
Communications in
Commun. math. Phys. 60, 193—204 (1978) Mathematical

Physics
© by Springer-Verlag 1978

A Generalized Lorenz System
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Abstract. A 14-dimensional generalized Lorenz system of ordinary differential
equations is constructed and its bifurcation sequence is then studied numeri-
cally. Several fundamental differences are found which serve to distinguish this
model from Lorenz's original one, the most unexpected of which is a family of
invariant two-tori whose ultimate bifurcation leads to a strange attractor. The
strange attractor seems to have many of the gross features observed in Lorenz's
model and therefore is an excellent candidate for a higher dimensional
analogue.

1. Introduction

In the Boussinesq approximation the equations governing atmospheric convection
can be written in the following dimensionless form :

d(w,Δw) . dθ
- \y [ J + σA2ψ + σ —

d(x, z) dx
(1)

where tp(x, z, ί) and θ(x, z, ί) denote the stream function and departure of tempera-
ture from a linear profile and σ and R denote the Prandtl and Rayleigh numbers
respectively. For a derivation of the equations in the form (1) and a discussion of
boundary conditions we refer the reader to [1].

In [7], Lorenz used the above system of equations as a starting point for his
study on the predictability of certain atmospheric flows. By assuming that ψ(x, z, t)
and 0(x,z, t) had a particular form it was possible to pass from (1) to a system of
three quadratically coupled ordinary differential equations, this system of equa-
tions has since become known as the Lorenz system. The Lorenz system was the

* On leave from Department of Mathematics, Howard University, Washington, DC, USA
** Current address: Department of Meterology, M.I.T., Cambridge, MA, USA
*** The National Center for Atmospheric Research is sponsored by the National Science Foundation

0010-3616/78/0060/0193/S02.40



194 J. H. Curry

first example of a physically interesting system of equation which was observed to
have a strange attractor.

In recent papers McLaughlin [9] and McLaughlin and Martin [10] have
considered various models of the convection process. In [10] they proved that
subcritical instabilities exist in the model studied by Lorenz, and in [9]
McLaughlin considered the restricted three-dimensional convection problem and
observed a sequence of bifurcations leading to stochastic behavior preceding
stochastic behavior he found periodic states and phase locking, provided that one
component was sufficiently energetic.

Studies of the Lorenz system which concentrate more on its mathematical
structure can be found in [2-5], [13], and [14]. The work in these articles is based,
at least in part, on the results of extensive numerical experiments, and even though
there is little doubt that what one observes in the computer is in qualitative
agreement with the actual behavior of solutions to Lorenz's equations, proofs are
still lacking.

This study is also motivated by the equations of Lorenz as were the works cited
above however, we are more concerned with the question of the extent to which
the qualitative properties discovered by Lorenz in his three-component system are
reproducible in a larger system. Further, if higher dimensional analogues exist
then there is no a priori reason to believe that the bifurcation sequence should
parallel what is observed in the smaller system.

Unfortunately, because there are no proofs available one must resort to
numerical experiments to provide partial answers to questions like those above.
Moreover, once a model has been chosen, many of the comments made above will
be equally applicable to the new truncation. The way out of this dilemma is clear
but not yet realized.

2. Generalized Lorenz Systems

In what follows we shall let A denote a finite non-empty subset of the lattice of
non-negative integers. The truncation associated with A is the system of ordinary
differential equations for the time-dependent terms ψmn(t\ θmn(ή obtained by the
substitution of ψ(x9z9t) and θ(x9z9t) of the following form into Equation (1)

Ψ{x, z, ί) = Σ ψmn(t) sin (amx) sin (nz)
(m,n)eΛ

mΦO

(2)

0(x, z, t) — Σ ^mn(0 c o s (a™*) sin (nz).
(m,ή)eΛ

It is easily checked that by assuming that ψ and θ are as defined above, the
truncation associated with A will be invariant under the symmetry which carries
the components (ψmM θmn(ή) into (-ψmn(t), -θmn(ή) whenever m and n are both
odd and leaves them fixed when m and n are otherwise.

We may write the truncation associated with A symbolically as

dx

It
— =XΛ(x9R,σ), (3)
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where x is a vector composed of the time-dependent components from (2) and R
and σ are as previously defined. If we regard the ensemble of all solutions to (3) as a
"phase fluid", then the fluid velocity at any point is just XΛ(x, R, σ). A straightfor-
ward computation yields that the divergence of the right-hand side of (3) is given
by

άϊvXΛ(x,R,σ)=-(σ + l) £ Qmn. (4)
(m,n)eΛ

ρmn = m

2

a

2 + n

2

 a n d α=l/]/2. Since the divergence of the vector field is always
negative, it follows that any finite cell of phase fluid must tend to zero volume
exponentially fast, with exponent the right-hand side of (4), as ί->oo.

Another interesting fact which has been established in [3] is that all solution
curves to (3) associated with any A asymptotically approach zero for Rayleigh
numbers less than the critical Rayleigh number. Where the critical Rayleigh
number is given by

Rc= inf - ^ . (5)
(m,n)eΛ(mά)2

mΦO

A somewhat less general fact has been established in [1]. There sufficient
conditions have been given for a large class of truncations to have only bounded
solutions.

The above comments are valid for a large class of A. We are interested in a
subcollection of this class. Specifically, it can be seen from Section 5 of [7] that the
Lorenz system, when suitably scaled, is the truncation associated with the set
{(0,2), (1,1)}, hence by a generalized Lorenz system we shall mean the truncation
associated with any A which contains the set {(0,2), (1,1)} as a proper subset.

3. The Model

In the remainder of this article we shall restrict the discussion to a particular 14-
component system. Specifically, we study the truncation associated with the
following set:

A = {(0,2), (1,1), (2,2), (1,3), (3,1), (3,3), (2,4), (0,4)}. (6)

In Appendix A we provide a listing of this truncation. The motivation for the
above choice of A is twofold:

a) It is clearly an example of a generalized Lorenz system as defined in the
previous section, and

b) it was also the largest such truncation which could be conveniently handled
in the machine on which many preliminary experiments were done.

Two bits of information are now readily apparent once we have fixed A.
Namely,

divX^=-74(a+l) (7)

and the critical Rayleigh number is 6.75. If we now choose σ = 10, basing our
choice solely on [7], then if Fo is some initial volume of phase fluid, after t units of
time the volume will be smaller by a factor of (1.27 x 10~5 0 3 ί).
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In an effort to bring our notation into agreement with [7] we redefine our
bifurcation parameter, R, to be

Though the results of [1] do not immediately extend to the present model, all of
our numerical experiments indicate that the solution curve remains bounded for
all times. Finally, we shall concentrate on the behavior of the Lorenz components,
i.e., the triple ψiiW* θίί(t\ and θO2(t) when describing our numerical results.

4. Numerical Results

In reporting the results of our numerical experiments we find it natural to divide
the parameter range into three intervals. The motivation for the division is that in
each interval the behavior is more complex than in the preceding one. In defining
the various intervals we are not asserting that the boundaries are exact, but simply
provide adequate points of separation between areas of different qualitative
behavior.

The intervals are:

Interval I l ^ r ^ 4 4 . 6 0 ,

Interval II 44.60 < r < 45.10,

Interval III r>45.10.

a) Interval I

As r exceeds one the origin becomes unstable and a symmetric pair of stable fixed
points bifurcate off; we label them Cx and C2. Further, as r crosses the sequence of
values defined by

(9)
(6.75)(mα)2

additional symmetric pairs of stationary solutions leave the origin. However, these
new fixed points all have one-dimensional unstable manifolds.

For re (1,43.48) the model exhibits very simple dynamical behavior. There are
at most seven fixed points, only two of which are stable, Cγ and C 2 further given
any initial conditions in which the Lorenz components are nonzero, we find that
the solution curve converges to either Cί or C2. For this range of r, the remaining
critical points seem to play no significant role in the dynamics.

When r passes 43.48 the Ct become unstable by having a pair of complex
conjugate eigenvalues cross into the open right half-plane, and the stability of each
stationary solution is transferred to an attracting closed orbit. For r = 43.70 the
only complex eigenvalues of C having positive real part are λ = 0.042 ± 35.672 i. It
follows from the Hopf Bifurcation Theorem [8] that we should expect the period

of our closed orbits to be close to — ^0.176.
μ|
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Fig. 1. {ψίl,Θίl) phase projections for r = 44.45

We find that the computed period is 0.155 or approximately a 12% departure
from its theoretical value. The periodic orbits must be attracting since they were
found by only numerically solving the equations of motion.

Another interesting value of r is 44.07. For this value the closed orbits shed by
Cf become unstable and transfer its stability to a closed orbit having twice the
period.

In Figure 1 we see a projection of this new closed orbit onto the {ψίί9θίί)
plane, its period is 0.3067 and r = 44.45. For this value of r it is quite clear that the
closed orbit coming from the normal Hopf bifurcation when r = 43.48 has indeed
undergone a further bifurcation.

b) Intervall II

We denote by y a closed orbit, Σ a 13-dimensional local section transverse to y9

xey, and Pr(x) the associated Poincare map [6], [8].
In Section 3b of their fundamental paper [11], Ruelle and Takens describe

what one should generically expect if the spectrum of the Poincare map consists of
only a finite number of isolated eigenvalues having modulus one and a part which
is contained in the open unit disc. We are interested in their Case 3. There the set of
eigenvalues having modulus one consists of α and its conjugate α, which are
assumed to be distinct. As r exceeds some r' the eigenvalues α and α cross the unit
circle and one expects that there is an attracting invariant circle for the Poincare
map, Pr, and hence an attracting torus for the flow in a neighborhood of y.

It is not difficult to define a Poincare map using the computer. Σ was chosen to
be the section defined by 0 O 2 = - 2 9 5 , and the solution curve was required to
intersect Σ to an accuracy of 10" 1 0 . We initially concentrate on the behavior of the
flow in a neighborhood of Cv
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Fig. 3. Σ projected onto the (ψίliθ11) plane r = 45.06

In Figures 2 and 3 we have the projection of Σ onto the (tp l l 5θ ί ί) plane for r
= 44.88 and 45.06, respectively. These projections provide very strong evidence
that the closed orbit found in interval I when r = 44.45 has undergone a bifurcation
leading to an invariant two-torus. In both figures we are viewing the results of 400
intersections of the solution curve with our codimension-one section. We remark
that the 77 other projections of Σ onto the two-dimensional planes defined by the
pairs of components of our equations give qualitatively similar results. We shall
denote the family of tori in a neighborhood of C1 by Tv
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The behavior in this parameter range is further complicated by the existence of
an attracting closed orbit in the neighborhood of C^C^. Specifically, in the
observations made above we have chosen initial conditions for the Lorenz
components in a neighborhood of C1 and for such initial conditions the solution
curve converges to an attracting two-torus. If, however, we choose as initial condi-
tions points close to the unstable manifold of the origin, then the solution curves
converge to an attracting closed orbit. The existence of several attracting sets is
known as hysteresis and is associated with sensitive dependence on initial
conditions.

As we observed before, the 14-component model which we are studying has a
normal Hopf bifurcation. The closed orbit which is shed quickly undergoes a
further bifurcation which has it doubling its period. By considering the behavior of
the flow only in the region surrounding Cί we lost track of the original closed
orbit.

What has happened is now apparent. The original closed orbit has continued
to exist, grown in size (period = 0.3520), and become stable.

c) Interval III

In Figure 4a we see the Σ defined in Interval II projected onto the (ψlί9θίl) plane
when r = 45.19. We can see the torus Tx near the top of the figure and a sequence of
points apparently moving away from it.

In order to interpret 4a we refer the reader to Figure 4b which is the graph of
Θ1X restricted to Σ, τ denotes iteration of the Poincare map when starting from a
point in the section. For the first 150 iterations of Pτ

r the flow remains in a
neighborhood close to Tv During the next 100 intersections of Σ the orbit moves
away from Tt and approaches the hyperbolic closed orbit which was found to be
stable for R in Interval II. The solution curve then approaches Tλ again but does
not appear to fall on its stable manifold. Then at a τ of 350 the flow leaves the
neighborhood of Tx only to return immediately, and once again approaches Tv At
time 480 the solution curve leaves a neighborhood of Tv however, this excursion
does not bring an immediate return to a neighborhood of its origin.

For this value of r we offer the following description of the qualitative behavior
of the flow. The tori Tγ and its symmetric image T2 are marginally unstable, as are
the hyperbolic closed orbits found in Interval II. Since Tx and T2 are marginally
unstable, points which are initially sufficiently close to them will remain in that
neighborhood for a significant length of time. The orbit eventually leaves the basin
of attraction for 7̂  along its unstable manifold which apparently lies near the
stable manifold of the closed orbits mentioned above. Since the closed orbit is
unstable the flow subsequently leaves along its unstable manifold which ends in a
neighborhood of the stable manifold of its symmetric image. Then depending on
whether or not the flow approaches sufficiently close to T2, we see either the type of
behavior described above for Tx in Figure 4a or we see the unstable closed orbit
push the flow back to a neighborhood of its symmetric image which lies near T2.
The entire process then repeats itself.

Finally, to complete the present section we provide Figure 5a and b which are
projections of our full 14-dimensional phase space onto the (ψll9θίί) and (θίl9 θ02)
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Fig. 4. a A neighborhood of the unstable torus restricted to Σ for r = 45.19. The torus is unstable and
the flow moves away on its unstable manifold, b Time series for # n restricted to Σ for r = 45.19

planes, respectively, r = 45.92. The discussion of the previous paragraph applies to
these figures.

These projections provide evidence for the existence of a Lorenz-type attractor
for this interval of r values. Further for r as great as 100 the qualitative behavior of
the flow is similar to that pictured in Figure 5a and b.

5. Discussion

In this paper we have presented the results of our numerical experiments on a 14-
component dynamical system coming from the equations of atmospheric con-
vection. The purpose of this study was to investigate the bifurcation sequence of a
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Fig. 5. a (v>u>0ii) phase plot starting from a neighborhood of 0 for r = 45.92. b {Θlί,Θ02) phase plot

starting from a neighborhood of 0 for r=45.92

generalized Lorenz system and to ascertain to what extent the behavior observed
in the Lorenz system of three ordinary differential equations is reproducable by a
larger truncation. We have found that unlike the Lorenz system, the model we
considered exhibits a normal Hopf bifurcation. The closed orbit which is shed
undergoes another bifurcation which has it transferring stability to a periodic orbit
having approximately twice the period. This periodic orbit subsequently bifurcates
and is replaced by an attracting torus. The torus eventually, as r is increased, loses
its stability. However, prior to becoming unstable we have evidence that, like the
Lorenz system, our system also exhibits hysteresis, and hence for some parameter
values there are several attractors present. When the torus becomes unstable it
pushes the flow out of its basin of attraction and into a neighborhood of its
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symmetric image, which is also unstable (Fig. 5a and b). Hence the process must
repeat itself. These apparently arbitrary transitions between neighborhoods of Tx

and T2 are similar to the behavior observed in the Lorenz system when r exceeds
24.75. Apparently this type of behavior has been seen prior to r = 24.75 in the
Lorenz system [4]. We remark, however, that we did not observe any region of
preturbulence in our model prior to the loss of stability of the stationary solutions
Cv Further, the fact that we have a normal Hopf bifurcation indicates that such a
subcritical instability does not happen [8].

A fundamental difference between the Lorenz system and our 14-dimensional
generalization is that the unstable stationary solutions in the smaller system have
been replaced by tori in our larger system as the mechanism which drives the flow
in the turbulent parameter range (see [5]).

This paper leaves several questions unanswered, fundamental among them are
whether it is possible to reduce the model considered here to the study of
mappings of the interval or square into itself; this model provides an example of a
two-torus whose bifurcation leads to a strange attractor: are we observing motion
on a three-torus; and, in general, how much of the analysis done by Guckenheimer,
Lanford, Williams and Yorke can be extended to this model?
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Professor O. E. Lanford III and J. A. Yorke for helpful discussions and providing preprints of their
recent work.

Appendix A

In this appendix we list the fourteen component ordinary differential equations
which we have studied in the main body of this paper. In what follows the dot
above the variable indicates differentiation with respect to time and to allow for
more compact notation we suppress the explicit dependence of the components on
time.

(Al)

(A2)

(A3)

(A4)

(A6)
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+ V>31Θ
2 2

(A8)

(A9)

(A10)

(All)

(A12)

+1^33^31+^24^4}-4002, (A13)

- 1 6 θ 0 4 . (A14)

Finally in all computations reported here a — 1/ j / ϊ
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