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Pair Function for the Rectangular Ising Ferromagnet
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Abstract. A representation of the pair correlation function for the rectangular
Ising model in zero magnetic field is derived using a new spinor technique this
enables the scaling limit to be established, as well as several analytical
properties of the scaling functions.

1. Introduction

In this paper a representation for the pair function will be obtained using the
matrix element results of the previous paper the equations therein to which we
shall refer freely, will be denoted I.n.m. In this case the matrix element
<Φ_|Gα n...Gα iσ*|Φ + > will be needed. They can be obtained in terms of the
<Φ_|Gα n . . .GαJΦ + > by using the definition of Gα.

By analogy with [1, Eq. (3.4)], consider the definition D.I.

U% fjj jGoln...Gaσ
x

1\Φ + y . (1.1)
1

Then using [1], Eq. (2.9), (2.14), and (2.28) it follows that

*M((4)= Σ (~ 1)
. 7 = 1

Σ (1.2)
zeSM J

where the functions FM((z)n) and fM(z,t) are defined in [1, Eq. (3.4)]. The
appropriate limiting form is Fx((z)n) given by

Fx((z)n)= Σ (- lyFiAjizwlfj J - Θ(z)f(z, Zj) + 1/Θ(zj)\ (1.3)
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Table 1. Data for contraction functions (1.8), factorisation of (1.6) and (1.7) and initial conditions for Pfaffian
recurrence relations
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(1.5)

The general solutions of (1.4) and (1.5) were developed in [1] by Wiener-Hopf
techniques. For the Ising model appropriate functions Θ are

K:6>(z)=(4 I
1/2

1 (z-A)(z-B) 1/2

~ v ; μ β ) 1 ' 2

The associated function f(z, ί), is of the form

z ί - 1

(1.6)

(1.7)

(1.8)

both for T > Tc and Γ < Tc (see [1, Eqs. (4.7) and (4.16)]. The factorisations of (1.6)
and (1.7) which can be constructed by inspection, are given in Table 1, together
with the normalized form of F(z) and the function g(z) of (1.8). Equation (1.2) is
now developed in the obvious limiting form by expanding the appropriate
Pfaffians using the results of Table 1.

For T>TC, one has

2λZ+ 1

- c,

(1.9)



Pair Function for the Rectangular Ising Ferromagnet 183

Using Table 1, and performing a few contour integrals gives the result

1

where the Pfaffian on the right hand side is given in (1.4) and in Table 1.
On the other hand, when T<TC more care is necessary. Using (1.5), one has

Fx((z)2n)= -±-. \~Θ{z)F{z)F({z)2n)Lπi C l z

2 " £ ) Σ P
k = 2

The second integral in (1.11) is easily carried out using the Wiener-Hopf
factorisation to give the contribution

Σ (-VJΣΠh)PkjF(Aίkj(z)2n+ί),
j=2 fe=2

where

Pkj. = (- l) k ( l-δ k j )Sgn(/-fc) . (1.12)

It follows immediately that this vanishes; the first integral in (1.11) is just the
normalisation condition for F(z). Using the notation

m*= lim < Φ _ K | Φ + > (1.13)
M-+oo

one has

Fx((z)2n)=-m*F((z)2n), (1.14)

where the boundary condition for the Pfaffian on the right hand side is

F(0)=1. (1.15)

Thus one may rewrite (1.14) and (1.15) as

Fx((z)2n) = F((z)2n), (1.16)

where F((z)2n) is given by (1.4) and Table 1, with the initial condition given there.
The next section applies (1.10) and (1.16) to evaluate the pair correlation function.

2. The Pair Function

The pair function is given as a special case of [1].

Σϊτrn Σ

(2.1)
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Table 2. Edge weights for graphical representation in real form

e(ωliω2) for symmetrisation V

T> Tc (sinhy(ω1)-sinhy(ω2))/2sin(α)1 +ω2)/2

T<TC {p{ω1)q{ω2)-p{ω2)q{ω1))/2sm{ω1+ω2)/2
p{ω) = (2cosω-A-l/A)ί/2

q(ω) = {2cosω-B-l/B)112

where v = (x, y) and the sums are to be taken independently over z such that zM=l.
The thermodynamic limit can now be taken using the estimates of \\δfM\\ given in
the last paper. The limiting form is

• \Fx((eiω)n)\2 exp - £ ( |χ |y(ω,)- iyω}). (2.2)
1

An instructive graphical representation can be given for the terms in the
Pfaffian expansion of (2.2). This will be useful in examining the "scaling limit" of
the pair function.

The definition (1.4) of the Pfaffian (see also [2]) which will be denoted Pftf),
where/is referred to as the contraction function, is equivalent to the following [3]

Pf(f)=Σmn))ehh-ehn_ίhn (2.3)
π

with ejk = f(eιcύj> eιωk) and where the sum is over all partitions π of the integers
1, ...,2w in n unordered pairs. Here P(π) is the permutation of 1, ...,2n which is
equivalent to π, and ε(P(π)) is its signature, which is unique since the contraction is
antisymmetric. Note that a permutation within a pair of in (2.3) leaves Pf{f)
unchanged, as does a rearrangement of the pairs themselves. This suggests how to
handle Pf(f)*: take given partitions π and π' for Pf(f) and for P/(/)*, which will
be denoted

^^ΊΛl/VJ ί/ -̂lΛn (2 4 a )

and

J*\-\J2n-j2n. ( 2 ' 4 b )

Given j 2 is (2.4a) recorder π' so that /x =j2. Then/ 2 is fixed, either equal to j v or
else choose j3=f2. Since this process is finite, a stage must eventually be reached
with —j'r =jv Choose a number in 1,..., In not already used ϊoτjr+ι and repeat the
procedure. Thus \Pf{f)\2 can be written as a union of vertex and edge disjoint
cycles which cover the points 1, ...,2n. Note that the cycles each have an even
number of points. The associated permutations may be written as

P =JJ2 Jr- JJr+1 - Jr + s ''' > ( 2 5 a )
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so that P'= PP" where P" is a product of cyclic permutations. Each cycle has a
permutation signature of — 1.

Returning to (1.10), the high and low temperature results must be carefully
distingiushed. When T>TC the expansion of \Fx((eίω)2n+ί)\2 will contain a chain of
contractions, alternately from Pf(f) and Pf(f)* connecting the factors g and g*.
For T<TC such open chains do not occur. The weighting of the graphs is greatly
simplified by a suitable rationalisation of the factors in f(eιω\ eι(°2) and g(eιω) to
produce the real edge and vetex weights which will be encountered in the following
graphical rules:

1. Only simple graphs G = {V,E} occur.
2. For a given vertex set V with |F |=w assign to each vertex an integration

variable ωe[0,2π], and a vertex weight

υ(ω) = G(ω\r)/2π, (2.6)

where

G{ω\r) = exp ( - \x\γ{ω) + iyω) (2.7)

with r = (x, y).
3. If T<TC, \V\ must be even. £ is a union of edge and vertex disjoint cycles,

each of which contains an even number of edges. A cycle given as an edge sequence

{(vί9 v2){υ2, v3)... (υln_ 1 ? υ2j{υ2nσί)}

has an edge weight

In- 1

E{{ω)2n)=-e{ω2n,ωι) f ] e(ω ; ,ω ί + 1 ), (2.8)
1

where ωt is the label of vertex i. The edge weights e(ω, v) are given in Table 2.
Notice that e(ω, v) = — e(v, ω), so that the order of labelling in (2.8) must be
observed.

4. If T>TC, then \V\ must be odd. There will be a single open chain

with an edge weight

The remainder of the vertices are covered by £ as in 3 above.
5. Sum over all allowed graphs.
The graphical results may be cast into a simple form by introducing a bounded

operator Av on L2([0,2π]) defined by

(Arf)(ω) = ih(ω\v) ] dμ{υ)e(ω9vyh(υ\r)f{v), (2.10)
— π

where

h(ω\r) = (G(ω\r))112 (2.11)
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and

dμ(ω) = dω/2π sinh y(ω). (2.12)

Thus we have

E((co)2n) = (-lf+1Tr(A2n) (2.13a)

and

E((ω)2n+ί) = (~mKA2

r

nh) (2.13b)

with

(/,<?) = ] f*(υ)g(υ)dμ(v). (2.14)
TL

Two important properties of Ar are expressed in

Proposition 2.1. 1. J/j/ = O, then Ar is self-adjoint.
2. Ar is of Hilbert-Schmidt type whenever

The proof of Proposition 2.1 (1) is elementary; the other assertion follows from
the estimate

π

J J |^(ω l 5 ω 2 ) | 2 dμ(ωjdμ(ω 2 )

\2
ήdμ(ώ)\ . (2.15)

The linked cluster theorem may now be used to sum over all the cycles which
occur in the graphical representation in (2.2), as described above, to give, formally
at least,

ρ2(r) = {(m(K*, K2)/coshK*)H(r), resp.m*(K*, K2)} expK(r) (2.16)

for {Γ>T c ,resp.Γ<T c }. In the above

H(r) = (/z,(l+^2)-1/z) (2.17)

and

. (2.18)

It is known [4] that the range of convergence of results obtained by applying
the linked cluster theorem may well be reduced. But the convexity of the log
function gives

so that, provided xφO, Proposition 2.1 implies that the range of convergence (in x)
of (2.16) is undiminished.

3. The Scaling Limit

One of the fundamental beliefs of statistical mechanics is that in the critical region
only spatial dependence with distance scaled by the correlation length is impor-
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tant. Of course the above remark is tenuous since neither critical region nor
correlation length is necessarily uniquely defined. In the present problem, however,
y(0) (see [1]) plays the role of an inverse correlation length and y(0)~|ί| as
t = (T- Tc)/Tc->0±. Here we shall investigate the limit

F+(s)= Km\t\?ρ2(s/y(0);t), (3.1)
r-*o±

where p is a constant which will be chosen. Monotonicity, continuity and decay
properties of F ± (s) will be derived.

Consider a contribution to ρ2(r) due to a cycle of length 2rc, denoted L2n.

Taking the limit ί-»0+ with s = \v\/y(0) fixed and sinhθj = ωyy(O) gives

2^) I" • "Id(θ) 2 n Πexp(-Klcoshθj-is 2 sinhθ,)

(3.2)

Setting IsJ^scosφ s2 = ,ssinφ with s > 0 and cosφ>0 simplifies the distance
factors which appear as arguments of the exponentials in (2.15) to give s cosh
(θ — ίφ). An elementary contour deformation argument then shows that (3.2) is
independent of φ this motivates the definition of an operator Bs on L2(RX) given
by

i
(BJ)(x)^—- j dj;exp(-|s|

^ — oo

.tanh((x-j/)/2)/()/). (3.3)

Evidently if sφO then Bs is self-adjoint; moreover it is of Hilbert-Schmidt class.
Thus it has a set {λj} of eigenvalues which accumulate, if anywhere, to zero, and
for which

00

2 X 2 = ίJ \Bs(x,y)\2dxdy. (3.4)
— oo

The associated eigenvectors spab ^{R^).
Equation (3.2) reduces to the form

(3.5)

The first problem in taking the scaling limit is to show that the limit {ί-^0±,
y(O)|r| constant} held fixed does indeed exist for functions H and K. Making the
transformation sinhθ^^O)" 1 *^ for each vertex label lends to a new self-adjoint
operator As on L2(R)

^ ϊ dθ2fl(θ1)fi{θ2)έ{θl9θ2)f(θ2)9 (3.6)
^ - oo

where

sinhθ2) (3.7)
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and

In the above χSt is the characteristic function for the set St = [ — π/y(0), π/y(0)] (note
y(0)~|ί| as t-»0±). In terms of this operator we have

(ί,(l+42)-1Λ) (3.9)

with the usual L2(R) scalar product and

K(s/y(0)) = iTr\og(l+A^. (3.10)

The corrections to scaling can be estimated by noting that

K(φ(0))-Trlog(l + 5s

2) = Trlog(l + (l + ΰ s

2 ) - i α s

2 - β s

2 ) ) . (3.11)

Provided that, for given s o > 0 , \s\^s0 the estimate

-W (3.12)

can be derived by tedious but elementary methods. The correction of H may be
estimated similarly.

Since both fh and m* vanish as | ί | 1 / 8 it is clear that p — 1/4 should be chosen in
(3.1). Let F±(s) be defined by

{exp(Trlog(l+Bs

2)){ + (0,resp.(-l))} (3.13)

for (T>TC,F+) [resp. (T<TC,F_)~] where Λ± are constants which may be
determined. Then we have

Proposition 3.1. Provided s ^ s o > O ,

lim \t\ll4ρ{s/γ(0)) = F+(s) (3.14)
t-*o±

and, moreover,

^. (3.15)

Remarks. The first term on the r.h.s. of (3.15) comes from the expansions of m and
m* about ί = 0. The other term is the "correction to scaling" which arises from
(3.12).

The scaled functions F±(s) also have a representation of type (2.2) from which
the following proposition may be derived:

Proposition 3.2. F±(s) is represented by a series of positive terms, convergent for any
s>0; each term is convex for s^so>O and so the sum is convex there and, moreover,
continuous.
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Recall the integral representation of the zeroth-order Bessel function of the
second kind:

Λ QO

K0(s) = ~- J e-^coshθdθ. (3.16)
^ π - oo

By elementary examination of the linked cluster result (3.13), using convexity of
the log function, we have

Proposition 3.3. The scaling functions F±(s) satisfy the estimates

F+(sUK0(s)cxp(K0(s)2), (3.17a)

F_(s)gexp(X 0 (s) 2 )-l . (3.17b)

Remarks. Propositions 5.2 and 5.3 ensure integrability of snF±(s) on any set
[so,oo), s o > 0 .

4. Duality

By analogy with the translational operator T for the spins themselves, operations
may be defined directly for the spinors given by

Γ2j-i=f]+ffiΓ2J= -i(fl-fj), 1 SίύM. (4.1)

One such operation is

&^ΓJ^, j=2,...2M

= -Γ2U. (4.2)

Under this transformation we have

W =expix( Σ Γ2jΓ2j+1-ΓZMr\ (4.3)

M-ί

J (4-4)

Consideration of the van Hove sequence {iV->oo, then M->oo} implies that
only the term VN

{Γ
rσ:[Vr_σ\ need be considered in the 2-point correlation function

expression. Under the duality transformation V is replaced by V but with the
inclusion of misfit bonds between the points:

ΎrVN

+-rσx

ίV
r_σx

1=Ύr(Vf

+)N~rσx

ί(Vfγσx

ί. (4.5)

Thus V' has a line of reversed K2 bonds in the F1(K2) factors between the points,
which are removed by moving one of the spin operators σ^ up to the other one.
With this alternative operator picture we derive the relationship

@:<σ1σ1+r>=Zt(Ay1Tr{(Vί)N-r(Vγ + (V')N-r(VίY}, (4.6)

where the r.h.s. has Kf and K2 interchanged. The reader may check that the T<TC

and T>TC results in Sections 1 and 2 of this paper are correctly related by duality.
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(Note the parameter mapping A-+A, B-+1/B.) This provides a rationalisation of
the interplay between Pfaffians and generalised Pfaffians in this problem. One
should notice that (4.6) is precisely the same as the usual statement of duality [5].
The operation (4.2) enables one also to understand the relationship between
surface tension and inverse correlation length [6] and the relationship between the
transfer matrices for pure phases [7] with "all + " or "all — " boundary conditions
and the single phase transfer matrix with free edges [8]. By taking the limit JV-> oo,
then r->oo in (4.6) we obtain the boundary condition F(0) which is appropriate for
V1. Evidently

K*) (4.7)

from which it follows that

lim (Φ'\Φ'+)(K2,K*) = m*(K*,K2), (4.8)
M-+00

where m* is the spontaneous magnetisation this has been shown to be [9,10]

2 ] 1 / 8 . (4.9)

By using the symmetrised form V1 in the expression for the pair correlation the
relationship

= coshK*<Φ'|σί_|Φ'+>

-s inhiq<Φ'_K|Φ' + > (4.10)

may be derived by taking the appropriate limits. The second matrix element on the
right hand side of (4.10) is known to be zero [10]. The remaining results in Table 1
for the initial conditions can then be derived immediately (note that
sinh2KJsinh2K1 = l). This use of duality considerably facilitates the older
derivation [11].

5. Discussion

In this paper, a new representation for the pair correlation function of the
Rectangular Ising Ferromagnet has been derived using the techniques of Ref. [1].
In addition, the scaling limit has been proved to exist for non-zero scaling
lengths; continuity and monotonicity have been established for the scaling
function, and bounds have been placed on its behaviour, giving integrability
results. Barouch, McCoy, Tracy, and Wu [12] have obtained similar expressions,
but did not apparently have the operator formalism at their disposal. Thus the
analytic results which they obtained were rather weak but, of very considerable
interest, they derived, and analysed, a differential equation for a function related to
H(s). The present results can probably make this derivation rigorous. But this still
leaves the vexing question of the integrability sF±(s) at s = 0, and the validity of the
scaling limit there. The adduction of duality in Section 4 will, it is to be hoped, add
some coherence to a "troubled republic" of formulae.
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