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Abstract. The objects under consideration are a group G containing a
subgroup N of index 2 and an irreducible multiplier representation U of
G by semiunitary ( = unitary or antiunitary) operators on a complex Hilbert
space of arbitrary dimension. It is assumed that U(g) is unitary for all g
belonging to N. Then the following assertion is proved. The representation
of N that is obtained by restricting U to N is either irreducible or an ortho-
gonal sum of two irreducible representations.

1. Introduction

Let us consider a group G, a subgroup N < G, and an irreducible representation
of G. By restricting this representation to the subgroup N we obtain a representa-
tion of N. Which representations of N are obtained in this way? This paper is
devoted to an answer to a special case of this question.

Our most specializing assumption concerns N: the index of this subgroup
is assumed to be 2 (recall that the index of N is the number of distinct cosets gN,
g€G). Examples that are representative for the scope of this paper are the following.

(i) G is the full Poincaré group and N is the orthochronous Poincaré group
[11].

(ii) G is the orthochronous Poincaré group and N is the proper orthochronous
Poincaré group.

(iii) Examples (i) and (ii) with the Poincaré group replaced by the inhomo-
geneous Galilei group [3].

(iv) G isthe group that is formed by the semiunitary ( = unitary or antiunitary)
operators on a Hilbert space and N is the subgroup of unitary operators.

(v) Consider a semiunitary multiplier representation U of a group G; then
the so-called unitary subgroup {geG:U(g) is unitary} is a subgroup of index
lor2.

Our second assumption concerns the kind of irreducible representations to
be considered. To cover all those representations of the groups in (i)—(iii) that
occur in physics, we consider semiunitary multiplier representations. These
representations (see for instance [4, 8]; on a classification of the multipliers of
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G in terms of those of N see [12]) are well known to be the natural group re-
presentations in quantum theory if there are no super-selection rules.

Finally we assume that the representations under consideration (which may
or may not involve antiunitary operators) are unitary as representations of N.
No topological or measure theoretical properties of groups or representations
will be required.

Considering representations on finite dimensional vector spaces over an
arbitrary algebraically closed field, Clifford [5] has answered our introductional
question for any finite index of N; in the case of index 2 his answer is: The above-
mentioned representations of N are either irreducible or direct sums of two
irreducible representations. The essential statement in the present paper is that
this answer is correct also for semiunitary multiplier representations on Hilbert
spaces of arbitrary dimension. Let us call this statement the 1-2-Lemma (the
representations under consideration are asserted to contain 1 or 2 irreducibles).
Compared with the above-mentioned result of Clifford, this lemma is more
general in that it does not assume the representation to be finite dimensional
and more special in that it assumes that the representation space is a complex
Hilbert space the norm function of which is conserved by the representation
operators.

As is carried out in [7, 9], the 1-2-Lemma, combined with some algebra that
is essentially known from the finite dimensional case [1, 2, 13], yields the solution
of the following problem:

(vi) Construct the irreducible semiunitary multiplier representations of a
group, supposing that the irreducible unitary multiplier representation of its
subgroups of index 2 are known.

Unfortunately, the arguments given in [7] and [9] to prove the 1-2-Lemma
itself are conclusive in the finite dimensional case only—see the remarks in
Section 3. Thus, to prove the 1-2-Lemma correctly means to complete the proof
of the results on (vi) given in [7] (without proof, these results may be found in
[3], pp. 146—-148) and [9].

From a physical point of view, the most interesting applications of the above-
mentioned solution of (vi), and hence of the 1-2-Lemma, is that it allows to
construct and to classify completely the irreducible semiunitary multiplier repre-
sentations of the full Poincaré group [7,10] and of the full inhomogeneous
Galilei group [3] starting with the well-known unitary irreducible multiplier
representations of the respective proper orthochronous groups. Since this way
of adjoining discrete symmetries, such as space inversion and time inversion,
uses no topological and measure theoretical properties of the groups, it is surely
less technical than the alternative way of generalizing the Mackey theory of
induced representations such that antiunitary representation operators are
allowed [8, 10].

2. Formulation of the Results

Conventions. We will use the words Hilbert space, semilinear operator, semi-
unitary operator, and conjugation operator respectively in the sense of complex
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Hilbert space of arbitrary dimension, linear or antilinear operator, unitary or
antiunitary operator, and antiunitary operator the square of which is the identity
operator.

Definition. Let S be a set of semilinear bounded operators on a Hilbert space H.
Then a closed subspace L of H is said to be irreducible under S if L is invariant
under S and no closed subspace of L, except L and {0}, has this property.

As a criterion for the irreducibility of H under a set of semilinear operators
we shall need

“Schur’s Lemma”. Let S be a set of semilinear bounded operators on a Hilbert
space H and suppose that for any BeS some complex multiple of B* belongs to S
(this is particularly satisfied if S = U(G), where G is a group and U is a semiunitary
multiplier representation). Then, H is irreducible under S if and only if the real
multiples of the identity operator are the only bounded selfadjoint operators that
commute with S (i.e. with all BES).

1-2-Lemma. Let G be a group containing a subgroup N of index 2. Further, let
U be a mapping from G to the set of semiunitary operators on a Hilbert space H
and suppose that U has the following properties:
(i) U(g)U(h) = w(g, h)U(gh) for all g,heG, where w(g,h) is a complex number;
(i) H is irreducible under U(G);
(iii) U(g) is unitary for all geN.
Then one of the following assertions (iv) and (v) holds.
(iv) H is irreducible under U(N).
(v) H is the orthogonal sum of two closed subspaces
H, and H, that have the following properties:
(1) UgH,=H,,U(g)H, = H, for all geN,
(2) Ulg)H,=H,,U(gH, = H, for all g¢N,
(3) H, and H, are irreducible under U(N).

3. Proofs

Proof of “Schur’s Lemma”. Let L be a closed subspace of H and let P be the
selfadjoint projection operator associated with L. Obviously, L is invariant under
some BeS iff PBP = BP. Therefore, L is invariant under B and B* iff P commutes
with B. Thus L is invariant under S iff P commutes with S. Therefore, the Lemma
is proved if we have shown that a bounded selfadjoint operator A commutes
with BeS§ iff its spectral projections (E,),., do so. If B is linear, this is a well-known
fact. If B is antilinear, we choose a conjugation operator K that commutes with
A and with the spectral projections E, (the existence of K is evident from that
version of the spectral theorem which represents 4 as a multiplication operator
on a direct sum of L*-spaces [6]). Then it is clear that the following statements
are mutually equivalent: BA = AB;BKA = ABK;BKE,=EBK for all teR
(note that BK is linear); BE, = E B for all teR. This completes the proof.

Proof of the I-2-Lemma. If (iv) does not hold, there is a closed subspace H,
of H that is invariant under Ulg) for all ge N. Since these U(g) are unitary the
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orthocomplement H, of H, is also invariant under U(N). Since any U(g)is bijective,
this proves (v.1). With respect to the decomposition H = H, @ H,, we will use a
self-explanatory operator-matrix-notation; in particular we write U(d) = (g g)
for some deG with d¢ N (A, B, C, D are bounded semilinear mappings H, —» H,,
H,-H, H - H, H,— H,). By virtue of (v.1), any operator U(g) with geN
is diagonal in this notation. In order to prove (v.2), it is obviously sufficient to
show that U(d) is skew-diagonal i.e. 4 =0 and D =0. We show first that the
linear bounded operator Z:= WU(d)* with W:= <z)4 ?)) is selfadjoint
and commutes with U(G). As is easily seen, any of the following statements implies
its follower: U(d)U(d)* = 1; AC* = — BD*; WU(d)* = U(d)W*;Z = Z*. Thus Z
is selfadjoint. To show that Z commutes with U(G), it is obviously sufficient
to show that it commutes with U(d) and U(N). Let us begin with U(d). Since we
have U(d)? = w(d,d)U(d*) and d?eN, the operator U(d)* is diagonal so that
AB= —BD and CA= — DC and hence WU(d) = U(d)W and ZU(d) = U(d)Z.
Now we consider the condition ZU(g) = U(g)Z for geN. It is clearly equivalent
to WV(g)= U(g)W with V(g):= U(d)*U(g)U(d). V(g) is diagonal since it is a
complex multiple of U(d ™~ 'gd) and d~'gd, as g, belongs to the invariant subgroup
N (a subgroup of index 2 is always an invariant one). Let us write V,(g), V,(9),
and U,(g), U,(g) for the diagonal elements of V(g) and U(g). Then the condition

(@) XV(g) = U(g)X for ge N and any bounded semilinear operator X = <§2 f,) is

obviously equivalent to the following system of equations
QVi(9=U,)Q, TV,(9)=U,@)T,

(b)
RV,(9)=U,(g)R, SV,(g) = U,(9)S.

Now it is evident from the definition of V that X = U(d) is a solution of (a) and
hence that Q = 4, R=B, S=C, T =D is a solution of (b). Then, Q = 4, R=0,
§=0, T= — D is also a solution of (b) so that X = W is a solution of (a). Thus
we have shown that the selfadjoint operator Z commutes with U(G). Since H
is irreducible under U(G), “Schur’s Lemma” shows that Z is a real multiple of
the identity operator, say Z = z1. This is equivalent to W = zU(d) and hence to
the equations A =z4, 0=2zB, 0=zC, —D=:zD. If z#0 we conclude B=0
and C = 0, as a consequence of which the spaces H, and H, were invariant under
U(d) and hence under U(G) in contradiction to (ii). Thus we have z =0 and hence
A =0, D=0, which completes the proof of (v.2). Now assume that (v.3) does not
hold. Then H, or H, contains a non-trivial closed subspace L that is invariant
under U(N). By (v.2), U(d)L is orthogonal to L and, therefore, L @ U(d)L is a
closed non-trivial subspace of H, which, by (v.1) and (v.2), is easily seen to be
invariant under U(G) in contradiction to (ii). This completes the proof.

Remarks. The main statement of the present Lemma is used in [9] without
proof: that there is a closed subspace of H that is irreducible under U(N). In the
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last step of our proof it is essential that U(d)L is orthogonal to L; if we know only
LN U()L = {0} it is not clear that L + U(d)L is closed. Therefore, the irreducibi-
lity of H under U(G) has no direct bearing on this space. This point is overlooked
in both [7] and [9].
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