z / R ^c'R| | σ <«)| | z / R 2 .

Therefore

^ c Λ l l ^ l ^ , ( 4 6)
where c is a constant depending only on £, ί, ί> and z. Let χ(R) = (χ(

0

R), χ^, . . . ) with
z f \ ( q ) j ) = 0, w h e n e v e r | q t - q v \ ̂ R , i φ ΐ = l9... J9 a n d χ{*X(q)j) = 1 o t h e r w i s e .
By our assumption on μ(R) we have p(R) = ρ{R)χ(R)

 = (PQ J P ^ V ^ J )- Since/2

is of compact support, f2P
(R)X(R)^Yz/R2 for some E'> E. Using the estimates

(4.4) and (4.6) we find

U /
(4.7)

where c depends on/x ,/2, ί t, t2 and z, but is independent of R. By (1), we conclude
that (4.7) goes to zero as R -> 0.

f2P
(R) satisfies the assumptions of Theorem 2 with to= —t2 + tx. Therefore,

R2j(U{R)

t +t (f2P
{R)))j converges to (U_t +t (/2r)). uniformly on compact sets

of Γjt -t2 + tj as R -> 0. || / 1 (U<3 2 + J/*p ( i ) )) | | 2 / i ? 2 is uniformly bounded in Λ.
Therefore/^L/^ + ί (/2p

(Λ))) satisfies the assumptions of Theorem 2 with ί0 = - t2

which implies t h a t ^ ^ ί / ^ / / ^ ^ ^ ^ / , ^ ) ) ) . converges to {U^(U_t2+ti

{f2r)))j uniformly on compact sets of Γj( -12) as R -• 0. In particular, using
(4.7), {V^iV^^f^))^ converges to (ϋ. f l (Λ( l/- ί a + l l (/ 2 r))) 0 uniformly
on compact sets of Γo( — t2). Since ^\-Γ0( — t2) is the union of a finite number
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of hypersurfaces of finite area, ldxdμ{R)g{x)f1{Tt

{')x)f2{Tf')x) converges to §dxg(x)
(tf _ JΛ(t/_ ί 2 + ί l(/2r)))0(x) as R -> 0 for all geL*(Λ x U3\
ad (ii): A straight forward computation shows [5] that if r2(qί,q2) = r1(q1)r1(q2)9

then rjdqjj) = f\ r^g.). Together with (3.2) this implies

Γ r (4.8)

Therefore

lim f dxdμ^xJΛί^xί/^x) = \dxg{x)PH{f,{Pt2_J2))(x) (4.9)

and by induction for n > 2. (4.9) is the Markov property. If r2 does not factorize,
then by (3.2) for a sufficiently smooth/

ί = 0

which shows that {P f | ί^0} does not form a semigroup. By homogeneity in
time this implies that {Ω,P9, {Xt,t ^ 0}} is not a Markov process.

The remaining assertions follow from (3.1) and (3.2) and standard results
about random flight processes (cf. [10].)

Clearly, for t g 0 the Lorentz process converges to a stochastic process which
is just the one obtained for t ̂  0 reflected at the time origin.

The restriction of non-overlapping of two scatterers on the sequence μiR) of
probability measures is somewhat annoying. The reason is that by putting scat-
terers on top of each other we may produce locally a very high momentum, which
results in a poor bound for Vt

{R) on Yz/R2{ || Vt

(R) \\z/R2 cannot be controlled well
enough). There are two ways in which the result can be improved. For hard
sphere scatterers (a = R)\p\ is conserved and Vt

(R) coincides with U^R). Therefore,
in that case there is besides (1) and (2) no further restriction on the sequence
μ(R). For V ̂  0, we can choose a scale of spaces β Yz with norm

= sup sup

Then Vt

iR) and UiR) are bounded from βYz to β,Yz,β' > β, and lim β. \

U{R)ρiR) || z = 0. The analysis is then just the same as in the present case. Besides
(1) and (2), there is no further restriction on the sequence μ(R).

In the framework of our proof the restriction to starting distributions which
are absolutely continuous with respect to the Lebesgue measure cannot be
removed: If we start the process at x such that Tt

{0)x lies in the "bad" set Λ\Γ0(ί0),
then §dμ(R)f(Tt

()x) does not converge to (Ptf)(x). The particle may collide with
the wall and then, retracing its way back to x, with a scatterer adjoined before
at qλ = q + Rώ,qeΛ\Γ0(t0),ώ'p^O. This collision process is not described by
Pr However, if we have no boundary (Λ = 1R3), then the Lorentz process starting
at x converges as R -> 0.
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The condition for the Markov property of the limiting process has an illumi-
nating explanation: Consider the random variables nΔ on Γ giving the number
of scatterers in the measurable set A czΛ.
If r2{qx, q2) = rMι)rMi)> then

R->0 A

and

lim R\\dμ^n2

Δ - {\dμ™nΔ)
2) = 0,

i.e. R2nΔ converges in probability to its mean. Therefore, the Markov property
is equivalent to no fluctuations in the rescaled density of scatterers in any region
ΔczA.

The limiting Markov process is well known (cf. [10] and references therein).
In probabilistic terms it can be described as follows: A particle leaves the point
q in direction p, speed v = |p|. It travels in time t a distance vt suffering shocks
( = random jumps of p(ί)) at random times and moving freely in between shocks.
The random jumps are determined by the differential cross section of the potential
F, i.e. by the transition p to p'. The speed is conserved. The probability density
of suffering exactly n shocks at points q19...9qnis given by

n

Y\r1(qj)}Qxp[-$dsr1(q(s\q,qι,...,qn,q0))'],

where s\+q(s\q9q19...9qn,q0) is the path from q via qt,...,qn to q0. Thus, rx(q)
is the collision rate at qeΛ.

5. Related Results

(a) The present method works for any dimension greater than two. The boundary
conditions may be more general, e.g. of stochastic type. The latter case is of interest
as a model of walls with temperature. One can treat the case with no boundary
condition {Λ = R3). μ(R) is then a sequence of probability measures on the space
of locally finite configurations of scatterers, i.e. on the space of all countable
subsets of IR3 such that their intersection with any bounded region is finite (cf.
[8.11]). In Section 2 and 3 one has to take then suitable infinite volume limits
which are however rather trivial, since the scatterers are static. The present method
can also be applied to scatterers with recoil, i.e. the particle moves through a
gas of freely moving, non-interacting scatterers (Rayleigh gas).
(b) Once the random flight (or transport) process is obtained, two further limiting
procedures are of interest. (1) Long time limit: This problem has been studied
in great generality by Papanicolaou [10]. One considers the Markov process
(qε(t\Pε(t)) with generator of its semigroup

^ ) + 4 rx(q) f dσ(ώ)ώ'P{f(q,p')-
8
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The collision rate is increased and at the same time the particle travels farther
in a unit of time. Then qε(t) converges to a diffusion process as s -> 0. (2) Small
angle approximation: This corresponds to either a weak potential λV(a = 0)
or, in the case of moving scatterers, to a large mass of the moving particle. The
weakening of the scattering has to be compensated by an increase of the collision
rate. IΓin and Khas'minskii [12] studied a special case and obtained in the limit
the Ornstein-Uhlenbeck process. (Here, a more general investigation would be
desirable.)
(c) There are a number of one-dimensional results. Spitzer [13] proved that if
at t — 0 the moving hard rod scatterers are Poisson distributed with i.i.d. velocities

independently of the position of the scatterer, then q\t) = εql -j J converges to

a Wiener process as ε -» 0. Special cases were proved before by Jespen [14] and
Harris [15]. Some generalizations can be found in Szatzschneider [16] and Major/
Szasz [17]. Holley [18] considered the same model but with a heavy particle.

If M is the mass of the particle, he showed that qM(Mt) converges to~the

Ornstein-Uhlenbeck position process as M -+ oo. These results have not been
extended to more than one dimension. (Hennion [19] extended Holley's result
to two dimensions, but only for a process differing from the one defined by the
Newtonian time evolution.) We hope that a combination of (a) and (b) allows
for an extension to higher dimensions.
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Note Added in Proof

Prof. Cohen pointed out to me that H. van Beijeren (unpublished notes) had obtained results similar

to those of Theorem 1.




