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Abstract. An extension is given of the development by Schultz et al. [3] of the
pioneering work of Kaufman and Onsager [2] on the planar Ising fer-
romagnet. This involves a novel form of Wick's theorem [19] for fermions. In
subsequent papers the method will be applied to determine the rc-point
functions and to evaluate rigorously critical indices.

I. Introduction

The algebraic method of computing quantities in the Ising model requires the
spectral decomposition of the transfer matrix and the evaluation, in the basis
generated thereby, of matrix elements of appropriate operators. The purpose of
this paper and the following one is to give a complete determination of all such
matrix elements for the planar ferromagnet with nearest neighbour interactions
and subject to cyclic boundary conditions. The techniques pioneered by Onsager
[1] and Kaufman [2], together with their subsequent development by Schultz et
al. [3], will be extended. Thus the present work is quite unlike that of Wu and
coworkers [4] in which combinatorial concepts and Pfaffians are introduced at the
outset. Further, the results given here are rigorous. The principal application
reported here is the determination of n-point functions, [5], also obtained by
McCoy et al. [6]. The 4-point function has been investigated in some detail by Au
Yang [7]. Previous applications of these results are the proof that the suscepti-
bility divergence exponents are γ = γ' = 7/4 [8] and the investigation of the
interface between coexisting pure phases [9]. To put the results in context, the
Ising model will now be defined: let Zd generate the d-dimensional hypercubical
crystal lattice with unit edge, the Cartesian coordinates of each lattice site, called a
vertex, being r = (rί ...rd), r^TL. At each vertex r there is a spinσ(r)= ± 1. A spin
configuration {σ} on a sub-box Λ is defined by specifying σ(r) for each re A, and
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the collection of all such configurations is the phase space 1P(Λ). The configuration
energy EΛ({σ}) is a function from IP(/1) to IR given by

(r)-@Λ. (1-1)

In the above J(rί — r2) is a non-negative translationally invariant coupling and
J(r) = 0 unless r= ±et for some i where (6^ = 0^ the Kronecker delta. The latter
requirement stipulates that the interactions are of nearest-neighbour type. If
J(r) = 0 then the system is termed ferromagnetic. The second terms is a polari-
sation due to a magnetic field H. The summations are over all r^A. Finally 38A is a
boundary term it might specify, for instance, that all spins on the surface dA of A
are +1, or that there are toroidal boundary conditions so that spins of opposite
sides of A are coupled by a J. The probability of a configuration on A is given by:

pA({σ}) = Z^exp-βEA({σ}), (1.2)

where β = l/kBT, T, and kB being the absolute temperature and Boltzmann's
constant respectively; ZΛ is the canonical partition function which normalizes
(1.2). The dependence of pΛ on the boundary conditions <%A is crucial for an
understanding of phase transitions in the following sense: let A C ΊLd be a subset
with diameter d(A)< oo, and let 0A :lP(Zd)-*IRbe a function of support A, this is, let
it be independent of σ if iε7Ld\A. Consider the expectation values with respect to
(1.2) denoted ^OA>A^Λ

 an^ finally their limiting behaviour

<0A>* = ]ύn<0A>AtΛΛ, (1.3)

where the Euclidean distance d(A,dA)-^co as Λ.-»oo in the sense of van Hove. We
shall be particularly interested in the dependence of <0^>^ on the sequence of
boundary conditions. If there is dependence for some {&A}, then we have a phase
transition, by definition [10]. For instance, it has been shown that for the planar
ferromagnet with ,4 = (0,0) and J>

 + (resp_, = {σ£= +1 (resp - l ) V z e c M } that
— <0 0>_ = <σ0>+ >0 for all β>βc where β~ is Onsager's critical temperature. By
placing + spins round the upper half and — spins round the lower half, phase
separation can be studied. The relevance of matrix element computations to this is
discussed in [9]. The first problem is, then, to write down quantities in terms of
transfer matrices [11]. This is done for two simple examples for dimension d = 2to
fix notation.

Let A be a ractangle with N rows and M columns which is wrapped on a torus
by specifying a suitable &Λ in (1.1). Let xn denote a configuration of the M spins on
row n, written in a binary form: (xn)i=±ί, ί = l,...,M; there are 2M such
configurations. Define the matrices T± and T2 by:

M

Tl(x^xa+1)= expKi Σ (*„¥*„+1), , (1-4)
i = l

M

T2(x**„+1) = !(*„,*„+1)expΣGMxJKUi + ̂ n);), (1.5)
1

where Kj = βJj9 h = βH.
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Let the state of the top and bottom rows be described by the vectors pί and pN.
Then the partition function for such a situation is given by

z= Σ p
XI,X'I;...;XNXN'

N-ί

which is in the form of a matrix product :

Z = plT2(T1T2f-ipN. (1.7)

For a special choice of OA and ̂  in (1.3) consider the n-point function for toroidal
boundary conditions on the lattice Λ9 denoted (σ((r)n)yttNM. Here (rn) = rί9...,rn

where r feZ2 gives the position of the ith point. The coordinates xf in the direction
of transfer can always be ordered so that xt^xi+l for i = 1, . . . , n — 1. Then

<<KMJW=V^^ (1-8)
with

Z^TrCΓ^yV (1.9)

The layout of this paper is as follows : in Section II notation will be established and
the standard results for the spectrum of the symmetrised transfer matrix with zero
field will be given. In the following sections the theory of the matrix elements will
be presented. There are appendices which give some relevant results from the
theory of semi-infinite Toplitz forms and of Wiener-Hopf factorisation.

II. Notation

Consider the Hubert space 2tfu which is a tensor product of M two-dimensional
M

Hubert spaces ffl this is denoted by #CM= (X) 2tf. Any linear operator on this
i

space can be expressed in terms of the Pauli spin operators

σ« = '(χ)l®σ2(§)l, (2.1)
i j + i

where σα (α = x, y, z) in a particular basis for jtf have the matrix representation

-e ΰ -c 7i --G -?)•
The σ^ have the usual commutation relations.

Returning to (1.4) at seq., let us regard 7], j= 1,2 as matrix representatives of
mapping of $?M onto itself; further, let the configuration of each row be an
eigenvector of the σ^, j = 1, . . . , M. Then we have

M

T1-+F1=(2sinh2K1)
M/2exp-K*I>J

z (2.3)
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The symbol T-> V means that T is a matrix representative of the operator V. The
function j£* is defined as an involution on K1 by

. (2.4)

Finally

T2^V2V3 (2.5)

with
M
Σσ*σ*+1 (2.6)
1

(2.7)
1

In the following we shall consider the symmetrised forms

and

V = Vl

which are self-adjoint and therefore have a spectral decomposition.
The symmetry group of V and V contains as a subgroup the translational

group ?ΓM of order M generated by the translation T which is defined as follows :

for a = x,y,z. In order to exploit this symmetry, and at the same time retain
tractable commutation relations, it is convenient to apply the Jordan-Wigner
transformation [4] to (2.1): define

(2-9)
1

Then the fn have Fermi anti-commutation relations

[/,,/J+=0, [/n,/m

+]+=<5nm (2.10)

Spinors Γ;. may be associated through the relations

Γ2J=-Hfj+-fj. (2.11)

Evidently [Γ,, ΓJ + = 2δjk the Γ,. generate a Clifford algebra [12] on J^M.
The vacuum state |0> in 3CM is defined by

/JO>=OVn=l,...,M (2.12)

and a basis is given by the vectors

|0>, /n

+|0>, /n

+/m

+|0>,... . (2.13)
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This can be reduced according to the group 2ΓU as follows :

Theorem 1. Let F£ be defined by

F^=M-^^eίkmf^ . (2.14)
1

Then a sufficient condition that

ΓF^..F,:|0> = e'V+...F+|0> (2.15)
r

is that k=Σ kp where
i

exp/M/c^-l)'"-1, 7 = 1,. . . , r . (2.16)

Proof. See [13]. Note that wave numbers are required which actually give
characters of the cyclic double group.

For convenience, we shall adopt the notations α and β for wavenumbers
where 1 = exp/Mα = — expz'Mβ. We shall also define the sets S^ by

S*={z:zM=+l}. (2.17)

Theorem 1 motivates the decomposition of fflu into orthogonal subspaces ^^
by the projectors

β±=(l±P)/2, (2.18)

where

F=Π(-^2) (2.19)
1

detects the parity of r for any state F^ ...F^|0>. Since we have

<48>, (2-20)

where the transformation function is given by

= 2/M(expi(α-j8)-l) (2.21)

the bases generated by either the Fα

+ or the Fβ are equally valid in principle but in
J#'M (resp. Jtf'ΰ) we should use Fβ (resp. Fα

+). It is vital to note that

ΉΛ L -o, [ί kl,Fk

+

2]+ =δkίk2 (2.22)
provided expifcy eSj£ for both 7 = 1,2; or Qxpίk.ES^. But from (2.20), (2.21) we
have

[^FJ+=<α|/?>. (2.23)

Thus canonicality is only preserved under the transformation (2.14) if both
momenta have the same type.
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Any operator A on j^M can be written as

where

[^,P]-=D40,P]+=0. (2.24)

Odd operators A0 only have non-zero matrix elements between ^^ and ̂ 7. A
typical example encountered in (2.38) is σ*. On the other hand, operators which
belong to the even subalgebra ςΆe of 91 can be decomposed by P into parts which
operate in 3?^ and in ^^. A typical element of 9le is V9 for which

V=V+Q+ + V_Q_ . (2.25)

The vital point about V± is that, unlike V, they are quadratic in the Fermi
operators and may thus be brought to diagonal form by canonical transfor-
mations. The associated diagonal form are

F±-(2sinh2K1)
M/2exp-iXy(/c)(2G f c

+Gk-l) , (2.26)

where the sums are over expi/ceS^ respectively. In the above γ(ω) is the Onsager
function [7] it is the root of the equation

coshy(ω) = cosh2K* cosh2X2 - sinh2£* sinh2£2 cosω (2.27)

which is positive for the real ω. The G^ are given by a Bogoliubov-Valatin
transformation [14] :

Gfc

+ = cos θ(k) F£ - ί sin θ(k) F _ k . (2.28)

Provided that θ(k) satisfies the relationship θ(k)= — θ( — /c)modπ, this is canonical
under the same restrictions as in (2.22).

Otherwise there is a linear dependence relation from (2.20) and (2.21)

G^ΣOSIαXcos^-ΘJG. + isin^-ΘJGίJ. (2.29)
α

In the rest of this paper the following notation will be used :

Θ(eiω)=exp-2iθ(ω). (2.30)

For V, one has the same dispersion function y(ω) as for V but

whereas for V one has ,

IA\'2 1 \(z-B)(z-A-^2

Θ(Z^-(B) Z[(Z-B-^-^)J (132)

where

. (2.33)
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Provided K^=K2 (the Onsager critical temperature) Θ(z) has a pair of branch
points inside the unit circle and a pair outside. That sheet of the Riemann surface
is selected for which 0(1)= - 1 if B> 1, but for which 0(1) = + 1 if B< 1. Let the
vectors |Φ±> be defined by

\Φ±y = Yl(cosθ(k) + ίsmθ(k)F+kFΪ)\θy , (2.34)

where expifeeS^ respectively and 0<fc<π, M even. The vacua for (2.28), |Φ±>, are
given by the equations

G β |Φ_> = G,|Φ + > = 0 . (2.35)

Then clearly |Φ + > = |Φ + > for all B+ί (2.36)

but

0

+|Φ_» (2.37)

if B< 1 (resp. B> 1). We assume M even; thus -
The spectra of (2.2) are :

B>ί:

^M : |Φ_> G+G α

+

2 |Φ__>.

There will be an asymptotic double degeneracy corresponding to coexistence of 2
pure phases [15].

To conclude this section, the n-point function will be expressed in terms of V
and its spectral representation. From (1.8) it follows that

σJ7^-^σ^...F^-^-σJ:nF^-^) (2.38)

with

Zt = TτVN . (2.39)

The thermodynamic limit of the n-point function is known to exist in the sense of
van Hove [16]. In (2.38) one can then take 7V-»oo followed by M->oo. Since the
maximum eigenvalue of V, Λ + , is strictly non-degenerate for finite M by the
Perron-Frobenius theorem [17], vector |Φ + ), it follows that

<σ(r)Π> = Jί^<Φ + |^ι7
X2-Λ^..7x"-χ»-χjΦ + > , (2.40)

where V= V/Λ+ V has maximal eigenvalue unity.
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Spectral decomposition of V gives

n

<σ(r)H>— lim Y exp — V Γy τ 0x;, Λ — x, ) — iω,(v,, « — y )]n Λ / f _ v ^ > -̂̂  ^ z _ - / L ' 7 ^ j~r i j/ 7 v > / J " r J - J3'-*
IvL ~~* CO ^

Jl Jn-l 1

«-l

1

In the above V and T have been brought to diagonal form simultaneously and

= e-yj\φ\ (2.42)

describes the translational character of the states. Thus, as stated previously, the
objective is to determine all the matrix elements which occur in (2.41). By using the
linear dependence in (2.29) and the defining relationships (2.9), (2.14), and (2.28)
this will have been achieved when <Φ_|G α n . . .G |Φ + > has been obtained.

The key to the next section is the observation that

<Φ-\Gan...GΛ2Gβ\Φ + y=0. (2.43)

Using the linear dependence of the Gβ on Gα and Gα

+, (2.43) gives an integral
recurrence relation on n for the matrix elements which can be solved by an ansatz
of the Pfaffian type [18] which is therefore reminiscent of Wick's theorem [19].
The analytic development for operators G defined by (2.28) will now be given. As
the reader will perceive, the underlying translational invariance enters in an
essential way in the following analysis of (2.43).

III. General Method

This section begins with some definitions, labelled for convenience Dj, which will
be referred to in what follows.

D 1 : (z)M is the n-tuple of complex numbers zj

(z)π = (z l 9...,zπ) . (3.1 a)

The notation (z)nm, 1 ̂  n< m denotes

The special case (z)0 will be regarded as the empty set 0. Obviously (z)f can be
defined for any subset / of the positive integers.

D2: For JΦ0, we define Ai9 ieΊL+ by

-0, iφl . (3.2)

Finally, for any JcZ+, we have

Λ=ΓR (3.3)
ieJ
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D3: Complex-valued functions F((z)n) are defined for n^l. To exploit the A
notation above fully, F((z)0) = F(0) is taken to be a complex constant.

D4: Let

Gα M . . .Gα ι |Φ+> (3.4)
i

with Zj = Qxpittj.
D5: Two classes of functions <9(z), introduced in (2.32), will be considered:

Θ(z) is

continuous and non-vanishing on |z| = l.

stfγ: Θ(z) is analytic in an anular region

{z:r~1<|z|<r} with r>l.
The winding number

is given by

(3.5)

where Δc is the increment entailed by one positive passage around the unit circle.

Proposition 3.1. For n^2, the FM((z)n) of D4, Equation (3.4) satisfy

2

where

n = 1, ί/ϊe π'gf/ίί /ιαnd 51̂  o/ (3.7) is replaced by zero. The function FM(ZJ,)
satisfy the additional equation

> . (3.8)

-eS^

Proo/ Use the vacuum property <Φ_|Gα n . . .GαJΦ + >5 the linear dependence
relationship (3.32) and the anti-commutation relation [Gα

+

ι?Gα2]+ =^αια2

Introducing (2.23), (2.24) and (2.33) together with (3.4) gives (3.6) and (3.7). The
result (3.8) follows from (2.31), (2.17), and (2.12).

Proposition 3.2. // Θej^(r) we have

I FM((ι
W

M(^l ωn)> (3.9)
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where C is a simple closed contour in the anulus of analyticity surrounding the zeros
o/zf-1, but not the pole at z1=t (Note: tM=-i).

Proof. Use the residue theorem and the fact that FM((z)n) is a product of a function
analytic in z1 for r~1<\zί\<r and a polynomial of degree 2M.

Remarks. Proposition 3.1 suggests that one solution of (3.6) might be given in
terms of the functions /M(z, ί) which satisfy (3.6) with n = 2. This would give a
recurrence relation with <Φ_|Φ + ) and FM(z) as the initial conditions for n even
and odd respectively. But Proposition 3.2 suggests that, since interest only attaches
to the limit M->oo, (3.9) should be replaced by

(Y+F)((z)n)= £(- IVXz^K .(z)J (3.10)
2

with the operator Y+ defined in principle by

1

where Cx is the positive unit circle and £P is the Cauchy principal part. Thus one
n

poses the following problem: Let F((z)n)ej^ (^^(S^)) be a function on the

π-particle subspace of Fock space [20]. Then (3.11) is properly defined (by
reference to the theory of the Hubert transform [21]). What solutions exist to
(3.10) and in what sense are they approximated by the solution of (3.9)? The
following two sections are addressed to these points.

IV. A Wick Theorem

The operator Y+ defined by (3.11) was first encountered by Yang [22]. Properly
speaking, it is only defined by (3.11) on a dense subset of the Hubert space

n
2(S1). When n=l, the following two propositions ήiay be verified.

Proposition 4.1. i) | |7+ | |^2;
ii) Y+ is self-adjoint (provided Θ(ω) is real);

iii) one has the decomposition

, (4.1)

where &Q is the invariant subspace with zero eigenvalue.

Proposition 4.2. Let f,geL2(S1); consider the solutions of Y+f = g. If ^0 = {0}
then Y+ is invertible. On the other hand, if dimJ*0>0 then a solution only exists if

. then

(4.2)

where Y+ is the restriction of Y+ to 3$$, and he&0 is arbitrary.
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By appealing to the theory of semi-infinite Tόplitz forms a simple criterion can
be given the dimension of J*0 :

Theorem 4.1. Let <9ej/: then

(4.3)

The proof of this is given in Appendix A.
The following theorems discuss the solution of (3.11) in the cases J>(Θ} = $ and

Theorem 4.2. // </(<9) = 0, then (3.10) and (3.11) have the unique solution

F((z)2n+1)=0 , (4.4)

F((^2n) = Σ (- lX/(^.)f (/I u(z)2n) , (4.5)
2

where

f(z,f) = (Y^h)(z,t) . (4.6)

The proof follows immediately from Proposition 4.2.

Remarks. 1. In the Appendix B, Wiener-Hopf factorisation is used to show that

\z))> (4.7)

where

Θ = Θ + Θ_ (4.8)

is a canonical Wiener-Hopf factorisation (see Appendix B, Definition B.I). Note
that /(z, t) is antisymmetric and, with |£| = 1, is z-analytic for r~1<|z|<r.

2. The solution (4.5) is just the defining relation for a Pfaffian with pair
contraction / [18]. Since / is antisymmetric, F((z)2n) is also antisymmetric in its
arguments, as anticipated.

3. The recurrence (4.5) has the boundary condition F(0) which has to be
determined by other methods.

Theorem 4.3. // J?(Θ)= ±1 and <9eX then a solution of (3.11) is

F((z)2n+ι)= Σ (-^jf(z1zJ)F(Δίj(z)2n + ί ) + F(z1)G((z)2>2n+1) (4.9)

and

F((z)2n)= Σ(- ιy/(^m,(z)2») ' (41°)
where

(Y+F)(z) = 0 (4.11)
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and

= m* . (4.12)

The function G is arbitrary and /(z, t) is a solution of the equation

. (4.13)

Proof. Equations (4.9) and (4.13) constitute a solution of (3.11) because the term
F(t) in (4.13) gives a Pfaffian with two repeating rows; this vanishes. The initial
condition for (4.9), F(z\ should be fixed by (4.12). Equation (4.10) is a solution
analogous to that of Theorem (4.2) with F(0) as an initial condition.

Remarks. 1. Using the Wiener-Hopf factorisations given in Appendix B, the
following results are readily obtained [see (4.12)] : if

1, F(z) = m*Θ(Q)ΘI1(z) 9 (4.14)

- 1 , F(z) = m*Θ + (0)zΘ+ί(z) (4.15)

with /(z, ί) defined by

one has (4.13) with F(t) = ί/Θ(t) and

G(z) = 20 + (0)z/0 + (z) (resp. 2Θ _ (0)/0 _ (z)) (4. 1 7)

for ./(0)=-l (resp. +1).

Theorem 4.4. // <f(Θ)= ± 1, ί/ze unique antisymmetric solution of (3.10) m ίΛe /orm
(4.9) and (4.16) is

F((z)2n + 1)= 2*Σ \- ίyF(zj)F(Aj(z)2n + 1) . (4.18)

Proof. The antisymmetry of (4.18) follows from basic manipulation. The proof of
uniqueness proceeds by induction: F(zί) is certainly unique (see Appendix A).
Make the inductive ansatz that F ( ( z ) 2 n _ ί ) is unique. Then, if Fί((z)2n+1) and
F2((z)2n+1) are two solutions of (3.10) in terms of F(z)2n_1, it follows that

y+(ίΊ-F2) = 0 (4.19)

which has the solution

(F1-F2)(z)2n+1=F(z1)G((z)2ι2n+l) . (4.20)

But F1—F2 must also be antisymmetric. Hence G = 0 a.e. and the theorem is
proved.
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V. Thermodynamic Limit

We now return to the question of the sense in which F((z)n) is a limit of the FM((z)n)
which satisfy (3.9). A solution to this equation certainly exists in the Pfaffian form
of (4.9) and (4.9) but with an M-dependent contraction function fM(z,t) and, if
^(Θ)=±lj and M-dependent element in J*0. We now construct an integral
equation for the difference

If 6>εj/(r) then (3.10) and (3.11) may be rewritten as

2) = Λ ( ί > Z 2) j (5.2)
πic\ z, zjt-l \ Θ(t)

where C+ ={z:\z\ = rl, I^r1<r} taken once in the positive sense. Taking (5.2)
with (3.9) gives

where $M is given by

at

c\ t r-i c- t tM-ι
1

where C_ = {z: \z\ = r', r~1 < r' < 1}, again taken once in the positive sense. Now
fM(t,z2) is analytic in ί for r"1 <\t\<r. Hence

>M((z)2)|^r-M(£ + § } \ f M ( t , z 2 ) f d t
\C + C-

by use of the Cauchy-Schwartz inequality. Since /M(ί, z2)* is also analytic in t for
r~1<|ί|<r, |z2| = l, the line integrals in (5.4) may be deformed to the unit circle.
Now ||/M|| 2^1. Thus

\\δfM\\2^2\\Y^\\br~M , (5.5)

where I<r0<r. This bound will be satisfactory. If ^0 is non-null then the
restriction of Y+ to ̂  should be taken. Precisely the same sort of bounding
procedure works for δF(z).

The following two lemma show how the estimates are applied in establishing
the thermodynamic limit.

Lemma 5.1. The matrix elements satisfy the bound
1} . (5.6)

Proof. Consider the Pfaffian expansion replace each contraction /M( , ) by
/( , ) + δfM. Each term has an L2 bound

(11/11 + I I δf\\T£ II/Γ expnlog(l
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from which (5.6) follows. The prefactor is just the number of terms in the Pfaffian
expansion.

n

Lemma 5.2. Suppose that for a sequence {G((ω)π);n^0} of (X) L2 [0, 2π] -
i

integr able functions there exists a constant K>0 such that

sup ess. sup\G((ω)n)enK = C<oo . (5.7)
n ^ O (ω)n

Then

Hm

= Σ - r ^ T Π rf(ω)JF((0M)|2G((ω)n) .
0 ϊl ' \^n) - π

Proof. This follows directly from Lemma 5.1, its obvious extension to the case n
odd, and from (5.7)

The following lemma is a trivial consequence.

Lemma 5.3. Analogous estimates to those of Lemmas 5.1 and 5.2 hold with discrete
sums ω = 2πj/M, j = 1, . . . , M.

These results suffice to establish the thermodynamic limit. The existence of
limits term by term in n is a direct consequence of the Helly theorems [25].

VI. Conclusions

This paper has given a general method for handling odd operators in spinor
algebras of the type encountered in lattice statistics. It relies on the linear
dependence between the two families to produce the perhaps unexpected Wick
structure. The cyclic symmetry enters in an essential way the reader will notice
that this leads to semi-infinite Toplitz forms whose properties are rather well
known and very useful in this context. The following papers shows how the ideas
developed here can be applied to the rectangular Ising model.
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Appendix A: Semi-Infinite Toplitz Forms

First consider the content of the subspace ^0: Y+f = Q can be rewritten as

where g(z) = f(z)/z .
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Introducing the Hubert transform on L2(Sί) by

UJ> A7

/(z) (A'2)

reduces (A.I) to the form

0. (A. 3)

Now Θ and g have L2-convergent Fourier series. The coefficients for a function /
are defined by

f(eiω}= Σfne
inω (A.4)

— oo

From (A. 2), we can equivalently regard H as operating on the associated I2 space
of the coefficients :

.sgnn. (A.5)

Then (A. 3) takes the form

° (A.6)

Σβ;-J(-(m+l),=0
o

for 0^ft<oo. From the Definition D.5, (3.5) the winding number satisfies

S(Θ~l)=-S(θ). (A. 7)

Definition. D.A.I.: A semi-infinite Tόplitz form is defined for ΘeL2(S1) for n a
non-negative integer in terms of

m/» (A.8)
0

The following theorem is essential to our thinking :

Theorem Al. Let Θ(elω), be continuous in ω. Then TΘ is invertίble if and only if
6>(z)φO far \z\ = ί and ./(Θ) = 0. For the proof, see [23].

Remark. The following remarks are addressed to the inversion of TΘ when
,/(Θ) = 0, and to the construction of 3S0 when «/(Θ)=t=0.

Definitions. D.A.2.: Let feL2(S1): then / is analytic (resp. coanalytic) if Cn = Q
for n<0 (resp. n^O).

Lemma Al. If Θ has the form

Θ = ΨΦ (A.9)

with either Φ of analytic type 0 ψ of coanalytic type, then

TΘ=TΨTΦ. (A. 10)
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Lemma A2. Assume Φ is of analytic (resp. coanalytic) type. Then Tφ is invertible if
and only if Φ is bounded away from zero inside (resp. outside) the unit circle.

Lemma A3. If Φ = Φ+Φ_ where Φ+ (resp. Φ_) is analytic (resp. coanalytic) and
Φ± satisfy the boundedness conditions in Lemma A2. Then

*Φ = T1/φ+T1ιΦ . (A. 11)

The cases with J>(Θ)= +n, neZ+ can now be handled.

1. J(Θ) = n, n>0. Define

Θ(z) = znΘ(z) (A. 12)

so that Jί(Θ) = 0 using Lemma Al, it follows that

and

V^Ti-iS",

where the shift S is defined by

(S/)o = 0, (Sf)n = fn-ι>

and S* is its adjoint

Now let B by any l\ vector such that (T$b)m = Q for all m^n— 1.
Then it follows from that

Tθb = 0. (A. 17)

However, the equation

Tθ-1a = Q (A. 18)

has only the solution α = 0.

2. S(Θ)=-n, ne%+. Define

Θ(z) = z~nΘ(z) . (A.19)

Then we have

TΘ=T$S" (A.20)

and

Te-1=(S*)"7i-1. (A.21)

In this case, TΘα = 0 has only the solution α = 0 whereas

Tβ-!& = 0 (A.22)

has n linearly independent solutions.
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Appendix B: Wiener-Hopf Factorisation

Solutions of Equations (4.6) and (4.13) can be given in closed form in terms of the
Wiener-Hopf factorisation of the function Θ(z). In this appendix only the cases
,/(<9) = 0, +1 will be considered. The necessary theorems and definitions can be
found in the article by Krein [24] :

Definition B.I. If <9(eίω)eL2([0,2π]) the representation

Θ(z) = Θ + (z)Θ_(z) (B.I)

is a canonical factorisation if Θ+ (resp. <9_) is analytic and non-vanishing for
\z\ < 1 (resp. \z\ > 1).

Theorem Bl. (Theorem 5.1 of [24]) : For a function <9(έ>ίω)eL2([0, 2π]) to admit of
a canonical factorisation, it is necessary and sufficient that Θ(z) Φ 0 if \z\ = 1 and that

) = 0, i.e. Θe^ of Definition D6.

Remarks. 1. The factorisations can be computed from the formulae

1

2m c, & — z
(B.2)

|z |>l.

2. Since Θ(eί«) = Θ~1(e~ίct) for αeM, (B.2) requires that

6>+(z-1) = ΘI1(z). (B.3)

3. From Appendix A it is known that (4.6) has a unique solution if «/(©)= 0.
This solution is then readily seen to be

1(z)) . (B.4),
Zt— 1

Theorem B2. // J>(Θ) = + 1 (resp. — 1) then there exists a factorisation of type (B.I)
which is canonical, except that Θ + (z) (resp. Θ _(z)) has a simple zero at z = Q (resp.
z = oo).

Remarks. 1. By considering z±lΘ(z) and (B.3) it follows that

z6) + (z-1) = l/6)_(z). (B.5)

2. It can easily be checked that the function /(z, ί) given by (4.16) does satisfy
(4.13).
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