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Abstract. The spectrum of the mass operator on the soliton sectors of the
anisotropic (/l|0|4)2 — and the (λφ4)2 — quantum field models in the two phase
region is analyzed. It is proven that, for small enough λ > 0, the mass gap ms(λ)
on the soliton sector is positive, and ms(λ) = 0(λ~ί). This involves estimating
ms(λ) from below by a quantity τ(λ) analogous to the surface tension in the
statistical mechanics of two dimensional, classical spin systems and then
estimating τ(λ) by methods of Euclidean field theory. In principle, our methods
apply to any two dimensional quantum field model with a spontaneously
broken, internal symmetry group.

1. Introduction: Main Subject, Models, Main Results

During the past few years the quantization of nonlinear waves (solitary
solutions of nonlinear,classical field equations)has attracted a lot of interest and
has been studied from various — more and less rigorous — points of view; see [1-6]
and references given there, and [7-10] for a mathematically rigorous analysis.
From these efforts emerged the (heuristic) picture that the homotopy classes of
finite energy solutions to some classical, nonlinear field equation are, for small
enough h (oc Planck's constant), in a one-one correspondence with non-trivial,
charged super selection (soliton) sectors of the relativistic quantum field theory
formally determined by the same nonlinear field equation. It is felt that this picture
might be a key to understanding some of the conservation laws and some of thfe
(hadronic) extended particles observed in elementary particle physics.

So far, however, many workers in the field have concentrated on the analysis
of quantum field models (or quantum spin systems [11]) in two space-time
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dimensions. The reason behind this (somewhat surprising) enthusiasm for two
dimensions is that in two space-time dimensions there are plenty of simple,
superrenormalizable quantum field models with soliton sectors, e.g. the (λφ4)2-,
[10] the pseudoscalar Yukawa2 model and the quantum sine-Gordon equation
[12,13], whereas in higher dimensions soliton sectors appear to occur only in
gauge theories (with matter fields see [5,14,7]) or in non-renormalizable field
theories with chiral symmetries [15]. This does not mean that standard, renormaliz-
able field theories in higher dimensions do not have bound states in the vacuum
sector corresponding to non-trivial solitary solutions of the classical field equation
in the homotopy class of the (constant) vacuum solutions ("non-topological
solitions") [16]. Such bound states are of considerable interest, but they do not
concern us in the present paper. We leave this topic with the remark that non-
topological solitons can sometimes be thought of as bound states of two or more
confined, topological "would be" solitons, and that perturbations of the dynamics
that lift the degeneracy of the physical vacuum and make the soliton sectors
disappear generally give rise to new bound states ("non-topological solitons") in the
vacuum sector [7] see also [17,18].

1.2

By now the general mechanism behind the phenomenon of nontrivial super
selection sectors with topological charge is rather well understood: It is intimately
connected with the existence of several, inequivalent ("orthogonal") physical
vacua, i.e. phase transitions, at least in two dimensions [7,8]. (In gauge theories in
three or more dimensions it appears to be connected with the existence of non-
unitary gauge transformations which permute different, but physically equivalent
vacua among each other.) Phase transitions—generally, but not always [8],
accompanied by symmetry breaking—in two dimensional quantum field theories,
in turn, give rise to the existence of several nontrivial, local Poincare cocyclesl from
which the soliton sectors can be reconstructed and which yield Poincare co-
variance of the soliton sectors [7, 8, 10].This last point of view was inspired by the
deep analysis of super selection sectors due to [19] and the study [7] of special two
dimensional models with phase transitions [17,34]suchasthe(/lφ4)2 model. It was
realized in [19] (see also §6 of [7]) that a general theory of Poincare covariant
superselection sectors in arbitrary dimension could be developed in terms of
Poincare cocycles. A similar point of view has been advocated in [21], where the
main accent is placed on the concept of local cohomology, but Poincare
covariance is unfortunately not emphasized. (The concept of local cohomology has
previously been pioneered in a somewhat different framework in [22,23].)

Let us finally comment on the difference in the point of view adopted in the
more heuristic literature on quantum solitons [1-6] and the one adopted in [24,
7-10]: In the more heuristic literature various approximation schemes and
algorithms, in particular semi-classical methods, for the calculation of the mass
spectrum on vacuum—and soliton sectors and of some special scattering ampli-
tudes have been developed and have provided a wealth of formulas and some
1 These cocycles are localized objects (local observables) which describe, physically speaking, the
operation of transfering some charge from one space-time region to another; see e.g. [21,10]
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rather detailed insight. In particular, in the case of the quantum sine-Gordon
equation the semiclassical methods of Dashen et al. [4] appear to give exact
results. (There are many indications for this belief to be correct, but no rigorous
proof, yet.) What is, however, missing in this part of the literature is a construction
of the states that constitute the soliton sectors, of quasi-local fields with non-
vanishing matrix elements between the physical vacuum and the one soliton
states, and (exactly because of this circumstance) of a general, multi-soliton
scattering theory, except perhaps in the quantum sine-Gordon equation (where,
apart from time delays and charge transfer, there appears to be no scattering [25]).

In contrast, in [7-10] soliton sectors have been constructed rigorously, quasi-
local soliton fields with non-vanishing matrix elements between the physical
vacuum and the one soliton states (if they exist as discrete particles) have
been given, at least for some nontrivial, two dimensional models, and as a
consequence a Haag-Ruelle multi-soliton scattering theory has been obtained. The
drawback of this more constructive and rigorous approach is that it is very
difficult to extract from it explicit information on the mass spectrum and the
scattering matrix. In this paper we propose to do a first step in this direction.

13

We feel it is necessary to add a few references to early work in the history of the
quantum soliton which seem to have escaped the attention of many workers in the
field. Apart from recommending [26, 19] to the reader's attention we wish to
mention that early work concerning non-trivial superselection sectors in models
(notably the two dimensional, massless scalar free field) has been done in [12, 11,
24, 27], and Refs. given there. The reader may consult [28] for an account of the
early history.

1.4

Next we introduce the two dimensional models studied in this paper and
summarize our main results which concern the mass gap on their soliton sectors.
These results were announced in [29]. Here we give the details and present the
proofs.

Space-time points in IR2 are denoted by x — (jt, ί) Jt is the space — and t the time
coordinate. Partial derivatives with respect to jc, t are denoted dx, dt, respectively.

Consider the classical Hamilton density of the well known </>4-theory

) (1.1)

with

J^0(π, φ) = l/2{π(x)2 + (dxφ(x))2} , (1.2)

and

1/64 , (1.3)

where φ is a real, scalar field and π the momentum canonically conjugate to it.The
constant term in J^(φ) is so chosen that jV(π9φ) is non-negative. The Hamilton
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equations of motion derived from (1. !)-(!. 3) give the following classical field
equation

. (1.4)

A complete existence theory for solutions to (1.4) is available (see [52] and Refs.
given there). The solutions φ0 of (1.4) on which the Hamilton functional

+ 00

H(π,φ)= ί dx^(π(x,Q),φ(x,0))^Q (1.5)
— oo

takes a finite value,

E(φ0) =
 +f dxtf(dtφ0(x> 0), φ(x, 0)) < oo , (1.6)

— oo

called finite energy solutions, fall into four different homotopy classes (Hubert
sectors [52]) represented by the stationary solutions

φ+=*-ll2,φ- = -*-112 (1.7)

and

φ,= - 8- 1 / 2tanhgj. (1.8)

Heuristic, canonical quantization of the super-renormalizable model, defined by
(1. !)-(!. 5), consists in replacing products of φ(x) and π(x) in (1. !)-(!. 5) by normal
(Wick) ordered products of operator valued distributions φκ(x) and πΛ(x) acting on
some Hubert space ffl (to be constructed!) and satisfying the canonical com-
mutation relations

[φΛ(jc,ί),πΛ(y,ί)] = iftδ(jc-y), (1.9)

and proving selfadjointness of the Hamiltonian on ffl , "obtained" from (1.5) in this
way. This provides then an existence theory for ^-number solutions of the field
Equation (1.4). It is customary to introduce new quantum fields

h-1/2φh(xlπ(x) = h-V2πh(x) (1.10)

satisfying the (normalized) canonical commutation relations

ίφ(x,t)9π(y9t) ] = iδ(x-y)9 (1.11)

in terms of which the formal quantum Hamiltonian is given by

H = h-l\H(πM\ = Hs + Hl9 (1.12)

where

HO = 1/2 J dx{:π(x,0)2:+:dxφ(x,Q)2:+:φ(x,0)2:},
— GO

+ 00 ( Λ ϊ

H,= j dxh:φ(x90)4:-3/4:φ(x90)2: + -—. (1.13)
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The double colons indicate Wick ordering with respect to the neutral, scalar free
field of mass 1. In constructive field theory it is customary to denote ft by λ. Clearly
we may replace the coefficient — 3/4 of the quadratic term in Hj by a general
coefficient — σ/2, with σ>l 2 , adjusting the constant in Hjin such a way that the
classical Hamiltonian is again non-negative. This is no gain in generality and
would only complicate our formulas.

According to the heuristic picture described in 1.1 and (1.7), (1.8) we expect four
inequiυalent super selection sectors of the relativistic quantum field model heuristi-
cally described above, when 1 = ft is small enough, namely

two vacuum sectors 2tf + and ̂  _ corresponding to φ + , φ_, resp. see [17,9],
one soliton sector ffl s corresponding to φs and
one "anti- soliton" sector jj?- corresponding to φ-; see [7, 10].
The symmetry φ-> — φ, π->— π of the Hamiltonian H — see (1.12), (1.13) — is

spontaneously broken on all sectors, but (quite obviously) the substitution φ ̂  — φ,
π-> — π takes 2tf + to ffl _ and J ŝ to Jf- (and consersely), so that the physics on
(Jf + , Jf s) is the same as the physics on (3f _, Jj?-). (For this reason it is claimed in
some references that the 04-model has only two sectors, one vacuum and one
soliton sector, a reasonable point of view. One knows however, from the two
dimensional Ising model which has a similar structure that in certain calculations
all four sectors should be retained.) It has been shown [7] that space reflection
takes Jf s to 2f- and that all vectors in jf s (resp. Jf^) are eigenvectors of the
topological charge

(x,ty (1.14)

with eigenvalue q (resp. — q\ where

=+ϋθ)-φs(x=-ao) = 2 S-ίl2. (1.15)

A well known, heuristic approach to calculating the physics on J»f + is standard
perturbation theory about mean field theory (see e.g. [30]) (only in the sine-
Gordon model there are more powerful methods [4]). Perturbation theory will
miss multisoliton thresholds in the vacuum sector.

A useful approach to calculating soliton effects (see e.g. [3, 5, 6, 16, 18]) is to
start from (1.1 !)-(!. 13) and to express the fields π and φ in terms of some soliton
coordinate — and momentum operators and fluctuation fields in such a way that
the canonical commutation relations are formally preserved. One ends up with
non-polynomial Hamiltonians whose renormalizability is far from obvious.
Conceptually this approach is problematic, as it ignores the crucial significance of
boundary conditions (at infinity, [17, 9]). This will become obvious in our proofs.
(But see [31] for a mathematically rigorous implementation of such ideas in a
slightly more restrictive context.)

We follow a different route, summarized in 1.5-1.8, which permits us to apply
rigorous methods. But we end up with similar conclusions, at least with regard to
the properties of the mass spectrum, which, in our case, are theorems.

We now summarize some rigorous information on the mass spectrum on Jf ±,

This guarantees that, for small λ > 0, there are at least two phases
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Glimm et al. [17] have shown that the mass gap m(λ) Oΐij4?± is, for small λ >0,
strictly positive with

[m(/ί)-»l, as A |0].
The mαm resw/ί of this paper is

Theorem A. For small enough λ >0, £/ιe mass gap ms(/l) on ί/zβ soliton sectors J^s, Jj?-
is strictly positive, and

ms(λ) = Q(λ~1). (1.17)

This result has been announced in [29]. In this paper we give precise
statements and proofs.

As to the existence of one particle states in the vacuum, and the soliton sectors
with mass m(λ\ resp. ms(λ\ this problem has not been rigorously settled, yet.
However, we emphasize that the necessary methods to solve it appear to have been
developed [32-34], and there cannot be any doubt that m(λ) and ms(λ) are the
masses of stable particles. (To supply detailed proofs is presumably quite hard,
though.) If this is correct it follows from [17,7,9] that there are quasi-local fields
with non- vanishing matrix elements between the physical vacuum and these one-
particle states and a Haag-Ruelle multi-soliton scattering theory exists [19, 7, 10].

We wish to point out that the situation described here for the 04-model is
typical of all two dimensional models with two inequivalent vacuum sectors (i.e. a
phase transition) such as the anisotropic l^^-model or the pseudoscalar Yukawa2-
model with the proviso that the three sectors Jtf + , 3^_, 34? s are physically
inequivalent if </>-> — φ, π-> — π is not a symmetry of the Hamilton function, as is
the case in a class of P(φ)2-models with P positive and "almost even" [8] Jf^is still
the mirror image of 34? s. (But in this case the only rigorous construction of 3tf s and
ffl-s proposed so far [7] looks very indirect and artificial.)

In the quantum sine-Gordon equation and a class of related models, however,
we encounter infinitely many soliton sectors labelled by charges that are integer
multiples of some elementary charge [7,35]. (This is no surprise, as the sine-
Gordon model is equivalent to the massive Thirring model describing a charged
Dirac two spinor field, provided h is small enough (and the total charge vanishes)
[36].) Our methods apply to this model, too.

1.5

Before we can describe our main result in more detail we must recall the
construction of the relativistic quantum field theory heuristically defined in (1.11)-
(1.13). At the present time this construction is always done in two steps:
Step 1 [17]. Construction of the vacuum sectors ffi ' + and 2tf _ ("quantization in
the vacuum representation" see also [34]).
Step 2 [7, 8]. Construction of the soliton sectors jjfs and fflτ\ ("quantization in the
soliton representation").

As a preliminary to Step 2 one needs :
Step ^'[38, 41]. Construction of a net of local von Neumann algebras satisfying the
Haag-Kastler axioms [26] (which is not an automatic consequence of Step 1 in the
form [17,34]).
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1.6

Quantization in the vacuum representation :

Description of Step 1

At the present time, the universal approach of constructive field theorists to
constructing the vacuum sectors ffl ± comes from the Euclidean description of
relativistic quantum field theory, in particular Euclidean field theory [34,42,43].
This approach has not only been very successful in constructive quantum field
theory, but it has also led to the discovery of the instanton [44] (a phenomenon
which is more difficult to extract from the Hamiltonian formalism).

For reasons of technical simplicity described in Step 2 we henceforth consider
the anisotropic Iφl^-model see e.g. [9, 45]. This is the model describing a pair φ =
(Φ1,φ2) of real, scalar fields with classical Hamilton density

Jf 0(π, φ) = 1/2 {|π(x)|2 + \8xφ(x)\2 + \φ(x)\2}

#HΦ) = |0(x)|4 - 3/4</>1(x)2 - l/4φ2(x)2 + 1/64 , (1.18)

with π = (π l 5π2) canonically conjugate to φ.
With 3? one associates the classical Euclidean action

with

S0(φ)=l/2${\?φ(x)\2 + \φ(x)\2}d2x (1.19)

and

SΛΨ) = J {\Φ(x)\* - 3/40Λ*)2 - l/4φ2(x)2 + !/64}d2x .

The integrals extend over all of Euclidean spacetime; Φ = (φι,φ2} is the classical
Euclidean field.

To construct the Euclidean Green's or Sch winger functions (= Wightman
functions at the Euclidean points) one wants to interpret φ as a pair of real random
fields over R2 and one replaces the classical action by

l / λ : S ( λ 1 / 2 φ ) : (λ = h)9 (1.20)

where the double colons indicate normal ordering of random fields [42] (so-
metimes called Ito-ordering) with respect to the free (Gaussian) Euclidean field of
mass 1.

The Euclidean Green's functions (EGF's) are then given by the Euclidean
Gelΐ Mann-Low formula

ί Π ΦtW 1/Λ:S(A1/2ψ>: Π We)" . (1.21)
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For the model discussed here this heuristic formula has been given a rigorous
sense in [34,17] (see also [42,9]) in such a way that {&*n(xί9 il9...9 xn, in)}?= 0 satisfy
all the axioms of Osterwalder and Schrader [43] and hence are the Wightman
functions restricted to the Euclidean points of a unique relativistic quantum field
theory.

The rigorous construction of the EGF's starts with first setting Sj = 0, i.e.
S = S0.lΐi this case the expectation < — >So is simply the one of the Gaussian process
with mean 0 and covariance ( — Δ +1)"1 indexed by the Sobolev space JΊf_1. It is
given by a Gaussian measure dμ0(φ) on &" = ̂ 'real(IR2)x 2 of mean 0 and
covariance (— A +1) ~ *.

Let L x T denote the rectangle (-L/2,L/2) x (- T/2, T/2), and define

SI(LxT)= J d2xλ-l:SI(λ^l2φ}\. (1.22)
L X Γ

Furthermore

*±=(±(&r1/2,0), (1.23)

and

δS±(LxT)= ί d2x{φ± φ(x)-l/2\φ±\2}. (1.24)
L X T

Consider the measure

dι^±

τ(φ) = Z±(LxT)-1e-s^^-sS^L^dμ0(φ-φ±), (1.25)

where Z+(L x T) is a normalization factor chosen so that dμ^*±

τ is a probability
measure on &". Note that dμ0(φ — φ±)is the Gaussian measure with mean φ± and
covariance ( —J + l)"1.

We now define space-time cutoff EGF's

Π <w\ +(Lx τ)= ί Π Φt^jWi^Φ)'
j=ι I y j = ι

Such integrals are discussed in [17,34,42] and Refs. given there and exist in the
distributional sense. We now state a basic theorem due to Glimm et al. [17].

Theorem 1. For λ small enough, the limits

λ,± L,Γ-»oo \ j = ι / λ,±

exist (independent of order) and satisfy all Osterwalder- Schrader axioms including a
strictly positive mass gap m(λ) with w(Λ,)-»l, as λ JO.

Definition. Let (9 be an open set in IR2. Define ΣQ to be the smallest σ-algebra on £f'
with the property that all random variables generated by

are Immeasurable. Heuristically, a Z^-measurable function F on &" has the
property that F(φ) = F(φ'\ for all φΈ&" coinciding on Θ with φ.
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Let χ be a C°° function on IR2 with the properties that Ogχ(x)^ 1, χ(x) = 1, for
all xeL x 7^ χ(x) = 0, for all x in the complement of (L+ 1) x (T+ 1).

Lemma 2. For all OcLxT

Proof. The functions spanned by

are dense in Ll(£f ',Σ&,dμ0); £f = ̂  real(IR2). Therefore it suffices to show

for /'s with support in (9. This follows by substituting φ: = φf + φ±, resp. φ:
+ φ± χ on the l.h.s., the r.h.s., resp. Π

Corollary 3. For ΘcLxT and F any Immeasurable function on £f

where Z'± (L x T) is a normalization factor.

Proof. This is an obvious consequence of Lemma 2 and the equation

dμ0(φ)

Let χL(x) be a C°° function on R with 0^χL(jc)g 1 ,

and

1, on [-L/2,L/2]

/ L + 1I0, on -oo, —- u
L + l

-,oo .

We define

Γ/2 / -L/2 L+ l / 2 \

<55± ±(LxΓ)= J Λ J + ί \dX{φ± φ(X)-i/2\φ±\\L(x)}
-T/2 \ L+l L/2

Γ/2

δS_+(LxT)= J dί
-Γ/2

-L/2

(1.26)
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and

Z±+(LxT)= J e-Sl(LxT)-δs^(L*T)dμ0(φ). (1.27)
y

Corollary 4.

<F>Λj + =lim<F>A ; +(£), (1.28)
L^QO

where

<G>, +(L)= lim <G>, +(Lx T) (1.29)
T-+00

= lim Z+±(LxTΓ1 ί Ge-Sί(LxT)-M±±(Z-xΓ)^0(φ), (1.30)
Γ-»oo y

for all Σ(_L L]x]R-measurable functions G on 9" .

Proof. Equation (1.28) follows from (1.29) and Theorem 1. If we reexpress the r.h.s.
of (1.29) using Corollary 3 and then use a simple "transfer matrix" argument (see
e.g. [42]) to control the limit T-»oo we obtain (1.30). Q.E.D.

Next we recall the connection between the Euclidean field theory formalism
summarized above and the Hamiltonian formalism [37].

Let 2F be the usual, symmetric Fock space of the free, neutral, scalar fields </>1?

φ2 with mass 1, and let H0 denote the free Hamiltonian. We define

(1.31)
_L

and the double colons indicate Wick ordering with respect to the free field of mass
1;

L L + l

(1.32)

(1.33)
L
2

Then the operators

and

+(L) (1.34)

are selfadjoint on ^(H^^H^L)) [37], and exp[-f#±+(L)] is the transition
function of a Markov process on the spectrum of the abelian von Neumann
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algebra generated by all bounded functions of the time O-fields φ^-,0), 02( ,0).
The Feynman-Kac formula — see [42, 46] — tells us that the expectation < — >λ j ±(L)
is precisely given by the path space measure of the process with transition function
exp [ — tH ± + (L)] , and

(1.35)

(1.36)

where ΩQe^ is the bare vacuum, (H0Ω0^=0).
It is known — see [38,42], and Refs. given there — that H±±(L) has a unique

groundstate Ω±(L)e^ corresponding to the simple eigenvalue

£+ +(L)-£__(L)-infspec(H± ±(L))>-oo.

Defining H±±(L) = H±±(L)-E±±(L) we have #±±(L)^0. We set

and

H_+(L) = H_+(L)-E++(L), (1.37)

whence inf spec (H _ + (L)) = E_+(L)-E++ (L\
Our main result, Theorem A, (1.17) of Section 1.4, can now be reformulated as

follows.

Theorem A'. The mass gap ms(λ) on the solίton sectors of the anίsotropic \φ\^-model
described above satisfies

ms(λ)^τ(λ)= hmτLμ), (1.38)
L->oo

where

τL(λ) = E_+(L)-E++(L) (1.39)

and

Z_+(Lx T)
(1.41)

Z++(LxT):

for L^L

Remarks. Of course we still owe to the reader a review of the construction of the
soliton sectors and a technically convenient definition of ms(λ)\ see Sections 1.8
and 2. Apart from that the anatomy of our main result should now be clear from
the form of Theorem A'. The proof of (1.38)-(1.39) is given in Section 2. Equation
(1.40) is standard see [39, 47]. Equation (1.39) can be viewed as the definition of a

surface tension in a system of fields confined to the strip , — I xR with
2

" — boundary conditions" at x= — —, and " + boundary conditions" at x= + —

τ(λ) is then the surface tension of the corresponding infinite system.
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Estimate (1.41) and (1.38)-(1.40) give

m^Oμ-1).

The proof oϊ (1.41) e'mploys methods that are somewhat similar to the ones used in
the discussion of the surface tension in Ising models [48]. This analogy has been
suggested in [8].

1.7

Construction of local algebras of bounded operators:

Step 1'

First we recall an extended version of the Feynman-Kac formula. We define the
interacting quantum field with space cutoff by

φ[L>± >(*, t) = eitH ± ± (L) φ.(x, Q)e~itH±± ('L),

where φ .(jc, 0) is the free field at time 0.

/ " \
Theorem 5 (see [42,40,43]). The moments ( f] φ. (x.)) (L) are the EGFs of the

\ j = ι J I λ,±
spatially cutoff Wightman distributions

j = ι

ί.e.fortί<t2<...<tn,

λ,±

= (β±(L), Π φi^fye-*'"-'*** *(L)φίn(xn,Q)Ω±(L)]. (1.42)
\ 7=1 /

Remark. From Theorem 5, Corollary 4 and a well known theorem concerning
convergence of boundary values [in '̂(IR2")] of a convergent sequence of
holomorphic functions of several complex variables (satisfying some uniform
bounds [40, 47]) we conclude that the limit

ιrnt+(il9xι9...,in,xj= lim Ω+(L\ Π Φ^^Ω^L) (1.43)

exist in 5^'(IR2π) and, using Theorem 1, Corollary 4 and the Osterwalder-Schrader
reconstruction theorem [43], we see that the moments

flΦt](Xj)) Γ are the EGFs of {lTn,±}n%
J=l / λ,±)n = 0

and {1fr

ni±}™=o satisfy all Wightman axioms including a positive mass gap m(λ),
[17]. The Hubert spaces ffl ± obtained by Wightman reconstruction are called
vacuum sectors.
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Let φ(x,t) be the relativistic quantum field, and H+ the Hamiltonian
reconstructed from the {i^n ±}™=Q. It was shown in [40,47] that for

+ l), (1.44)

in the sense of quadratic forms on j^±. Here | | is some norm continuous on
^(IR2)*2. In [40] it was shown that this estimate implies essential selfadjointness
of φ(f) on any core for H±. This permits us to define local von Neumann
algebras :

Let G be a bounded, open set in IR2 (typically a double cone). We define
to be the von Neumann algebra generated by

on the Hubert space ffl ±.

Theorem 6 [41]. The Wightman axioms for {i^n ±}£L0

 and the estimate (1.44)
guarantee that the algebras {^±(Φ)} form a net of local algebras satisfying all the
axioms of Haag and Kastler.

We let st± be the norm closure of \Jrf±(β). Furthermore, U±:ξ
= (Λ, α)e^τ

+ H-> U±(ξ) denotes the unitary representation of the Poincare group on
3tf±. For Ae*/± we define

τ£A)=U±(ξ)AU±(ξ)* (1.45)

Theorem 6 asserts that the group {τξ:ξe^+} is a representation of 0*\ by
* -automorphisms of jtf +.

Next, we recall a basic theorem due to Glimm and Jaffe. We let £#&(&) denote
the local von Neumann algebra generated by all bounded functions of the free,
scalar field of mass 1 smeared out with test functions supported in (P, in the Fock
representation.

Theorem 7 [39]. For all bounded, open double cones in IR2 the algebras s#±((9) and
^^((9} are isomorphic (and unitarily equivalent).

This theorem permits us to identify the algebras jtf+(&)9 £/_(&} and
hence j/± and j/^ [the norm closure of uj^(0)], and we omit the subscripts
hence forth.

From estimate (1.44) and (1.43) follows (by a simple argument [40]).

Corollary 8. For all A^^ the limit

ω±(A) = (Ω±,AΩ±}= ]ίm(Ω±(L\AΩ±(L))
L-+ oo

exists.

Remark. We omit reference to the specific representations π^± , π^ of j/ on Jf + ,
resp. 2F, so that A denotes both, the element of the abstract C* algebra ĵ , and its
representative on jf± or ̂

We may now proceed to the construction of the soliton sectors.



50 J. Bellissard et al.

1.8

Quantization in the soliton representation :

Step 2

Consider the formal equations

σO^foO)) = cos θ(x)φl(x, 0) + sin Θ(x)φ2(x, 0)
(1.46)

σ(φ2(x9 0)) = - smθ(x)φ1(x9 0) + cosθ(x)φ2(x, 0)

+ identical equations with (φ^φ2) replaced by (π l5π2), the momenta canonically
conjugate to (φί9φ2) (at time ί = 0).

The function θ(x) is C°°, dxθ(x) has compact support, and

lim θ(x) = π, lim θ(*) = 0 . (1.46')
jc-* — co je-> + oo

It has been proven in [7] that equations (1.46)-(1.46') uniquely determine a
^-automorphism σ of the C*-algebra si with the property that

(1.47)

for all double cones $ClR2.
Moreover, in the Fock representation, σ is unitarily implemented by the

operator expzX(θ), where

) = J djcθW^^^OJπ^OJ-^ί^OJπj^O)] . (1.48)

(See Lemma 2 of [7].)
Consider now the states ω± °σ defined by

ω±°σ(A) = ω±(σ(A)), for all Aestf .

According to the GeΓfand-Naimark-Segal construction there exist Hubert spaces
34fs, jtfy> representations of ̂  on Jfs and 2tfτ and cyclic vectors ΩSE Jj?s and β-e J^
such that

= (Ω0,4ίλ)
s; (1.49)

(Ω_?yiβ_).

One of the main results of [7, 8] says that Jj?s and Jf ? can be interpreted as the
soliton sectors of this model. This is due to

Theorem 9 [7, 8]. (1) There exists a continuous, unitary representation Us oj 0*\
on ffl such that

for a
The generators (HS,PS) oj the space-time translations {Us(l9a)ι αelR2} satisfy

the relativistic spectrum condition, i.e. spec(Hs,Ps)cV+. Moreover, spQc(Hs.,Ps) is
purely continuous, i.e. J^s does not contain any vacuum state.
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(2) There exists a selfadjoίnt charge operator g, formally given by

with

= 0, for all

= qΨ, for all

where q = (Ω+,φί(x)Ω+)-(Ω_,φ1(x}Ω_)~2(8λΓ1/2 .

Of course Theorem 9 is also true for J#L> but in (2) q must be replaced by — q. In
fact, it has been shown in [7] that space reflection takes J^s to ̂  and establishes
an isomorphism between the physics on 2tfs and the one on J l̂.

If & is a double cone &(ξ) is the region obtained by applying the Poincare
transformation ξ to (9. Furthermore &ξ is the smallest double cone with base at
t = 0 containing Θ and &(ζ). We let suppσ denote the double cone with base
supp^θ).

The proof of Theorem 9, (ί) is based on the following

Theorem 10. To each ξe^+ there exists a unitary element Γ(ξ) oj s/((suppσ)ξ) such
that

and

(AΩS, Us(ξ)BΩs) = (σ(A)Ω+, Γ(ξ)τξ(σ(B))Ω + ) , (1.50)

for all A, B in stf.
Moreover, Γ(ξ) is strongly continuous in ξ in every locally normal representation

of d.

Theorem 10 has been proven in [7, 8] for the models studied in this paper and
extended in [10], where it is used as one of the central elements of a general theory
of Poincare-co variant superselection sectors. The operators Γ(ξ) satisfy the cocycle
identity

ΓK 1-ξ 2) = Γ(ξ1)τίl(Γ(ξ2)) (1.51)

and are therefore called local Poincare cocycles. They were introduced in [7, 8]
for purely technical reasons, but it was already realized in [19] that they play a
central role in the theory of Poincare-co variant superselection sectors; see also §6
of [7], [21, 10]. (In particular, the existence of the local Poincare cocycles Γ(ξ)
implies that π°σ is a Poincare-covariant representation of j/, whenever π is one
[19]).

Moreover σ(A)= limΓ((l,α))AΓ((l,α))*, when a tends to oo in a space-like
fl-> 00

direction, [21, 10], i.e. σ can be reconstructed from Γ.)
In the proof of our main result we need an explicit construction of the special

cocycles

It is based in part on the following lemma due to Glimm and Jaffe [38].
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Lemma 11 [38]. (Finite propagation speed.) Let Θ be a bounded, open double cone
and T some positive number. Suppose the base oj $(1 (0 T)) (at time t = 0) is contained
in [-L/2,L/2]. Then, Jor all te(-T,T), all Aes/(Φ) and all Ψε^,

τt(A) Ψ = eίtH ± ± (L)Ae ~itH±± (L) Ψ

(= eitH ~+ (L)Ae ~ίtH-+ M ψ) .

Remark. In [38] a different space cutoff was used in the proof of this result.
However the proof can easily be extended to the cutoff and boundary conditions
used here.

Theorem 12 [7]. Let T= T(L) be the largest positive number such that the base oj
the double cone (suppσ)ξ=(1 (0 T)) is contained in [ —L/2,L/2]. Then, jor all

te(-T,n

Γ(f) = eiL(θ]eitH ~+ (L]e ~ iL(θ}e ~ίtH++ <L>

where L(θ) has been dejined in (1.48).

Remark. In [7] (which appeared before [17]) the choice of boundary conditions in
the spatially cutoff Hamiltonians used to construct Γ(ή was not the one made here.
However, the proof of Theorem 12 is identical to the one of Lemma 3 of [7], once
one notes that

eίL(θ)eίsδH-+(L)e-iL(θ) _ eisδH + + (L) fa ajj s

if suppδxΘC(-L/2,L/2); see pp. 284-287 in [7].
This completes our summary of the construction of the vacuum, and the

soliton sectors in the anisotropic Iφl^-model. We remark that all these results can
be proven for the usual φ^-or the pseudoscalar Yukawa2 model, but in these models
the construction of the ^-automorphism σ is somewhat complicated [10]. For this
reason we exemplify our techniques in the context of the simpler j^-model but see
[10].

2. Estimating the Soliton Mass in Terms of the Surface Tension

2.1

In this section we provide the proof of Theorem A, (1.38)-(1.40) (see Section 1.6),
i.e. we show that the mass gap ms(λ) is bounded below by the surface tension τ(λ\
Estimating τ(λ) is deferred to Section 3.

In a remark following Theorem 9 (Section 1.8) we have noted that the physics
on Jjfs is isomorphic to the one on <#?-. Therefore we may henceforth concentrate
on analyzing the spectrum of the energy-momentum operator (Hs, Ps) on J^s.

According to Theorem 9, (1) spec(//s,PJ is contained in V+, is Poincare-
invariant, and purely continuous. Therefore, the mass gap ms = ms(λ) on j^s is given
by

0. (2.1)
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In the introduction to Section 1.8 [see (1.49)] we have noted that

{AΩS

is dense in J-fs; (this follows from the construction of J>fs!).
Since jtf is the norm closure oϊ j t f =

is dense, too.
Since Hs is selfadjoint on Jfs, it has a spectral decomposition

Hs=]λdEs(λ),
ms

and {Es( - )} are the spectral projections. Thus, given any ε1 >0, there exists some
such that

m > - lim l/ίlog^Ω^e-^MΩJ-ε! . (2.2)

Since 1/ί log \\A I I 2 tends to 0, as f->oo, for 0< I I A I I <oo, we may suppose that

II ,4 1 1 = 1. (2.3)

Since Aejtf there exists a bounded, open double cone Θ such that

Aej*(&) . (2.4)

From the spectral decomposition of e~tHs we see that

is monotone decreasing in ί. Hence, given any ε2 > 0 there exists τ = τ(ε2) < oo such
that

ms^-l/τ\og(AΩs,e-τH^AΩs)-εί-ε2 . (2.5)

The idea is now to approximate the r.h.s. of (2.5) by the corresponding expressions
with space cutoff.

2.2

We first consider

F(t) = (AΩs,e
ίtH*AΩs). (2.6)

By Theorem 10, (1.50)

F(t) = (σ(A)Ω+9Γ(t)τt(σ(A))Ω+) , (2.7)

where t = (l,(Q,

By Theorem 10, Γ(ί)e^((suppσ)f), i.e. Γ(ί) is a strictly local observable.
Moreover σ(A) and τt(σ(A)) are elements of the local algebras j/($), <stf(&(t)\ a
consequence of (2.4) and the local action of σ; see (1.47).
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We may therefore apply Corollary 8 and get

(σ(A)Ω+,Γ(f)τt(σ(A))Ω+)

= lim (σ(A)Ω + (L), Γ(t)τt(σ(A))Ω+(L)) . (2.8)
L->oo

Next, suppose that L is so big that the bases of &T and (suppσ)Γ at time t — 0 are
contained in [ — L/2,L/2]. Then, by (1.47) and Lemma 11,

τt(σ(A))Ω+(L) = eitH + ̂ σ(A)Ω+(L) , (2.9)

for all \t\<T9 [where we have used e~UH++(L}Ω + (L} = Ω + (L)~\. Moreover, by
Theorem 12,

jΓY A _ eiL(θ)eitH - + (L)e - ίL(θ)e - UH + + (L) /2 1Q)

for all \t\<T.
Equations (2.9H2.10) give

(σ(A)Ω+(L)9Γ(t)τt(σ(A))Ω+(L))

= (σ(A)Ω+(L\ eίL(θ}eίtH- +(Lk-iL(θ}σ(A)Ω+(L)) . (2.11)

We set

FL(t) = (e~ iL(θ}σ(A)Ω + (L\ eίtH ~ + (L}e ~ iL(θ}σ(A)Ω + (L)) . (2. 1 2)

Summarizing (2.6)-(2.11) we have:
For all |ί|<oo

F(ί)=limFL(t). (2.13)
L^oo

We now anticipate the main result of Section 3 : For λ sufficiently small and all
sufficiently large L

H_+(L)^0(λ-1), (2.14)

[in particular, H_+(L) is positive].
Thus, for λ small enough and all sufficiently large L, the function FL(t) is the

boundary value of a function FL(z) analytic in z and uniformly bounded on the half
plane Imz>0. By Theorem 9, (1) the same is true of F(z).

Hence (2.13) and the identity principle for analytic functions imply

JF(zτ) = lim F , (iτ) , for all τ > 0 , (2. 1 5)
L->oo

or, in view of (2.6) and (2.12),

= lim (e-iL(θ}σ(A)Ω+(L\ e~τH- +(L}e-ίL(θ]σ(A)Ω+(L)) . (2.16)
L-*oo

2.3

We now combine inequality (2.5) with Equation (2.16). This gives



Soliton Mass 55

Theorem 13. Given any ε>0, there exists some L< co such that

Prooj. From (2.5) and (2.16) we learn that, given any ε3>0, there exists some
L < oo such that, for τ large enough,

ms(λ) ^ - 1/τ log (e " ίL(θ}σ(A)Ω + (L), e ~ τίl ' + (L)e " ίL(θ)σ(,4)Ω + (L))

But e~ίL(θ} is unitary on ,̂ and \\σ(A)\\ = IUII =1, by (2.3). Moreover

| |β-τH-+(L)| | <£-τ(infspec/ί- + (L))

_.-τ(E- +(L)-£ + + (L) )
^ •>

by (1.37), Section 1.6. Taking the logarithm of this inequality and setting ε = ε1

+ ε2 + ε3 completes the proof. Q.E.D.

'Since ε>0 is arbitrarily small for L large enough, we have

(2.17)
s _

L->oo

This is Theorem A', (1.38)-(1.39). It is well known (see e.g. [39, 42, 47]) that

£++(L)=- lim l/7Ίog(Ω0,e-'H-<L>Ω0). (2.18)
J -> CO

This and the Feynman-Kac formula (1.35)-(1.36) imply

which completes the proof of Theorem A;, (1.38)-(1.40). Without proof we quote

Theorem 14 [10].

mβ(λ)=-lim ^log(ί2s,^
T^s),

1 -»• oo j

i.e. we can set A = l in (2.2).

Remark. A proof of Theorem 14 has been sketched in [9]. For the purposes of this
paper Theorem 14 is irrelevant. It is however significant for scattering theory : It
tells us that the soliton jίelds constructed in [7] couple the vacuum Ω+e^f+ to the
lowest excited state in J4fs, i.e. the one soliton state. This is an important input for
Haag-Ruelle theory. (The proof of Theorem 14 requires a more subtle version of
the Feynman-Kac formula and can therefore not be given here; but see [10].)
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In the proof of our main result (see Theorem A, 1.4 and Theorem A', 1.6) we
are left with estimating E_ + (L) —E + +(L), uniformly in L, or, in other words, with
proving (2.14). This is the issue of the next section.

3. Estimating E _ + ( L) - E+ + ( L)

3.1

In this section we have to prove inequality (2.14), i.e. for λ>0 sufficiently small,
there exists some L0 < oo such that uniformly in L^L0

H.^L^OiA-1) (3.1)

By definition, infspec H^+(L) = E_+(L)-E++(L), [see (1.37)] so that (3.1) is
equivalent to

1 ) . (3.2)

By (2.18) and the Feynman-Kac formula (1.35>-(1.36)— see also (2.19)—

E.^-E.^D^Iπnilogl^^. (3.3)

Let dμ(Q'T}(φ) denote the Gaussian measure on &" with mean 0 and covariance
( — A(P'T} + 1)"1, where A(p'τ} is the two dimensional Laplacean with periodic
boundary conditions at t = ± T/2.

We define

Zp

± + (Lx Γ) = J e-
s«L*v-*s*+(

9"

where Sj(L x T) and δS± +(L x T) are the actions defined in Section 1.6, (1.22), and
(1.26), resp.

The following lemma is by now well known, (see e.g. [42, 49, 8]).

Lemma 15.

E_+(L)-E++(L)=- lim ^logS+^^. (3.5)
r^oo I £ + +(L X 1 )

Remark. This lemma follows from the standard equation

E±+(L)=- Urn ^\og(Ω0,e-TH±^Ω0)

+ ( L x T ) , (3.6)

T
and the independence of the r.h.s. in (3.6) of boundary conditions at t= ± — , [42,

TT
49, 8]. In the following periodic boundary conditions at t= ± — are technically

somewhat more convenient.
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In order to prove (3.1)-(3.2) we now must estimate

Zp_+(LxT)/Zp

++(LxT)

for T|>L, and uniformly in L>L0.
This is done by means of the Peίerls argument in the form due to [20] and the

chess board estimates of [50]. We follow [8] in presentation.

3.2. Generalities about the Peierls Argument

Let 1/2^/^3/2 and 1/2^/^3/2 be such that nx = Γ^L is an odd and nt = Γ^T
is an even integer; (it is assumed that LΞ> 1/2, T^ 1).

We cover (L + 2/) x T with a grid of disjoint rectangles

with sides, parallel to the coordinate axes, of length /, /, respectively.
Let χ± be the characteristic functions of [0, oo), (— oo,0], and

~ u /
Clearly

X-(/) + /+(/) = l - (3.8)

Let ^ be the family of all functions (called configurations) c defined on

with

c((OJ2))= -,φι»+lj2)= + ,ΦM-, +}, (3.10)

for all

If we insert the l.h.s. of (3.8) into the r.h.s. of (3.4), for alljevl, and expand we obtain

Z p _ + (LxTH£Z p _ + (c;LxT) (3.12)
ce<$

where

W (3-13)

We define a contour y to be a connected line consisting of sides of the rectangles
{ A j ' . j e Λ } decomposing (L-f-2/) x Tinto two disjoint connected regions B1 and B2

with the properties that

:x = (x,t)9x=---t,--<t<-\CBl

L T T
:x = (x,t\x= + — +/, - —



58 J. Bellissard et al.

We let N(y) be the collection of all nearest neighbor pairs of sites (j1 J2) such that
AjteBl9 Aj2eB2, (i.e. Δ^ and Aj2 have a common face contained in y).

Given a configuration ceΉ there exists a unique contour y = γ(c) minimizing the
area of £15 such that if (j\j2)εN(y) then c(j1)= - and c(/2)= + [recall that

We define

X±0' =X±(J)> for all AjCLxT

t o r a l l A < t L x T , (

From (3.12)-(3.14) and the above definitions we obtain

ΣZp_+(c;LxT)=Σ Σ Z^+(c;LxΓ)
ce% γ {c:y(c) = y}

<ΣZp-+(γ;LxT), (3.15)
y

where

Z^ + (y;LxT) = J β -Sr(Lχτ)-as- + ( Lχr)
y

• Π Z-O'̂ ^α2) '̂̂ ) . (3.16)
0'1,./2)etf()0

Our next task is to estimate Zp_ +(y \L x T) and prove it has an upper bound
contaning a convergence factor exp[ — 0(Λ,~1)|y|], where \y\ is the legnth of the
contour y. For the expert such estimates follow by inspection. In the following we
develop some tools used for proving this upper bound.

3.3. Estimates on Zp_ +(y L x T) and Zp

++(Lx T)

Clearly

Σ <l
m— — m o — 1

so that, for some m, — m0 — 1 ̂  m ̂  ra0

2m+l

We set ί? = — - — { and define

so that

Clearly we have

- ^ τ . (3.17)
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Let y _ , y+ be the translates of /_, resp. γ'+ by the space-like vector ( — /0, 0), and let
Θγ+ be the reflection of γ± at {jc = 0}. Let Σ± be the σ-algebra on &"
corresponding to the open sets {x:x = (x, t\ Jc^O}; see Section 1.6 (following
Theorem 1) for a definition. If F is a Σ+ -measurable function on &", ΘF denotes
its reflection at jc = 0 which is the Σ τ -measurable function defined by

ΘF(φ) = F(φθ) , where, for all φ e SS" ,

fora l l/e^ x 2 .
Next we define

f

9"

Π̂
eNί

Π (3.18)

and Zp

+ + (y _ u Θy _ (L + 2^0) x T) is obtained from Z ^ _ ( y _ u Θ y _ ;(L + 2^0)x T)
by replacing δS'_ _((L + 2?f0) x T) by δS+ +((L + 2S0) xT)and χ+ by χ_ on the r.h.s.
of (3.18).

We note that

Π *±0%(/2)

Π ^OΊ
(3.19)

Lemma 16.

Proo/ From Osterwalder-Schrader positϊvity [43] for dμ0 follows the Schwarz
inequality

(3.20)

(3.21)

whenever F is Σ_- and G is Σ + -measurable.
We now recall definition (3.16) of Zp__ +(γ L x T), from which follows
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Since dμ(p' T} is translation invariant, we may shift the integrand in the integral for
Z^ + (y '_u/ + ;LxT) by (-/0>°) τhen we apply the Schwarz inequality (3.20).
This gives

Zp_+(y'_uy'+lLxT)

^Z^_(y_u6)y_;(L + 2/0)xT)1/2Zp

+ +(y + u(9y+;(L-2/ 0)xT) 1/ 2.

By the φ-^ — φ symmetry of dμ(p'T} and Sj we have

Zp__(y_uΘy_;(L + 2^0)xT) = Zp

++(y_uΘy_;(L + 2^0)xT). Q.E.D.

Remark. Inequalities such as Lemma 16 are by now a routine. For previous
applications of these ideas, see [50, 41] also [47, 51]. We are left with estimating
Z^+(y;(L±2/0)x T), with y = y±^jΘy±. We set

(3.22)

where 0+=((8A)~1/2,0), and

S f (L + xΓ)= f £/2x[A:(^ 0y:(x)+l/2Ϊ:φ?:(x)], (3.23)
L ± x Γ

where Wick ordering is done with respect to bare mass 1. We note that

λ:(φ~ φγ:(x)+]/2λ:φl:(x)

= λ:(φ.φ)2:(x)-ϊ:φl:(x)-i:φ2

2:(x)

+ (64λ)~ΐ +φ + φ(x) — 2\Φ + \2 (3.24)

We denote χ ± / J d2x[φί+(&λ)~*']\ by χ±(/). Applying now Lemma 2,Section 1.6,
. \Aj i

we obtain, using (3.24)

Z^+(Lx T)- J e-§l(LxT}dμ(p'τ\φ), (3.25)

and

7P (v ' T v T\— ( 0~SI(L± χT)Z;++(y,L± x i)— j e

0 %+(/1)/τ(/2)
Uί,j2)eN(γ_)

Π χ±(J1)χ+(J2)dμ(p'T)(φ). (3.26)

We define the vacuum energy densities of our model by

aτ(λ)= lim ~\ogZp

+ +(Lx T) (3.27)
L^oo L,' 1

and

αJλ)=limα τ(Λ). (3.28)
T^oo

From a technical point of view the following are the main estimates of this paper.
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Theorem 17. For λ so small that Theorem 1 applies (i.e. the expansion of [17]
converges)

(1) Zp

++(yιL±

(2) lim ilogZ* Λ
Γ->oo Λ

vvzί/z /?(A):g^(l), uniformly in L^L0,for some sufficiently large L0.

We defer an outline of the proof of Theorem 17 to Section 3.4. Estimates
similar to the ones asserted in Theorem 17 are also used in [17, 20, 8].

Corollary 18. Under the hypotheses of Theorem 17

uniformly in L^L0.

Proof. We choose a scale in which / = / = 1, L is an odd and T an even integer.
(This just serves to simplify our notations).

y

= Σ Σ
n {y \y\=n}

^Σ Σ
n {y:\γ\=n}

(3.29)

where ^0 = ̂ 0(y) is chosen as explained above, see (3.17), such that

for arbitrary ε>0 and m Q ^ l / 2 - ε " 1 ; see (3.17). Furthermore Φ{y: |y | = π} is the
total number of contours y [such as defined above, (3.13)-(3.14)] of length \y\ = n.
Inequality (3.29) is Lemma 16 and inequality (3.30) follows immediately from
Theorem 17, (1). Clearly

unless n ̂  7^ since each y has at least length T, as a consequence of our definition of
contours. For n^T a standard argument (a very rough estimate; see e.g. [20])
gives

. (3.31)

Combining (3.30) and (3.31) we obtain

00

y Zp_ (yιLxT)<eaτ(λ}L'τL V 3"e~0(λ~1

y n = T
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provided λ > 0 is sufficiently small. Hence

1). (3.32)

By Theorem 17, (2)

lim ilogZ^+(Lx T)^Λa(λ)L-$(λ), (3.33)
T-+00 1

with

β(λ)^#(l), for L^Lo (3.34)

Adding (3.32) and (3.33) and applying (3.34) completes the proof of Corollary 18.
We are left with proving Theorem 17.

3.4. Proof of Theorem 17, (1)

Without loss of generality we may assume that /~ 1 T = 4m, me^+, and ̂ - 1Lis an
odd positive integer. Here / and £ are the lengths of the sides parallel to the time,
resp. the space axis of the rectangles {Δj}jeΛ. To simplify notations we again use a
scale such that / = /=!.

ί T T]
-—,—}; let {Δj}jezxzm be a covering of the strip

ί , Λ T T} 1<x:x = (x,s), — — ̂ 5^ — > by unit squares.

Let A = A ιuz1 2, where j1 and j2 are nearest neighbor sites in Z x ΊL(T\

. ί T T] .
We cover the strip < x: x = (jc, s), ^ 5 ̂  — f with a union of disjoint translates

T ί Γ Til
of zl. Since — is even < x: x = (x, s), s e 0, + — > contains an integer number of rows

consisting of disjoint translates of Δ, and this number is even if j1 — j2 points in the
jc-direction. We set ε1 =2, ε2 = 1 i f/ 1 —j2 points in the x-direction and εi = l,ε2 = 2
tfj1—]2 points in the ί-direction. For β = (βl,β2)eZ2, we define εβ = (είβί,ε2β2).
Let F be some ΣΔ-measurable function on ίf''; (see Section 1.6, following
Theorem 1).

We define F[β] as follows; (see [50]): If β1 and β2 are both even F[/?] is the
translate of F to the rectangle Aεβ which is a translate of the rectangle Δ whose left
lower corner is located at εβ. If βv (resp. β2) is odd and β2 (resp. βj is even we reflect
F at the line t = Q, (resp. jc = 0) and translate to Aεβ; (reflections at the ί-axis were
defined in 3.3 Θ :F—>ΘF9 where ΘF is Σ^^^measurable if F is Σj-measurable. In
the same way reflections at the jc-axis are defined). If both, β± and /J2, are odd we
reflect in both lines and translate from — A to Δεβ.

Next we define a "pressure" associated with F:

(F)=lim(2πT)- 1log(j Π F^dμ^ ^φ) (3.35)
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and

/JF)=lim/ r(F). (3.36)
Γ^oo

The limits in (3.35) and (3.36) were shown to exist in [50] (see also [8]).
We now consider some special examples :

(1) J = d ( 0 f 0 )uJ ( l i 0 ), F^χ^^Oβχ.ίί^O))^5^0-0^1-^, (3.37)

with Sj as in (1.22), Section 1.6.
We set

= /*r,ιW (3.38)

(2) A similar example is :

O,!)^-5^0-0^0-1^, (3.39)

and we set

^Γ(F1) = /T f l(A). (3.40)

It is quite easy to show that

/oo^H/oo.lW' (3.41)

but we shall not need this.
(3) Next we consider

))^_^^Q^ (3.42)

we note that |4(0>0)| = 1 (in the length scale we use) and that the effect of the first
two exponentials on the r.h.s. of (3.42) is similar to the one of χ+((0,0)).

We set

>r(F2) - /Γf 2(λ) = /ιτ(Θ(F2)) . (3.43)

The following portraits of fiTtl(λ) [resp. fiT>2W] and /'T>1(A) are self-
explanatory :
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^τ j (Λ) = lim log

+ _ _ + + _ _ + iΊ(2nT)

- 2 n -

Fig. 1

This also serves as a portrait of/ r 2(1).

' + + + + + + + + iΊ(2nT)-1

} (λ) = lim log -ί°T

-2n-

Fig. 2

Let y be some curve consisting of sides of unit squares in {Δj}jeπ x z (τ) and suppose
T T 1 / T T\Λ -*-1 4- J-'4- / -*• -ί \

thatyC-T,T jx(-- ) I).

Let N(γ) be the collection of all nearest neighbor pairs of sites ft1,/), with/,/ in
TL x Z(Γ) such that Ap and J 7'2 have one common side in y.

Let Nd(y) be a maximal collection of disjoint nearest neighbor pairs of sites
(J\j2)eN(γ)ι [(/Sj2) and (J1,/2) are disjoint i ff/Φ/ 1 and/Φ/2].

Let JV(d) ^y) be all (j1 J2) in JV(d)(y)'such that both, Δ^ and Aj2, are contained in
L± x T ; and/-/=(±1,0).

Let N'(d)t fy) be all (j1,/) in N(d}(y) such that both, zl^i and /d^ are contained in
L±xT, and/-/=(0, ±1).

Finally let N ( d ) t 2 ( γ ) be all ft1,/) in 7V(d)(y) with

^ιίL±xT, z J , 2 C L ± x T , /-/=(±1,0).

Clearly N(d}(γ) = N(d}ί ΛoOuJV^ ι(y)uN(d))2(y).

Let |Nd>1(7)| denote the total number of nearest neighbor pairs in JVd 1(y), etc.,
and let \y\ be the length of 7. Obviously

M
.(γ)\ + \Nd 2(y)|^—.

4
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(3.44)

with χ±d) = χ±(j\ when Δ^CL± x T, and χ±(/) = l, when ΔfiL± x T. In order to
prove Theorem 17, (1) we must estimate

(j1J2)eN(y)

d; ι(y)uJV d, ι

(3.45)

(3.46)

Equation (3.45) is Equation (3.26), Section 3.3. Inequality (3.46) follows from the
facts that

£χ±(τ)^l, for all;,

and

The following is a self-explanatory portrait of Zp

++(γ;L± x Γ).

Fig. 3

Figure 3 is supposed to explain the notions introduced above. We recommend as
an exercise to the reader to determine JV(y), Nd(y), Ndtl(y), etc. for the situation
sketched in Figure 3 and examine its relation with (3.46)

Proposition 19.

\Zp

++(yιL±

T- 2{\Nd,

Proo/ Similar estimates have been used at various places; see [20, 50, 8]. We first
bound Zp

+ +(γ ;L± x T) by the r.h.s. of (3.46). We then apply Theorem 2.2 of [50]
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("chessboard estimate"). We then use the fact that the "pressures" /Γ ^λ), /^Γ 1(Λ),
/Γ>2(/1), and ατ(/l) are invariant under the substitution φ = φ — φ + 9 (because we
have imposed periodic boundary conditions at ί = ± T/2, so that shifting the field
does not change the pressure). If we compare the result so obtained with (3.38),
(3.40), and (3.43) we get Proposition 19. (There is some difference in notation
between this paper and [50], but this should not cause any confusion. Since the
proof of Theorem 2.2 of [50] is non-trivial and somewhat lengthy it is not repeated
here.) The reader may also consult [8], especially Section 7 and Lemma 4.5.

In order to complete the proof of Theorem 17, (1) it now suffices to estimate

and

This is the content of

Proposition 20. There exist positive constants λQ9 cl (independent of A 0 ! ) ;
T0 = T0(λ0,c1)<ao such that for all 0<λ<λ0, T>T0

(1) αr(λ)^

(2) (i) >Γil(λ)g

(ii) /Tfl(λ)^

Proo/ The proof of (1) is simple: We recall (3.27) and (3.25), i.e.

= lim
L-»oo

the inequality is Jensen's inequality moreover

-i- ί S,(L x T)dμ£ τ\φ) = λ ί :(φ φ)2:(ί x i)dμ^τ\φ)^c2λe-τ , (3.47)
L' 1 y» y»

for some finite constant c2. This inequality is obtained by matching the Wick
ordering of : (φ φ ) : to rfμ(

0

p' T) in (3.47) and using that the mass in the co variance of
the Gaussian measure is = 1 (see e.g. the Appendix of [50]).

Estimates (2), (i) and (ii) follow from the defining equations (3.35), (3.38), (3.40),
(see also Figs. 1, 2) and inequalities (7.18)-(7.28) of [8] by making the following
choices, (we adopt notations from [8], Section 7, (7.20)):
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with

'-""M-1" .„ ,,48,

with

(7=1, J = ε(SλΓ1/2, etc. (3.49)

in(3.48)-(3.49)ε=l/3 so that

In order to obtain estimates (2), (z) and (zz) one now applies Lemma 7.4, Section 7
of [8] with ατ(/ί, 1)^0(;UΓΓ), and (see (7.25) of [8]),

1 , (3.50)7 V ' /= 64λ 3

for some finite constant c3 independent of λ.
Note that α and ά such as defined in this paper differ from α and ά as defined in

[8], here denoted α[8], ά[8], by 1/64/1, i.e.

α[8] = α + 1/64/1, ά[8] = ά + 1/64/1.

Inequality (3.50) is then seen to be Lemma 7.4, (1) of [8].
In order to prove estimate (2), (in) one uses the following [see (3.42)]:
λVe set \~\ = A \ \' ~ A

Φ + Φ(Π)-\Φ + \2/2 -SHU') // ι A\\
c e Λ — v V 1 ? ^ / /

2/2eτ
(1-J~2* l (D'»έΓs'(D'> (3.51)

see (7.20), Section 7 of [8].
One inserts the r.h.s. of (3.51) into the r.h.s. of Equation (3.35) and expands.

Then one applies the chess board estimate in the form of (the field theoretic
version, e.g. Lemma 7.3 of [8], or) Lemma 4.5, (4.33) of [8] to the resulting terms.
The expressions so obtained are bounded by using (7.23) and Lemma 7.4 of [8].
This gives the desired result: Estimate (2), (iii) of Proposition 20. Q.E.D.

Clearly Propositions 19 and 20 give Theorem 17, (1).

3.5. Proof of Theorem 17, (2)

We set

θLL(λ)= lim - l o g Z * + ( L x T). (3.52)
'
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It is well known that the limit exists and that

ααo(λ)= lim aL(λ)= lim αr(λ),
L-* oo T-> oo

(3.53)

where αΓ(A) and a^W have been introduced in (3.27)-(3.28).
If we compare (3.52)-(3.53) with Theorem 17, (2) we see that Theorem 17, (2) is

equivalent to

Our strategy to prove (3.54) is as follows:
First we show that αL(A) and α^λ) are (continuously) differentiable in λ for

λe(0,/l0) (with λ0 so small that for Q<λ<λ0 the expansion [17] of Glimm et al.
converges). Then we have

We then show that

A α m * (dλ' LV ' dλ' °°v>

and this will complete the proof of (3.54).
The convergence of the expansion [17] implies—by standard arguments—that

d
-~oc^(λ) exists, and
oλ

«=oW=τ ί
CΛ ^ LX 1

where

1

2* A,

(3.55)

(3.56)

Differentiability of ocL(λ) in λ is more obvious. One easily shows (using e.g. the
existence of a spatially cutoff Hamiltonian with a unique groundstate) that

A«LW=I ί
<7Λ ^ L x 1

with

(3.57)

We define

(L) -

By (3.55H3.58) we have

(3.58)

(3.59)
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Thus we are left with estimating F(£\x). Let dL(x) = dist I x, \ y: y = (y, s\ y = ± — > .

Lemma 21. For 0<λ<λ0 and L sufficiently large, there exist finite, positive
constants α and β independent of λ and L such that

Proof. Let A be a unit square in LxlR, dL(A) = mindL(x\ and
xeA

ί2x :(φ φ)2:(x) or

We will prove that there exist finite constants /?>0 and y independent of λ and L,
for Q^λ<λ0, L large enough, such that

To see this, we note that

u

where

<A;,

f A
Tl

- , t
λ, +

+ (L) = (AByλ, + (L) -

By Theorem 4.3.1 of [17] (existence of a mass gap uniform in L'\ there exist
positive constants δ and ε such that

Integrating now over L' we obtain (3.60). Inequality (3.60) combined with (3.56)
and (3.58) completes the proof of the lemma. Q.E.D.

From Lemma 21 and (3.59) we deduce

dxe~βd^
LX 1

for some finite constant δ independent of λ and L. This completes the proof of
Theorem 17, (2).

Remark. The simple methods used in VI.2 of [42] to estimate quantities like
L\aL(λ) — α^(A)! do not seem to be fine enough to yield inequality (3.54). (They
appear to give a divergent estimate.)
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4. Summary and Conclusions

We have now completed the proof of our main assertion that the mass gap ms(λ)
on the soliton sectors J^s and jtfL of the anisotropic l^β-model satisfies

where

is the "surface tension" of the anisotropic l^-quantum field theory.
Looking back into our proofs we find the following two features :
I. The inequality ms(λ) ^ τ(λ) can be proven in any two space-time dimensional

quantum field model with the following properties :
1) There exist two (or more) disjoint ("orthogonal") clustering physical vacua

ω+ and ω_.
2) There exists a bounded open double cone 0CM2 and a ^automorphism σ

such that

ω+°σ(A) = ω_(A), for all Aεtf (0L),

where ΘL is the space-like complement of & to the left of &, and

ω+ oσ(A) = ω+(4), for all Aerf (ΦR),

where ΦR is the space-like complement of Φ to the right of Φ.
3) The ^automorphism σ is unitarily implementable on the Fock space of the

free fields corresponding to the basic, interacting fields of the model (which is
assumed to be the limit of spatially cutoff models that can be constructed on Fock
space).

The proof of the inequality ms(λ) ^ τ(λ) is therefore reduced, for a large class of
models in two space-time dimensions (satisfying the "locally Fock property" of
Theorem 7, see [39]) to a problem concerning free fields, namely 3). In general, this
free field problem is non-trivial ! But for some models other than the anisotropic
|0J2-theory this problem can be solved.

The inequality ms(λ)^τ(λ) has also been proven by one of us (J.F.) for the
quantum sine-Gordon equation by somewhat different methods similar to the
ones used in [9] and for λφ\, [10].

II. A non-trivial lower bound on τ(λ) [in the case of the φ\- and the
anisotropic | <̂ > |2 -models : τ(λ)^.Q(λ~ *}] is available in all models for which the
Peierls argument for the "surface tension" converges, (i.e. an analogue of
Theorem 17 holds). This includes the </>2-model, the pseudoscalar Yukawa2 model
and a large class of lattice field theories, in the multiple phase region.

Two natural questions arise :
A. Ism,(λ) = τ(λ)?
We believe that this equation can be proven in the region of convergence of the

expansion of [17] by making a more careful use of the powerful estimates of [17].
This is not attempted here. However, we emphasize that the equation ms(λ) = τ(λ)
will presumably be crucial in a proof of our conjecture that ms(λ) is the mass of a
stable particle, the quantum soliton.
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B. Is there a systematic, asymptotic expansion of τ(λ\ e.g. of the form

Whereas it appears to be easy to guess such expansions and find recipes for
computing the coefficients α _ l 5 α0, α1/2, ... it is very non-trivial to prove that such
guesses are correct in the sense that they give expansions asymptotic to the true
τ(λ). Both, A and B deserve further investigations !

The most crucial question, however, is, whether ms(λ) is indeed an isolated
eigenvalue of the mass operator on the soliton sectors, so that the soliton is a stable
particle, and a Haag-Ruelle scattering theory (see [7, 10]) can be applied.

This paper essentially reduces this problem to analyzing detailed properties of
the spectrum of H_ +(L), for L-»oo. We feel that this could be done by modifying
known techniques.

Formal arguments indicate that ms(λ) is separated from the rest of the spectrum
of the mass operator on the soliton sectors by an upper gap ocm(A), where m(λ) is
the mass gap in the vacuum sector, and that the mass spectrum in the interval
\ms(λ\ ms(λ) + m(λ)) is discrete, (possibly containing eigenvalues corresponding to
soliton-meson bound states).

Finally we should like to conjecture that the existence of quantum solitons in
models like λ\φ\\ and λφ\ in the two phase region is incompatible with Borel
summability of the perturbation series in λ1/2 for the Schwinger functions set up
and proven to be asymptotic in [17].
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