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Abstract. We study the interaction of N classical two-dimensional massless
Fermi fields through the symmetric couplings [$,1,]* or [$;y,1> — [¥;759:]*
We explicitly show complete integrability in the cases N =1, 2, using the inverse
scattering method. The fields occuring in the associated linear eigenvalue
problem and evolution equation are simply related to the fundamental fields v,
that satisfy the original non-linear equations. For N >2, calculations become
very involved, but there is no doubt that the system remains completely
integrable, reducing to appropriate generalizations of the sine- and
sin h-Gordon equation, a situation analogous to Pohlmeyer’s discussion in a
somewhat similar problem: the two-dimensional non-linear g-model. Finally,
all the explicit analytic solutions that we have worked out in the present
framework are identical to those found by Dashen et al., and Shei, in a
semiclassical treatment of the fully quantum mechanical version of these
models. This leads us to conjecture that the quantum theory also shares most of
the features of completely integrable systems, like the massive Thirring model.

1. Introduction

The theory of massless fermions with scalar contact interactions, first introduced by
Nambu and Jona-Lasinio [1] as a model field theory for superconductors, is
renormalizable in two space-time dimensions. It has been studied in [2], in the limit
where the number N of fermion species goes to infinity, and was shown to be
asymptotically free and exhibit dynamical spontaneous symmetry breaking. In the
spirit of the so-called 1/N expansion, the above theory was further analyzed in [3]
by partially integrating out the Fermi fields, reducing to an effective Lagrangian for
the scalar composite field o =py. To leading order in the adopted approximation
scheme, the effective Lagrangian for the field ¢ was studied by semiclassical
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functional methods and a very large set of classical particle-like configurations was
found, some having only space dependence in their rest frame, others having both
space and time dependence. Whereas a systematic method was developed in [3] for
finding the static solutions, time-dependent solutions were only found by guessing.
Their remarkable soliton-like properties led the authors of this reference to
conjecture that they were dealing with a completely integrable classical system.

It is this conjecture that we examine in the present article. Indeed, we shall find a
whole new set of classical integrable systems, of which the Lagrangian of [2, 3] is
only a limit. We will also find that the associated eigenvalue and evolution problem,
which solves the dynamics by linear inverse scattering methods (for a review of these
methods see [4]), involves fields that are intimately related to the original fields
satisfying non-linear equations. In addition to the (iy)? interaction, we analyze the
chiral (py)* — ($ysw)? interaction, whose static solutions are known [5], and show
that it reduces to completely integrable systems that can be studied systematically.

In [3], it was shown that the effective Lagrangian for the o-field leads to the
following equations of motion:

(7—goyp,=0, [dxpp,=1, (L1a)

—(Z/g)o= Z Py, (1.1b)

occupied
states

where g is the coupling constant and Z a suitable renormalization constant, which
cancels the infinity of the righthand side of Equation (1.1b). The sum over occupied
states usually represents the integrationover the whole negative-energy Dirac sea,
plus the sum over a discrete number of normalizable bound states. Examples of
explicit solutions of (1.1) can be found in [3]. From the rather remarkable
properties of the time-dependent solutions, one is led to conjecture the sum over the
infinite set of modes of the Dirac sea is not crucial for the existence of soliton
solutions, although it surely is crucial for their physical interpretation. Indeed, in
Equations (1.1) the Dirac sea is essentially the only remanent of the fermionic
character of the theory, the ;s of (1.1) being treated as ordinary (commuting)
functions. Hence, in the present paper, we shall mostly study the following
simplified set of equations

(id— o)y, =0, (1.2a)
N
o= .=Zl ;s (1.2b)

where we have kept only a finite number N of modes of the Dirac Equation (1.2a).
We do not impose any normalization condition on the ;s and have.scaled out the
coupling constant g. With a finite number of modes, one can also drop the
renormalization constant Z. We again stress the fact that the y,’s are ordinary c-
number functions; thus we are dealing with a system of nonlinear partial
differential equations, whose only particular limit (1.1) has physical significance for
the description of fermions. However, the classical system (1.2) will be shown to
possess a rather remarkable mathematical structure, from the point of view of
inverse scattering theory, which we explore in this article.
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An important element of our analysis of the nof*linear system (1.2) is its local
scale invariance. It also possesses an obvious global U(N) invariance, which mixes
all the N modes. We shall actually find that the global invariance group of (1.2) is
Sp(2N,R), the non-compact symplectic group over the real numbers in 2N-
dimensions, U(N) being its maximal compact subgroup. The fact that a non-
compact symmetry group appears is related to the absence of positivity of the
Hamiltonian of the Dirac equation, when the fermion fields commute. Of course,
when one goes back to the prescription of [3] for the actual construction of physical
solutions, positivity is recovered. The global Sp(2N,R) symmetry is the second
important ingredient of our analysis.

The existence of the local scale invariance and the global Sp(2N,R) symmetry is
reminiscent of the situation in the two-dimensional non-linear g-model, studied by
Sohlmeyer in [6] and shown to be completely integrable. Indeed, by a certain
reduction procedure similar to that used in [6], we show the complete integrability,
sxplicitly in the cases N=1,2, by using inverse scattering methods. Reduced
ntegrable systems are obtained in terms of symplectic invariant functions, of which
1 typical example is the composite field o defined in (1.2b). We derive the Lax
-epresentation for these systems and show that the wave-functions of the associated
inear eigenvalue problem and evolution equation are intimately related to the
sriginal fields y,, satisfying the non-linear system (1.2). We work out a few soliton
ind doublet solutions. They turn out to be identical to the solutions found in [3] for
‘he system (1.1). For N > 2, calculations become very cumbersome ; we have shown
‘hat higher conserved currents exist for any N and have no doubt that the system is
:ompletely integrable for any N, in analogy with Pohlmeyer’s case.

We also study the chirally symmetric model:

[i7— (o +imy*)]y; =

1y
9=3 pIRTET (1.3)
i=1
iy
=5 L Ptw

i

For N =1, this turns out to be a free theory. For N =2, it is completely integrable
ind equivalent to a generalization of the sine-Gordon theory. For N>2, higher
onservation laws also exist indicating that, apart from involved technical
sonsiderations, the system is completely integrable for any N.

In the course of our investigation of the solutions of the above non-linear
systems, the close connection between the inverse scattering wave-functions and the
yriginal fields provided us with certain technical tools that we have subsequently
ipplied to the two-dimensional non-linear -model of [6]. These new results on the
-econstruction of the original fields of the non-linear o-model in terms of inverse
scattering wavefunctions are described in an appendix.

We close this introduction with a number of remarks concerning the quantum
heory of the above systems. The complete integrability of the (py)? model of [2], in
he large N approximation, is quite analogous to the complete integrability of the
:lassical sine-Gordon equation, 1/N playing the role of the coupling constant (or, of
1). For N=1, a large coupling case, the model reduces to the massless Thirring
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model, which is scale invariarft with anomalous dimensions. For N > 1, the theory
exhibits non-trivial renormalization group behavior and mass-generation through
dimensional transmutation. The only exact result known for the quantum theory is
for the case N =2, which is eventually equivalent to a system of two sine-Gordon
equations [7]; although the interpretation of this result is unclear because of the
peculiar value that one obtains for the coupling constant of those sine-Gordon
theories, it might still become possible to solve the above quantum system exactly.
All these results, combined with those of the present article, make it reasonable to
conjecture that the full quantum mechanical model of [2] is also solvable for any N,
and that, much in analogy with the case of the sine-Gordon theory, the semiclassical
spectrum is actually exact, as discussed in the introduction of [3].

II. The [;y;]3 Interaction—General
A. Preliminary Considerations for N =1

In the first part of this section, we study in some detail the simplest N =1 case of the
system (1.2), whose many features generalize to arbitrary N. Using light cone
coordinates

=30-x), n=30+x), ’ 2.1)
and the representation of the Dirac matrices:
0 1 0 1
o_ 1_
V= (1 O)’ Y (_1 0) , (2:2)

the equations of motion, in terms of the components i, and vy, of the spinor v,
read:

) =0y,
i, =0y, (2.3a)
o= Y]+ Yyt (2.3b)

where we have adopted an obvious notation for the differentiation with respect to
the light cone variables # and &, and * denotes complex conjugation. We remind the
reader that all the symbols are c-number functions as explained in the introduction.
Three independent conservation laws follow immediately from (2.3):
Wwiwy) +W3w,),=0
WD) =W3),

the last one being counted as two real equations. The content of (2.4) will be clarified
later. In addition, energy-momentum conservation is contained in the following
equations:

hl,é = O = h2,q
hn)= i(‘PT‘PLq P95 ) (2.5
h,(§)= i(‘P%‘Pz, e U’zlpf, .5) .

24
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The equations of motion are form invariant under the local scale
transformation :

d&' =|f,(O1V2dE,  dn'=|f, ()| dy
Y= |f1(71)|1/4w’1 s =)l 1/41P/2 s (2.6)

where f; and f, are arbitrary functions of # and & respectively.
It is a straightforward manipulation of the equations of motion to derive the
following equation for the quantity o, defined in (2.3b):

00 4¢—0 40 s =hih,—a*. .7
Putting g =exp0,
0, =hyh,e”?*—e?. (2.8)

Exploring the local scale invariance of the theory, expressed in Equations (2.6), we
can rescale h; and h, by arbitrary positive functions. Being interested in bounded
real solutions for ¢ in (2.7), h;h, must approach asymptotically a non-negative
constant. The above two observations lead us to consider the special conformal
frame

hy=1=h,, 2.9)

where all dimensional parameters are set equal to 1 for convenience. Due to the fact
that 4, and h, are not positive definite functionals of the fields in the present theory,
h h, can in general be negative at finite distances; this class of solutions, if such
solutions exist at all, requires special treatment that goes beyond the scope of the
present work. We simply show in the following that the class (2.9) is highly non-
trivial and likely contains the most interesting solutions of our system. With this
choice, Equation (2.8) becomes the sinh-Gordon equation that can be solved by
inverse scattering techniques. In particular, we can easily derive the Backliind
transformation for the field o:

(0'/0) ;=a(c"*—07?)
(@0), = é (0>~0a"). (2.10)

o=1and o = — 1 are solutions of the equation of motion ; we shall call them vacuua.
There is a soliton that connects these two vacuua: it is found by applying the
Backliind transformation (2.10). To find it at rest, we take a =1 to obtain

g=tanhx. (2.1
A second application of (2.10) gives the soliton-antisoliton solution:
2) 12
o vcosh(2x/]/1—v*)—cosh(2vt/]/1—v") O<p<i. 2.12)

vcosh(2x/]/1—v?)+cosh(2vt/|/1—v?) ’

It is rather remarkable, at this stage, that these solutions were already found in [3],
in connection with the complete quantum mechanical problem. Note also that
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although the sinA-Gordon equation has no bounded soliton solution, the equation
for o does, since 8 =Ino is infinite for 6 =01

We shall, of course, be interested in solving the model in terms of the
fundamental fields. The actual integrability, the Backliind transformation and the
infinite set of conservation laws in terms of the fundamental fields y, and y, will be
analyzed in the following sections. In the remainder of this section, we systematize
certain formal properties of the theory, in order to establish a convenient
framework for the following considerations.

B. Symplectic Symmetry

For N =1, the symmetry of the model is generated by the conservation laws (2.4).
We construct the associated conserved charges:

i
0, = —= [dx(n} +yi—n}—y3)
212
1
Qf=5v§fdﬂwf*ﬂf—w§+ﬂ@ (2.13)

i
Q3=-— 3 fdx(nﬂl% +7,,),

with n, =iyp¥, n, =iy} being the canonical momenta conjugate to y, and y,. The
Poisson brackets for the Q,’s are:

{Q1:Q2}=_Q3a {Q1,Q3}=_Q2, {Q2>Q3}=Q1~ (2-14)

Therefore, the charges Q, generate a non-compact Lie group with three parameters.
The nature of this group is found by looking at the most general global
transformations that leave the Lagrangrian of the theory invariant. Splitting the
fields 1y, and v, into real and imaginary components, and defining

x"=Rey,, Imy,, Rey,, Imyp,), (2.15)

where T denotes transposition of a matrix, we find that the most general
transformation

1=Ay, (2.16)
that leaves the Lagrangian invariant, is a 4 x 4 real matrix of the form:
R 0
A= .
0 ( RT)— 1} (2 17)

where R is a 2 x 2 real matrix that leaves the two-dimensional symplectic form
invariant:

0 1 01
RT<_1 0)R=(_1 0). (2.18)

1 We use the variable 6 only for notational convenience
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Hence, the symmetry group of the Lagrangian is the two dimensional symplectic
group over the real numbers, Sp(2, R), whose Lie algebra is indeed isomorphic to
(2.14). Recall that Sp(2,R)~SO(2, 1). '

We observe that both the covariant and the contravariant representations R and
(R™™1, come into play. This suggests the following interpretation and choice of
notation, which we call the symplectic spinor formulation : the set of real numbers
Rey,, Imyp, can be chosen as the contravariant components of a vector u,

()-ratin)

u Imy,

whereas the set Rey,, Imy, can be chosen as the covariant components of a vector

)

The metric tensor ¢, is

1l

/2 (Re%) . (2.20)

Imy,

01
(gaﬂ)— (_.1 0), a?ﬁ_‘l,z (2.213)

0 -1

afy —
(&™) (1 0). (2.21b)
Raising and lowering of indices goes as usual. For example:
Imy, ~Imy,
— 2 x = . .

u)=1)2 (ﬁ Rewl)’ %) lﬁ( Rep, 2.22)

Notice properties of the form

w=0=0v*, u'v,=—uy " (2.23)

a

This last property suggests the following convention, useful for calculations:
W=uv,= —v"u, = —ou. (2.24)

The calculations of the first part of this section can be expressed, and actually

simplified, in this notation. In particular, the equations of motion are:
ug=-—ov, v,=0u, OC=uv, (2.25)

and the energy-momentum densities read

hy=—vv,. (2.26)

The generalization of the above discussion to arbitrary N > 1 is straightforward.
It is not difficult to find that the symmetry group in the general case is Sp(2N, R).
Equations (2.25) and (2.26) retain the same form except now u and v are interpreted
as N-component symplectic spinors defined in terms of the fundamental fields y; as
follows: Let v, ; and y, ; be the upper and lower components of the Lorentz

hy=—uu,,
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spinors ;, i=1,... N. The components of the symplectic spinors u and v read

w9 = ]/i(RelpM...Rewl,N,Imwlvl...Imwl,N)

(2.27)
(v)"'= ]/E(Retpz, 1 Rey, v, Imy, ;... Imy, o).
The metric tensor ¢,4, o, f=1,... N, generalizes to
_ 0 Iy apy 0 —Iy
(e.p)= (—IN 0), (€)= (IN 0l (2.28)

with I, the unit N-dimensional matrix. Equations (2.23) and (2.24) remain valid.
Notice that for N =2, the group Sp(4, R) is locally isomorphic to SO(3, 2). No such
correspondence exists for higher N.

Armed with the above general framework, we now come to discuss two
important points, before closing this section. First, the existence of higher
conservation laws. In the special conformal frame h, =1=h,,

(U gt ) e =(—207),, (2.29a)
[“,rmu.rmn + %(u,”um)z] <
=[(0?),— 060 ,y— 02w 1)1, (2.29b)

and similar ones with u<v and y—¢. Equations (2.29) are valid for arbitrary N.
These are only the first two of an infinite set of conservation laws, involving higher
and higher derivatives of the fields and expressing the integrability of our systems.
The second point to make is to indicate an important difference that arises as we
go to higher and higher values of N. To be precise, we rederive here the sinh-Gordon
equation associated with the N=1 system, using Equations (2.25). A simple
calculation shows that for arbitrary N the following equation is valid:

O =W, ,—0. (2.30)

For N=1, however, the symplectic invariant quantity w=u,v, can be further

reduced. In fact, the solution vectors « and v can in this case be taken as a complete
basis. The following identities then hold:

ou,=c u—hv

(2.31)
ov =hyuto 0,
implying that
w=u,v,=(0,0,+hh,)o, (2.32)

which combined with (2.30) yields:
06 ,s— 0,0 s=hh,—c*. (2.33)

This is precisely Equation (2.7) that was subsequently transformed into the sinh-
Gordon equation. The reduction of the invariant w in (2.32) in terms of the
invariants g, h,, h, and their derivatives is a special case of the important fact that
for N =1 all relevant symplectic invariant quantities can be reduced in terms of the
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fundamental set {0, h;, h,}. In particular, the conservation laws (2.29), expressed in
terms of symplectic invariants, can for N=1 be reduced in terms of the above
fundamental set, leading to forms that could otherwise be obtained directly from
the known conservation laws of the sinh-Gordon equation. We have explicitly
checked that this is indeed so. Turning our discussion to N> 1, we immediately
realize that the reduction (2.32) fails, for the simple reason that u and v do not form a
complete basis. The appropriate fundamental set of invariants is now larger,
depending on the particular value of N. We shall see in Section V that the
construction of the above set of invariants proceeds in a systematic manner for
higher N.

III. Coordinate Dependent Symplectic Transformation

The discussion of this section is valid for any N. This becomes manifest in the
symplectic notation.

Although the choice h, =1=h, breaks Lorentz covariance, the final equation
for the scalar field o in Section II is manifestly Lorentz invariant. In a Lorentz
transformation, k, is scaled by a constant y, h, by 1/y. We now exhibit a spacetime
dependent symplectic transformation R(, £;y) under which ¢ remains, of course,
invariant and h, and h, are scaled in a manner identical to a Lorentz transfor-
mation, in close analogy with a similar transformation constructed in Section V of
[6].

Given a solution u and v of (2.25), it is straightforward to verify that the
following equations are compatible:

0,R;=(1—y)Ru’u,

(3.1)
0:RG=(1—y~ HR%v%y,
and define a symplectic matrix R. Similarly, one checks that:
u( ;7)=)/yRu,
1
W= Re, (32)
v

also satisfy the equation of motion with the same ¢, and that the associated energy-
momentum densities h; and h, are scaled by y and 1/y. Hence the product h;h, and
the equation of motion for ¢ remain invariant.

The implications and possibly a deep connection of the transformation R(#, &; )
with the Poincaré group are not completely understood. We include here, however,
some remarks that eventually explain the fact that explicit solutions for the
invariant ¢ constructed in the present framework (finite N) coincide with those
found in [3] in the limit N— co. At spatial infinity ¢— + 1, and the corresponding
field i is a plane wave. The effect of R on this wave is to simply change its energy-
momentum, thus R relates to one another all the modes of the continuum of the
Dirac equation. It is then not surprising that the infinite sum over all these modes,
which occurs in [3] and Equation (1.1), can actually give very simple results: in
practice, R appears to reduce the above infinite sum over an essentially finite
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number of modes, which is precisely the object of the present work. Of course, the
detailed description of the evolution of the system at finite distances requires the
determination of an increasing number of fundamental invariants besides g, with
increasing N, as we shall explicitly see in the following.

IV. Complete Integrability of the Sp(2, R) System

In this section, we study the inverse problem for the N =1 case. In particular, we
solve the problem of the determination of the fundamental fields  and v associated
with any solution of the sinh-Gordon equation, formulated in terms of the
symplectic invariant function ¢ =uv. Throughout this section, the conformal frame
is fixed to be ‘

hy=y, hy=1fy; hjh,=1. (4.1)
The equations of motion (2.25) along with the identities (2.31) are written here in a
compact form as

u u u u
J-all Blel)
c e, —yo ! 0 -0
= >N =
¢ = - o I Cz—{y-xa—l O.—la’é' 4.2)

The integrability condition for the system (4.2) reads

Cy,:—C,,+[C;,C,]1=0 4.3)
resulting in the equation for o:

00 ,:—0,0 ,=1—0c" 4.4)

which is precisely the reduced system obtained in Section II. It is therefore clear that
the associated linear problem is essentially provided by the system (4.2), the role of
the eigenvalue parameter being played by the energy-momentum parameter
introduced in (4.1). It is not difficult to transform (4.2) into a more familiar form.
Observe that Equations (4.2) are valid for both real components of the symplectic
spinors u and v. For the actual solution of the inverse problem, it is more convenient
to work with appropriate complex combinations of the above real components, the
most obvious choice being the inverse transform (2.19) and (2.20). Thus in terms of
the original complex fields y, and y,, and the change of variables p—y:

Vi =y ), wa=r" et — 1) 4.5)
Equations (4.2) read:

Xa=Cix, x:=Cox

C - —i{ 0, c _ 1[cosh20 —sinh26
Yole, i) T* il[sinh20 —cosh20
{=y?, o=exph, (4.6)

where we recognize the familiar Lax representation used for the solution of the sin -
Gordon equation [4].
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It should be noted that the Backliind transformation (4.9) and (4.10) does not
change the conformal frame (4.1), for the Backliind parameter a 1s not related to the
energy momentum parameter y. The proof of the above results can, of course, be
obtained by a direct calculation. It is also a simple and interesting exercise to show
that, up to a trivial symplectic rotation, the explicit solution (4.8) can rapidly be
reconstructed by using the Backliind transformation.

Further, Equations (4.9) and (4.10) imply the conservation equation (set y=1):

2

o
Wu,) ;= ———=(c'0),.
D i OO

Expanding this equation in powers of a, with the aid of (4.9) and (4.10), we obtain an
infinite set of conservation laws expressed directly in the conformal frame
h,=1=h,. The first few special cases have been already given in Section II. The
generalization of these conservation laws to arbitrary energy-momentum densities
h, and h, is not difficult, but presents no interest for our considerations. Finally, we
note the trivial fact that a second Backliind transformation is obtained by
interchanging uew, u'<v’, and £

We conclude this section with a brief discussion of the singular nature of the
inverse problem (4.6), at space-time points where ¢ becomes equal to zero. Such a
singular behavior was well expected, for the associated linear problem was
established by using the identities (2.31) based on the assumption that the solution
vectors u and v are linearly independent, which ceases to be true when o =uv=0.
Fortunately, the above singularity cannot occur in the asymptotic region thanks to
the fact that at large distances any bounded solution for ¢ must reach the
asymptotic values + 1, as dictated by the equation of motion (4.4), in which case the
matrices C, and C, in (4.6) are well tempered. The inverse problem is in general not
expected to meet any serious difficulty, as was already evident in the explicit
example (4.8). Such a singularity might, however, cause peculiar behavior of the
eigenvalue problem and certainly deserves closer attention. In this connection, the
following remarks are due to Kaup?, which we briefly outline. The argument is most
conveniently phrased in a representation that is obtained from (4.6) by changing

variables to ¢, =y, + X2 P2=X1—¥2:
AL Sl ol
b, —i —a“lo,,, 5| |9, ,g_iC o % 0]l¢,

It is then easy to show that ¢, satisfies the system of equations, V=070, :

(4.11)

4.12)

>N

Gy g+ =V, =0, ¢, .= %2(02%,,,—00,,,(!51)- (4.13)

Eventually, Equations (4.13) may be used for the formulation of the inverse
problem. From the equation of motion (4.4) and the definition of the “potential” V
follows that the latter is bounded at vanishing ¢. Hence, the (Schrédinger)
eigenvalue problem in (4.13) is well behaved, but in turn shows the following

2 D.J.Kaup, private communication. We thank Dr. Kaup for his kind interest
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Hence, we arrive at the important conclusion that the inverse problem based on
Equations (4.6) serves not only to determine the symplectic invariant function o, but
also the fundamental fields y, and y,. Few qualifications are necessary, however. In
solving the inverse problem (4.6), the “potential” ¢ and the wave-function y are
determined simultaneously. Further, for a given solution for o there are two
independent wave-functions satisfying the “linear” Dirac problem (4.6); the most
general wave-function solving (4.6) is, therefore, an arbitrary linear superposition of
any two special solutions, involving two arbitrary complex coefficients, thus four
real parameters. The above arbitrariness carries over to the wave-functions y, and
¥,, see Equation (4.5). The relation o=y =1y, p* +p*y,, necessary in order to
interpret 1 as a solution of the original problem, is in general violated. The
resolution of this question is actually immediate : It is not difficult to prove that for
any solution ¢ and y of the inverse problem (4.6) the wave-function y defined in (4.5)
satisfies the equation

o=K(py), 4.7

where K is a space-time independent real constant. Clearly, K can be set equal to 1
by appropriately choosing the arbitrary parameters entering the linear super-
position mentioned above. With this choice, y becomes a solution of the original
equation of motion in the conformal frame (4.1). After imposing the K=1
condition, there remains a freedom of three arbitrary real constants corresponding
to trivial symplectic rotations.

As an illustration we have worked out the one soliton case. Generalizations to
more complicated solutions present no difficulty. The explicit expressions read

1/2 3 .
v, = (%) [1+ C-l:-xioc (tanhg——l)]e“"

1 io .
=+ _ —1i6
P,== ————(201/2 tanhg + —C+iu (1 tanhg)} e
o= ttanhg, h;=y, h,=y"!
0=+ o=a oy, (4.8)

Recall that { =y'/2; « is an arbitrary constant.

The Backliind transformation in terms of the fundamental fields is most easily
formulated in the symplectic notation. Let u and v be a solution with b, =y, h,=1/y
and uv=o. Then u' and v’ defined as

m i 4.9)

o'l yajo
—uao’ 1

u 1
[U'} - I/1+ya?
with o an arbitrary real parameter, in general different from v, is also a solution with
uw'v'=0d',h;=h,=v,h, =h,=1/y, provided that ¢ and ¢’ are related by the Backliind
transformation, quoted already in Equation (2.10):

(0/0) ;=0l0"*~077]

v

, t, (4.10)
(o*a)’,,=&[a —a'“].
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peculiarity: from the very definition of V it is clear that (4.13) admits a zero
eigenvalue. In particular,

0=¢,((=0). (4.14)

More importantly, Equation (4.14) can be used in conjunction with the inverse
problem (4.6) for a simple determination of the invariant ¢. Up to trivial
¢-dependent phases and overal factors the explicit expressions (4.8) may be used to
illustrate this result.

V. The Sp(4, R) System

We proceed with the reduction of the N =2 case. We shall show that the system of
differential equations in terms of symplectic invariants is formulated with the
variables

o=w, o=u,p,. h=—uu,=y, hy=—w,=1fy (5.1a)

H, =u u H,=v v, (5.1b)
1 2=Vl

SN7,mm 2

which turns out to be the fundamental set of invariants, extending the set {c, h,, h,}
encountered in the N =1 case. It is noticeable that the above extension possesses a
systematic character. The invariants (5.1a) appear in the symplectic contractions of
the vectors of the now extended complete basis

e =u, e,=v, e3=u,, €=U, (5.2)

or else, they are the independent elements of the antisymmetric metric tensor
Gup=6,p"

0 o —h o
-6 0 -0, —h
= ’ 53
(gaﬁ) hl O',,, 0 CO ( )
-0, h, -—-o 0

H, and H, in (5.1b) are the invariants appearing in the lefthand side of the first non-
trivial conservation law, Equation (2.29a) and its symmetrical with u«<v, y<¢. This
pattern is trivially verified in the N =1 case, where ¢ is the only independent element
of the metric and h, and h, appear in the very first (energy-momentum)
conservation law of the system, preceeding Equations (2.29).

The differential equations obeyed by the H, and H, are already known. We
shall only have to generalize Equation (2.29a) to arbitrary value y of the energy-
momentum parameter:

H, ,=(-2y0%),

2
H2,r]= (_ ;02)’é.

The equation for ¢ is also known, Equation (2.30):

(5.4)

0 =0—0°. (5.9
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The derivation of the equation for w is lengthy and results in a complicated
second order differential equation, which, nevertheless, contains only the invariants
appearing in (5.1) and their derivatives. We shall not give here the details of the
derivation but rather outline its main points and, finally, introduce a different but
equivalent set of variables in which the system takes over a very simple form. A
direct application of the equation of motion yields

1
—_— 2 2
O e =U gV, ee +V0 g+ 5 Om OO0 0 ye—300,0 ;. (5.6)

We are thus led to the reduction of the invariant u v ... This is achieved by first
expanding the symplectic vector u ,, in the basis (5.2)

U =C", : (5.7
and determining the coefficients:

c*=g"(egu,), (5.8)
where

0 -o -h, g,
@) =0, =% Z 01 _g ¢ __’;1 (5.92)
o, o 0
A=[det(g,p)]"*=0w—0,0,—1. (5.9b)

Hence,

Ul e =C(e,0 1) =g (51t )€, ). (5.10)

In order to complete the reduction, we also need the identities (recall that 4, and h,
are constants)

W e =0=uu,,, Hy=u,u,, Hy=v 0 o

W =0 —hyo, wvu,=ho—o, (5.11)
Uy =0 ¢—hy0,+0%0 ¢, vy, =—0,+ho,~0c%,
that can easily be verified. Substitution of (5.9) and (5.11) into (5.10) yields the
desired result, unfortunately in a complicated form. We have succeeded in
simplifying the above expression by a suitable choice of variables, obtained by
direct experimentation and some guidance offered from the existence of the
coordinate dependent symplectic transformation discussed in Section III. In fact,
under the transformation R=R( ;7’) o is obviously invariant and so turns out to be
true for w; whereas h;, h,, H;, and H, transform according to:

hy—=y'hy,  hy—y' " 'h,
H,—»yH +y(1—y)h}, H,—y 'H,+y '(1—y " "h3.

It appears preferable to introduce R-invariant variables, so that the energy-
momentum parameter drops out from our system of equations. Of course, such a

(5.12)
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choice is not unique. At any rate, the following choice of R-invariant variables
results in a tremendous simplification of the equations of motion:
o,4=00—07,0,—1
Q,=h,H,+h —07 "o, (5.13)
Q,=hH,+h,—07 0,
in terms of which the desired system of equations reads:
06 ,:—0,0,=1+4—c*
AA,ng_A,nA,g=°'2(Q1Q2 —4?)
0°Q, :+4,=0
0°Q, ,+4 :=0.

Observe that the energy-momentum parameter has disappeared in (5.14), through
the R-invariant constraint h,h, = 1. Equations (5.14) constitute the first non-trivial
generalization of the sinh-Gordon system analyzed in the preceeding sections.
Clearly, the above reduction procedure can in principle be generalized to arbitrary
N>?2, but with rapidly increasing amount of technical work.

The derivation of the associated linear problem follows the pattern of Section
IV, but is tedious. We skip the technical details and state the result. In terms of the
symplectic vectors appearing in (5.2), we form the linear combinations:

(5.14)

Z,=y""ey, Z,=0"le,
B B (5.15)
Z3=y‘1(e3-—0'_10"”e1), Z4=A_1(0'e4_‘7,¢32“3’_131)~
We can then derive the system of first order differential equations
Zyn=CrosZps  Zy:=CauZ,
oo, 0 1 0
y -0 o, 0 0
C,= —y A—lAm (A—IA’"—O'_IO',”) 0,
0 — A7 Y1+ 4) —471 (67 'e,—47'4))
0 -y~ 1g? 0 0
o2 0 0 A2
= | o2 0 0 0 (5.16)
0 —47%¢%Q, —-47%*Q, O

By construction, the integrability condition of the system (5.16) leads to the system
of Equations (5.14).

We call attention to certain peculiar, though well expected, features of the
inverse problem (5.16). It becomes singular at vanishing values of the invariant 4.
Recall that 4 is the square root of the determinant of the metric tensor associated
with the moving frame (5.2), therefore the basic vectors e, cease to be linearly
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independent at vanishing 4. A similar phenomenon was already observed in the end
of Section IV, in the considerably simpler Sp(2, R) case. In the present problem, the
above singularities are more serious in that they affect the behavior of the matrices
at large distances. To be more precise, for bounded solutions the invariants ¢, 4, Q,,
Q, appearing in (5.14) must reach asymptotic values, denoted here by the same
symbols, satisfying the algebraic system:

1+4—0¢*=0, Q,0,—4*>=0. (5.17)

In particular, the choice of asymptotic values according to 4=0,0,0,=0,0=+1
is compatible with (5.17), and thus with (5.14), but leads to degeneracy of C, and C,
at large distances, causing obvious problems in the solution of the inverse problem.
Clearly, such configurations must be reached by a careful limiting procedure.
Eventually, (5.16) may be transformed into less singular representations by suitable
coordinate dependent transformations. We have not studied this problem in detail.
Nevertheless, we have succeeded in constructing a non-trivial static solution of the
system, showing obvious soliton characteristics:

1. [14y
o=1+ytanh yx+ Zln (T:;)}

1

_ 4o-1) o AMe'-1)
"~ cosh?(24)° 01=0,= cosh?(24)’

1. [14y
yx— Z In (—_—y)] -y tanh
(5.18)

where x is the position variable, A a constant and y=tanh2A4. The expression for ¢
in (5.18) is precisely identical to the kink-antikink solution of [3], obtained in the
semi-classical (N— o0) limit. Although it now becomes clear that the complete
specification of the dynamical behavior of the system requires the determination of
additional symplectic invariant quantities, such as 4, @, and Q ,, it should be noted
that the invariant o plays a distinguished role in the semi-classical approximation.

VI. The Two-dimensional Chiral Interaction

In analogy with the symplectic case, a reduction procedure can also be applied to
the chiral interaction defined in Equation (1.3). We first establish a convenient
notation and discuss important general features of the theory. We denote by u; and
v; the upper and lower components of the Lorentz spindrs y,, withi=1,2,...N. With
the representation (2.2) for the Dirac matrices and y° =7y, we obtain

¢=o—in=ufv,;=u*v
(6.1)
¢* =0 +in=viu,=v*u,
and the equations of motion (1.3) read:
w,=¢*, iv,=¢u. 6.2)
Using (6.2), we immediately obtain the conservation laws:
(u*u) .=0=(v*v),,,

(iw*u,+c.c) ,=0=(iv*v,+cc), (6.3)
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where c.c. stands for complex conjugation. We shall use the abbreviated notation:

gi=uFu=g,(n), g,=v*v=g,(%)

hy = 3 (iu*u, +cc)=h,(n), (6.4)

h,= 3 (iv*v s +c.c)=h,(8).

Our subsequent analysis is based on the following two important properties of
the present theory. First, there exists a symmetry group, which, in contrast with the
interaction analyzed in previous sections, coincides with the obvious U(N)
invariance group. Second, the local scale invariance of Section II takes now on a

generalized form including chiral transformations: For arbitrary complex func-
tions f, =f,(x) and f, =f,(&), the transformation:

u=fim,

v=1E0,
d&'=(f31,) (e,
dn'=(f{f) (ndn,

leaves the equations of motion (6.2) form invariant. Under this transformation, the
local current densities appearing in (6.3) and (6.4) transform as follows:

9= 1191
hy :(f1*f1)—2h1 +g/1(argf1),,,' >

and similar expressions for g, and h,. It is now clear that, without loss of generality,
the absolute value of f; and f, can be chosen such that the charges take over positive
constant values, which we denote with the same symbols g, and g,, whereas the
energy-momentum densities 4, and h, can be set equal to zero, by appropriately
choosing the arguments of f; and f,:

(6.5)

(6.6)

u*u=g,=const, v*v=g,=const

6.7
h,=0=h, ©7)
Equations (6.7) also imply:
wu,=0=0v*v,. (6.8)

After these preliminaries, we examine the equation of motion for the U(N)-
invariant complex field ¢ defined in (6.1). Without using the special frame (6.7) we
derive, directly from (6.2):

G e =10 +ig,0 ,— 910 ) — (D) . (6.9)

This equation is valid for any N. For N =1, and taking into account (6.7), the system
leads to free field behavior. The situation is not trivial for N=2, in which case,
however, Equation (6.9) can be further reduced, by reducing the invariant u*v , in
terms of the fundamental set {¢,g,, g, }. The solution vectors «# and v can be taken as
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a complete basis. The following identities are then valid, in the special frame (6.7)

u* = ¢ +ig, [—¢*u* +g,0*]

;'1 glg2 ¢¢* (6.10)
¢ { g2¢ %k
he= 919, — $P* lgou—@%el.

Substitution of (6.10) into (6.9) yields the result:

(9192~ ¢¢*)¢"§ =- (¢*¢n¢§ + g1gz¢*¢¢) + ig192(gz¢,r, - g1¢,.§)
—09*P(g19,— $9*). (6.11)

This equation can be simplified further by an additional chiral transformation:
u—ue M pope” it (6.12)
which, of course, changes the frame (6.7) into:
wru=g,, v*v=g,, h =97, hy,=g3. (6.13)
Equation (6.11) now becomes (we keep the same symbol ¢ for the variable):

9192 — D) 1=~ $*¢ &+ (9,9, — d$*)*. | (6.14)

Observe that only the combination g, g, enters this equation, a situation analogous
to the symplectic case. Note the Schwartz inequality:

] = lwv] < W) 2 (0*0) 2 = /.9, » (6.15)

which permits the following choice of real variables:

=1/9,9, sm( ) bz, (6.16)

Substitution into (6.14) yields the system of equations

G

sinaﬂ,"¢+a,éﬁ,n+o¢,"ﬂ,é=0 ,

o g—-smoc+
(6.17)

a generalization of the sin e-Gordon equation. It is rather remarkable that (6.17) is
identical to the system derived by Pohlmeyer in [6], by reducing the 0(4)-invariant
non-linear g-model (see, also, our appendix), and very similar to a theory derived by
Lund and Regge in [9]. In the following considerations, we shall need to write the
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identities (6.10) in the new frame (6.13):

o
% [ ¢u+glv]
1=¢¢ (6.18)

Lgu—o*u],

u,tigu=—=—

. e
v’§+1gzv 1 ¢¢*

where, for simplicity, g,g, is set equal to one:

9:=7, g,=1/y, (6.19)

with y a positive constant.

The starting point for the derivation of the associated linear problem is again the
original equation of motion, Equation (6.2), complemented with the identities
(6.18):

W "V‘1¢(§s¢*’ V1¢¢¢

[J,n B L "‘ld’ 0 v (6 20)
r0 —ig*

[u L ¢ i ¢, H

vl |y 1—¢o* ?  1—¢o*

By construction, the integrability condition of (6.20) leads to the system (6.17).
However, for the actual solution of the inverse problem alternative representations
will be needed, obtained from (6.20) by coordinate dependent transformations.
Before embarking into technical details concerning the actual inverse problem, we
explain here in general terms how representations originating from (6.20) can be
used for the reconstruction of both the U(2)-invariant ¢ and the fundamental fields
u and v, a phenomenon already observed in the symplectic theory. For our present
purposes, it is more convenient to work with the orthonormal U(2)-basis:

= (201 +sin(@/2)]} "2y~ V2uty e #20)

5{2[1—81 (/2)]} V2 {y~ Y2u—ypli2e P2y} (6.21)
W*a= *o=1, a*0=0.
Now let U,, 2,3,4, denote the anti-hermitean generators of U(2):
01 0 i i 0 00
U = ] — = . . 2
! [—1 0}’ V2= o}’ Us [0 0}’ Ys=|o } (6.22)
It is tedious but straightforward to derive the equations
[’:‘} — iU, E‘], m — iU, ﬁ‘}, (623)
b, b B . b
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where
of==Z  of=- e+ 4co€’{'a/2)
3= — %[1 +sin <g)} - %_A . (6.24a)
wi=— %[l—sineﬂ - #ﬁ,ﬂ
wi= %, wi= %cos(a/Z) + 4coﬁs’(§oc/2)
3= — 21_)}[1 +sin g)J - 114-4 B (6.24b)
w§=—2—[1—sm g)] :Bﬂsc
1—sin(g) ’ 1+sin(%) )
A= ———"tg (E) , B=——-——tg (E) . (6.24c)

Strictly speaking, the only interesting and non-trivial property of (6.23) and (6.24) is
that w’s turn out to be real. The integrability condition of (6.23) reads

0~ 0 ,+Cj0f0}=0, (6.25)
where Cj, are the structure constants of the U(2) Lie Algebra in the representation
(6.22); (6.25) leads, by construction, to the system (6.17). Let now y be a two
component complex spinor solving the equations

p,=0iUp, vy =a03Up. (6.26)

Thanks to the anti-hermiticity of the U(2) generators and the reality of w’s, we easily
derive

(W) ,=0=w ) ,; viy=yiy, +yiy, (6.27)

stating that y*y is a space-time independent constant. In analogy with the
discussion of Section IV, y is parametrized by four arbitrary real constants. Let y be
a second solution of (6.23) corresponding in general to a different choice of the
above constants. Furthermore, this set of eight arbitrary numbers is restricted by
imposing the four real equations:

pry=1=y¢*y, v*y=0. (6.28)
With this choice, the 2 x 2 matrix

U= ["’1 le (6.29)
Y2 X2



Classical [,1;]2 Interactions 51

contains four arbitrary real parameters and satisfies the system of equations:
U,=0iU,U, U,=wjU,U. (6.30)

Equations (6.28) imply that U is an element of U(2). It is now clear that the rows of
this matrix are identified with the U(2) components of the orthonormal vectors #
and © defined in (6.21). They provide a solution in terms of the fundamental fields,
since the invariants o« and f are obtained independently in the course of the solution
of the inverse problem. The solution is parametrized by four arbitrary real
parameters corresponding to trivial U(2) rotations.

However, the above analysis is too general to account for the technical
complexities of the actual solution of the inverse problem. In practice, neither (6.20)
nor (6.21) are particularly useful representations. Nevertheless, alternative and
more convenient forms of the inverse problem can be obtained by transformations
of the type w—y'; ' =Cyp, where C is a 2x 2 matrix depending on the U(2)
invariant functions o and B. Therefore, the inverse transformation p=C~1y’ is
possible, in principle, before attempting to realize the points of the preceeding
discussion.

A more direct procedure is established in the remainder of our considerations,
exploring the existence of the coordinate depending U(2)-invariance of the theory,
analogous to the symplectic R-transformation discussed in Section III. It is based
on a representation of the inverse problem in the basis «/, v'".

e _,y— lueivnIZ

o ) (6.31)
v =el® U_,y—ltg(_>u ez

cos (> 2
2

where o is defined through the compatible equations (in analogy with a similar
construction in [6]):

w = P08 __ B (6.32)

z 2 z
2cos < 2) cos (2)

Using (6.20) and (6.31) and (6.32), we derive the first order differential equations for
the basis " and v':

ul =il q|fw
i

W i [—1+4cosa sinae ™ |[u
=— . 6.33
[U’L 4(| sinae™ —1—cosoc”v’} (6.33)
Y

1 . _
= 3 == E(oc’ﬂ—ltgocw,,,)e

iw

An additional trivial transformation of the form («, v')—(/, v')e®*"%, brings (6.33)
into the system derived in [6]. The integrability condition for (6.33) results in the
non-trivial constraint

q .+ ysinae” =0 (6.34)
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that encompasses both equations in (6.17). In the above form, the inverse problem
essentially reduces to the analysis of Zakharov and Shabat [8]. The reconstruction
of the “potential” g is straightforward and the determination of the potential

¢ =sin (%) ', and thereby of the original fields, is effected by exploring (6.34) and

simple additional integrations. It is this problem that we simplify further by using,
as mentioned earlier, the coordinate dependent U(2) invariance transformation,
which we derive next. It is defined through the compatible equations

(R=R(n,&;7):
0,R;;=i(1— y’)R,-kuku}“
0:R;;=i(1—y "R, v 0¥
where y’ is an arbitrary parameter and u;, v, are the U(N) components of the solution

u and v. (Notice that this construction is valid for any N.) It is easy to verify that
(6.35) is compatible with R being an element of U(N) and that the vectors

A 7 A 1
u( )= /7 Ru, o )= Re (6.36)
Y
are also solutions. Under (6.36) the potential ¢ =u*v remains invariant, whereas the
charges and the energy-momentum densities transform according to:

(6.35)

, , , 1
g:GY)=v9:, 9.(:y)= ?gz
1.1 1
h( ) =rhy—Y(A=)g2, b ;y')=yh1—y—,(1—y—,)g§. (637)

The novel second term in Equations (6.37) originates from the chiral invariance of

the present theory. In fact, it can be compensated by a trivial chiral transformation.
With this in mind, we finally derive an explicit and remarkably simple

prescription for the solution of the inverse problem (6.33). We first remark that the

second of Equations (6.2) reads explicitly:

—iuu¥v (6.38)

Uiy = itV
which should be compared with the first of (6.35), written in terms of the hermitean

conjugate matrix R*:
0,R; = —i(1=y)uu¥Rj, . (6.39)

The analogy with (6.38) is obvious at 7' =0. Eventually up to trivial £-dependent
phases and an overall constant, the existence of R(y'=0) will be shown in the
following by explicit construction. Let now

W1(C)] (C 7) - 1} —iyn/2

= , == e , —— 00 6.40
wo= |00 w(t=3)- " (6:40
be the Jost function for the system (6.33) with the boundary condition indicated
above—details about its explicit construction can be found in [8]. We only mention
here that (yp%, —¥) is also a solution and that

YT +yppi=1. (6.41)
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The space-time dependence is suppressed. The first of (6.31) suggests that the

original U(2) vector u can immediately be constructed in terms of y: fixing the
normalization from u*u=1y, it is given, up to a trivial U(2) rotation, by

Y
w3 s
e 2" (6.42)

We are now able to construct R essentially uniquely. One finds:

R*(y'=0)=

Y Y
" (C=—) Y (C=—) K(=0) —w.((= d
2\>732) 1\*72 [wz(C—O) WiC=0)] ~3m (6.43)

wlr VN sl 7\ WTC=0)  p,((=0)
—IP1<C—§) Uh((—z)

Comparing (6.38) and (6.39) with y’'=0, we conclude that the first column of
R*(y'=0)is a candidate for the vector v, up to an overall scale, that is fixed from the
requirement v*v=1/y, and a trivial U(2) rotation. The latter is uniquely fixed,
consistently with the choice (6.42), by recalling the definition ¢ =u*v, and inforcing
the assumed boundary condition for the invariant ¢, which is here taken to be

¢(n——o0)=1. (6.44)

This boundary condition is compatible with the equation of motion (6.14), with
g19,=1. We thus consider the U(2) contraction.

wR* (' =0)= /7 {wi(=0), (=0} (6.45)
obtained by using (6.41)-6.43). Taking now into account the asymptotic behavior

(6.40), the scale of v is fixed as Lx the first column of R* ()’ =0), and the above

Y
mentioned trivial U(2) rotation is equal to the identity. Hence, with the boundary
condition (6.44) the solution of the original problem is completely determined in
terms of the Jost function defined in (6.40). We summarize here the explicit
expressions:

’)) *(Y _'y *(/ —
-t v (= D) pte =0+, (t=F)wsc=0 e

Jvsc=0+us(c=1vc=0)

~

|
<
=%

T

[T

It

|

¢ =u*v =_1pf(C =0). (6.46)
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The above results along with the analysis of [8] reduce the construction of the
solutions of the present chiral theory to straightforward quadratures. We have
explicitly verified this scheme in the one and two-soliton cases. Our one soliton
example led to an expression for the U(2) invariant ¢ that is equivalent to the
solution previously obtained by Shei [ 5], in the semiclassical limit of the chiral U(N)
theory.

Needless to add that this construction applies to the symplectic theory as well as
to the non-linear s-model, both possessing an R-transformation. Details about the
application to each particular example are not given here. We only recall that the
analog of the third of Equations (6.46) in the simple Sp(2, R) system was derived in
Section IV by a simple manipulation of the equations of motion, see Equation
4.14).

We finally derive the Backliind transformation for the present theory. Let p be a
two component spinor solving the inverse problem:

v,=Cv, v.=Cup,

_|—% 4
C,=Cy(p)= [_q* iC]’ (6.47)
i [ cosa sinae ™
C=C9)= a Lin ae’® —coso } ’
A spinor o' related to y by a coordinate dependent unitary transformation B:
y'=By, (6.48)

satisfying the system of equations
B,=C,(¢")B—BC,(¢)
B,z: = C2(¢')B —BC,(¢),

is also a solution associated with the invariant ¢’ and characterized by the same
energy-momentum parameter {=y/2. The integrability condition for (6.49) is
simply the statement that both ¢ and ¢’ satisfy the reduced system (6.14). Since C,
and C, are traceless and anti-hermitian, (6.49) admits a solution B that is actually an
element of SU(2). Having guaranteed the existence of a solution, we now turn to its
explicit construction. This task is facilitated by the following considerations. First,
we explore the information contained in the third of Equations (6.46). Denoting the
associated Jost function by the same symbol y, we have:

v, =0)=sin(a/2)e~#12
¥,({ =0)= — cos(a/2)e @ #/»

(6.49)

(6.50)

Using the fact that there is'only one unitary 2 x 2 matrix that transforms a given
spinor into another [which was already used in Equation (6.43), for example], the
above information suffices to determine B at {=0.

Itis also trivial to find B for { — o0, in which limit it is independent of ¢ and ¢'. A
reasonable Ansatz for the solution of (6.49) is then an affine combination that
interpolates between the above two limiting cases. Indeed, the full solution is
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obtained in this manner and is given by
o\ g
T 6% B, —ive* +ee* |sin[ ) sin (X ] €852
le| 1/ v* +ee* By =iye* + 5 >

+Ccos (z) cos(gé B B+ 20-20Y2
2 2

. [ AN
lel 1/7* +ee* By, =¢e*|sin (5) cos (5) elf'— 20002

(% %\ ip-p - 20)/2
s1n(2)cos (2) e ]

B, = _sz
B,,=B%,, (6.51)

provided that the invariants are connected by the Backliind transformation:

o (%) ‘x_l i(B—B)2 | % O‘_, (B —B+20—-20)/2
{sm(z)sm(z)e +COS<2)COS<2)Q L:
——1 i oto sin il
= 881’1 ) 3 ,
in(=|si ot_' i(’g_ﬂ')/z——i * %i i(B—F ~20+20)2
sm(z)mn(z)e e COS(2)COS(2)3 .
Cown (2 L fe—o ‘ 652
€ sm( > )sm(———2 ) (6.52)

¢ is an arbitrary complex constant. For real ¢ and f=f' =w=0«'=0, (6.52) reduces
to the Backliind transformation of the sine-Gordon theory. From (6.52) and the
asymptotic condition (6.44), one derives a number of relations, among which

Im {s {sin <§> sin <%—) eP=PN2 4 cos (g) cos (%—) ef —h-o' )2 1]} =0. (6.53)

This relation ensures that the matrix B is an element of SU(2) for real y, as it was
expected. It is gratifying that a Backliind transformation exists for the generalized
sine-Gordon system, however, it appears not to be practical for the explicit
computation of multisoliton solutions. Perhaps, an algebraic reduction of the type
derived for the sine-Gordon system in Appendix A will prove more efficient for
practical purposes.

Appendix—Inverse Scattering Wave-Functions and the Solution
of the Two-dimensional Non-linear ¢-Model
A. The 0(3)-Case

Having been inspired by the methods developed in the non-linear 6-model, we now
go back to it and complete its solution for fundamental fields, in terms of the wave-
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functions appearing in the inverse problem of the reduced systems obtained in [6].
We first study the 0(3)-invariant model. ¢', i=1,2, 3 are real variables obeying the
equations of motion:

9net+(0,99=0, ¢*=1. (A.1)
Due to the local scale invariance of (A.1), we can set

2=y*, q5=y"%; (q,9,)=cosa. (A2)
* Further, consider the moving orthonormal trihedral:
Z= {21, 2% 23}

B P RN B Mt R R

=, =, 23 =(.
2cos <%) 2sin (;)

By using the equation of motion and elementary completeness arguments, we
find

(A.3)

0 %—" —ycos(—)
= —%a —ysin(¥
C, 5 0 7 sin ( 2) (A.4)
y cos %) y sin (5) 0 |
[ A -1 « i
0 > y cos(z)
= % ~1gin (%
C, 3 0 y sm(z)
y‘%os(%) —y‘lsin(%) 0

It is an observation due to Lund and Regge [9] that the above matrices can be
written as real superpositions of the standard anti-hermitean generators of the
rotation group:

Cy=wil;, C2=wi21i
~ . fa o o
D, = {y sin (5) , —7Ycos (i) , — 7”} (A.5)

cbz={—y'1sin(%), —y'lcos@), %—4}

Hence, the integrability condition for the system (A.4) reads:

By g— @y + By X Dy =0, (A.6)
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and results in the sin e-Gordon equation for o:a , . +sina=0. Notice that Equation
(A.6) depends on the structure constants than the particular representation of the
rotation group. Therefore, the same integrability condition would be realized in any
representation, in particular the two-dimensional spinor representation [9]. Let t;
be the two-dimensional anti-hermitean generators of SU(2) (see footnote 3)and ¢ a
two-component spinor field. Concerning solutions for the invariant «, the following
inverse problem can be considered:

¢,r,=wi17i¢a ¢,§=wiz'5i¢- (A7)

Our ultimate aim is, however, to obtain solutions for the variable g ; we shall show
here that this is actually straightforward. Thanks to the fact that 7;s are anti-
hermitean and w’s real:

@7 ¢),=0=(¢"9),. (A.8)

It is therefore possible to adjust the arbitrary constants appearing in the
superposition of the two independent solutions of the Dirac problem (A.7) such that

¢ p=9Td, + ¢3¢, =1, (A9)
leaving the freedom of three arbitrary real parameters corresponding to the
0(3)-invariance. The SU(2) matrix:
¢1 "¢>2k
PN
satisfies the system of Equations (A.7), and its three-dimensional representation is a
real orthogonal matrix, whose rows are identified with the vectors Z;, We are
interested in the last row Z;=¢q:

q={—(010,+¢70%), (10, — P7b3), (91T — .03} (A.11)

providing a solution in the original variables.
Concerning the Backliind transformation of the present model, it is not difficult
to find that if ¢ defines a solution in the manner described above, then ¢’:

¢/=B¢ iac’—-a :ia’+a
ye 4+ g 4
B=— 1 . (A12)
o' ta Lo —a
12 -l
—ce 4 ye 4
also defines a solution with the same energy-momentum parameter y, provided that
the invariants o and «' are connected by the standard Backliind transformation:

(oz—oc’) esin (oc’+oc)
2/, 2
ata 1. fo'—a
3 ’é—gsm 3

3

r= (A.10)

B

(A.13)

Throughout the Appendix we use the particular representation:

io 1) _1f0 1 i[l 0
201 0o 2

T1=3 1 ol° T3=§ 0 _1]; [t T =857
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for arbitrary ¢, in general different from y. The matrix B in (A.12) is an element of
SU(2). The original trihedral Z transforms according to its three dimensional
representation. In particular,

1 2 o BN AW

q= m{ £y [cos (E) Z, —sin (§> z,
a Backliind transformation for the original variable g. In words, if g is a solution
with energy-momentum parameter 7, and (g ,q ;) =cosa, ¢’ is also a solution with
the same energy-momentum and (q',q’;)=cosa’, for arbitrary e. For the special
choice e=1=y, Equation (A.14) reduces to the explicit expression given by
Pohlmeyer [6], and is also known in differential geometry, in the theory of pseudo-
spherical surfaces (Bianchi transformation—see, e.g. [10], page 291).

Aninteresting aspect of (A.12) is that it leads to a completely algebraic Backliind
transformation, through the following considerations : we first transform (A.7) into
a more convenient representation that can be actually used for the solution of the
inverse problem. It is obtained with the change of variables ¢ =Cy:

+(y? ——82)23}, (A.14)

1 ieiat/4 eia/4

Cz%[—e'im a4’ ccr=I, (A.15)
in terms of which:
o, =3,
AL —i

M I C (A.16)
Wy _ i [cosa sina | [y,
[tsz_h sine —cosa|p,|’

In these new variables the Backliind transformation (A.12) reads:
v'=C*()BC(@)p=By, (A.17)

y +iecos (al + a) ig sin (a/ + a)
— 2 2
B= 1 . (A.18)

2 2 7 !
e iasin(a ;—oc) y—iscos(oC ;—oc)

The observation now is simply that, given a solution {y, &}, the construction of
{y’, o'} can be effected without solving the Riccati differential equations (A.13), but
with purely algebraic steps. In fact, setting y=ig¢ in (A.17) and (A.18), we get:

o 4o . (o +a
1+cos( o) ) sm( 3 ) (y=ie)
, , ["’l(y:i )] =0. (A.19)
sin (22 1 —cos 2% |27 =1
2 2
The determinant of this system vanishes, (compatible with the fact that y, and
p, are in general different from zero). (A.19) leads to the following non-trivial
algebraic solution:

. [od +a —22 o +a 1-42 .
mn(T)—mZ—, cos( 3 >__1+12’ A=(p,y/p,)y=ie), (A.20)
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that determines o’ in terms of o and . The specification of y’, and thereby of the
original variable ¢’ is then immediate. Algebraic prescriptions of the form (A.20)
have previously appeared in the literature [11].

The remaining question is to examine whether A can be real, as it is obviously
required in (A.20). The answer is provided by the observation that the solution
{o, p(y =ie)} satisfies the system (A.16) with y =ie, in which case the above system
has real coefficients. It is therefore clear that (A.16) admits real solutions for
A=(yp,/w,)(y=ie), with an appropriate choice for the arbitrary parameters entering
the superposition of any two special solutions. Hence, the algebraic equation (A.20)
reduces the construction of arbitrary multisoliton solutions to a series of simple
quadratures. As an example, the one soliton solution is immediately obtained
starting with the trivial solution =0, A =exp(en — &/s).

We finally note that the above procedure is not special to the sine-Gordon
system and can be applied with obvious modifications to the systems analyzed in
Sections IV and VI.

B. The 0(4)~SU(2) ® SU(2) Theory

We now generalize Equation (A.11) to the 0(4) case. In terms of the original
variables ¢, i=1,...4, we form the orthonormal tetrahedral:

Z= {219227 23:24}

s oV Mt L 7 'm0

1= 7 N Z2
o . [a
2cos (5) 2sin (5)

. _la,954] .
_L9.p4, _ B.1
Z3 sinoc 3 Z4 qa ( )

where [ , , ] denotes the vector product in the four-dimensional Euclidean space.
As usual, 4% =77, q%=7"?, cosa=(q,q ). Z obeys the system of equations:

z,=C2z2, Z,=C,Z

Ci=0} i+, K,  Co=0h \Ji+oy K, (B.2)
where
- v o\l [ v . fa\] —«
Dy (1= — . —I_-ycos(§>, . +ysm<§) , 2’”
2sin (E) | _2 cos (§>
- u N [ u L f\] «
Wy, (+)= 4a+7 1008(5) > _—cxiy 15111(’2‘) ,7,6
2sin(— 2cos|=
2 Iy
uE?(‘ngés)a UEV_I(‘],nnés)- (B.3)

J;and K;,i=1,2, 3, are the generators of 0(4) defined as follows: Let ¢4, o, f=1,...4
be a 4 x 4 matrix whose only non-vanishing element is located at the o' row and g
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column, and is equal to unity:
i=%(Mi+Ni)’ Ki=%(Mi_Ni)
M, =3(—83+¢e3,), M2=%(813_331), M3=%(“812+321) (B.4)
Ny=3(14—841) Ny=73(20—843)s N3=73(e34—843)

uJd=eutis [KipKI=¢3K,, [J;,K;1=0.

We shall also need to specify the unitary transformation V:
Vi, QV*t=J;,, V[I®t]V"=K,, (B.5)

where ® defines the usual tensor product of matrices, I is the two-dimensional unit
matrix and 7, are the two-dimensional generators of SU(2) defined earlier. It turns
out that

1 0 0 -1

—i 0 0 —i
y=t |7 g (B.6)

]/§ 0 —1 -t 0
0 —i i 0
After these preliminaries, we proceed with the actual construction of the
solution vector q. Clearly, the integrability condition for (B.2) reads:
0401 (1) 0y@2, 4y F Dy (4)X Dy (4,=0. (B.7)

It should be noted that ¢ _, is obtained from &, by simply changing the sign of
the eigenvalue parameter y, see Equations (B.3). Both choices lead to the same
system of equations for the invariants «, u, and v, already derived in [6]:

. uv
o e Fsinoe+ ——=0,
’ sino

o v o u
ug= sl = Sl (B3)
’ sino ’ simo

The inverse scattering problem is formulated in the spinor representation of the
SU(2) group. Let ¢ be a solution of

(,b,,, =wi1,(+)7i¢ > ¢,§ =wi2,(+)'5i¢ . (B.9)
In complete analogy with the 0(3)-case, ¢ can be normalized according to
P p=91, +¢3¢,=1, (B.10)
and the SU(2) matrix:
¢1 _qyﬂ
r= , (B.11)
’ Lﬁz o1

obeys the equations

O, =0} (4)Tly, O, =05 (yTT,. (B.12)
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r, is parametrized by three arbitrary real numbers, after imposing the normalization
(B.10). Let now ¢'=¢'( ;7) be a second solution of (B.9), corresponding in general
to a different choice of those three parameters, but the same invariants a, u, and v.
Define:

p=¢'( 5—7), (B.13a)
tp,,,=wi1,<-)f.~w, w,g=wiz,<—)fiw- (B.13b)
The associated SU(2) matrix r_,:
_ ¥ —w’%‘]
r_.= , (B.14)
’ [‘Pz (5

satisfies the same system (B.13b). The 4 x 4 matrix r, ®r_, depends on six arbitrary
real parameters and obeys the equations:

6ﬂ[ry®r—y] = {wil,(+)[ri®1] +wi1,(—)[l®'fi]} [r'y ®r—'y] (B.15)
Oelr, ®7_,1={0h ([ @11+ @]} [, ®7_,]

obtained by using the equations for r, and r_,, and elementary properties of the

tensor product such as
[4,®4,][B, ® B,]=[4,B,1®[4,B,].

It is now clear that the rows of the 4 x 4 real orthogonal matrix:
R=V[r,®@r_V*, (B.16)

with V constructed in (B.6), specify the orthonormal tetrahedral Z in terms of the
wave-function. It is sufficient to consider 2, =g, whose components are given
explicitly as follows:

—ys

i 1
ql=§(¢2w1_¢1U)2)+C-Cw q*= §(¢1w2—¢21p1)+c.0.
(B.17)

i 1
C=5@wt+opdroc,  ¢' =36l +opD+ec

where ¢, y;, i=1,2 are the upper and lower components of the spinors ¢ and .
(B.17) generalizes Equation (A.11) to the present 0(4)-case.

So far, our construction made little reference to the details of the inverse
problem. Since the latter has already been considered in the context of the U(2)
chiral theory in Section VI, and for the present theory in [9], we shall only include
here some remarks concerning the practical use of Equation (B.17) and illustrate it
in a simple example. In general, representations other than (B.9) are more
convenient for the actual solution of the inverse problem. They are obtained by
performing suitable space-time dependent transformations to spinors ¢—y, x = C¢,
where C is a 2 x 2 matrix depending on the invariant functions. The latter are
“independently” constructed in the course of inverse scattering. Therefore the
inverse transformation ¢ =C~ 'y is always possible before attempting the con-
struction summarized in Equation (B.17).
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An example of such a transformation is

io =

c=—_°. ‘el (B.18)

Then y=C¢ satisfies the system of equations

1[y+vctgcx o, +iv }

Xn= 27 a,—iv  —y-—uvctgo
1 [cosa—yu/sina isina
=_ . i B.19
L 2iy[ —isina — cosa+yufsina) * (B.19)

In this form, the inverse problem follows essentially the analysis of Zakharov and
Shabat [8]. Introducing the integrating factor 5, [6]:

u=p tg (%) . v=—Btg (i;-) (B.20)

the system for the invariants o and f becomes

“

o, +sing= ——=
né sino

ﬁ,rlﬂ,é s

sinaﬁ’n¢+a'§ﬂ’n+a,”ﬁ’é=0 (B.21)

which should be compared with Equations (6.17) obtained in the context of the U(2)
chiral theory (a sign difference is trivially compensated by the reflection n— — 7).
(B.19) and (B.20) is the form under which the inverse problem was discussed in [9].
Further, by introducing a function w through the compatible equations

we=—Pts__ 5 _ Bacos® (B.22)
2cos? <g) 2cos? (g)
the system (B.19) transforms, under the change of variables:
rti=e x,  %=¢"1, (B.23)
into
. o —iw
e el
K™= i . o\l i -y X
a,+iB,tg 7|
(B.24)
, 1 cosa isinoe” ] |
Ke= 2iy | —isinae’®  —cosa

which is essentially the representation given in [6] and was also used in Section V1.
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We close with a simple example illustrating Equation (B.17). We consider the
special case u=0=1v, so that the inverse problem reduces to the sine-Gordon theory.
Since the matrix C in (B.18) is unitary, "y =¢ " ¢, therefore y*y is space-time
independent and must be normalized as y* y=1. This is true for the solution:

_—e € _ [y—ietanho]e”?
Xl_y+iacoshg’ o y+ie
o I (B.25a)
e=¢ {—en, 0=y C+ym
o -
tg (Z) =e”°, (B.25b)
The wave function ¢ is then given by:
i . 7(0+2)
b= [y— —igtanhp|e?' 2
" )20+igl  coshe ¢
- ! 7(0-3)
$2= 30+ 7+ cosng —letanhe|e : (B.26)

The wave-function y entering Equation (B.17) is taken here to be y=¢( ; —y)
and a direct application of (B.17) yields the solution vector :

,  —2 1

B0 O coshe
= 6—2%5)—2 {2ey(y> —¢?)(1 +tanhg) cosf

+ [482'})2 tanhg — (y% —&2)?] sin 0} (B.27)
q*= 7 +82)2 {[(y* —&?)?*—4e%y? tanho] cos O

+2¢ey(y? —¢?) (1 +tanhg)sin6} .

It is interesting to verify explicitly that (g g ,) =cosa, obtained from (B.27), is
compatible with the value of a given directly from the inverse scattering technique,
Equation (B.25b). This is a special case of the important fact that working with the
orthonormal basis and imposing the constraint ¢*¢ =1, as explained above in
detail, suffices to guarantee the correct identification of the fundamental invariants
calculated directly in the inverse scattering procedure and ultimately in terms of the
solution vector g. The remaining invariants # and v have been assumed to be equal
to zero in our special example, a fact correctly reproduced in (B.27), since one of the
components vanishes identically. In effect, (B.27) is a solution of the 0(3)-theory.

Finally, it seems possible to establish a more explicit connection of scale
invariant Fermi interactions and appropriately generalized o-models. Direct
comparison of the content of Section IV and Section A of this Appendix suggests
that it should be possible to formulate the symplectic theory in the three
dimensional representation of Sp(2, R), in terms of three real variables ¢’,i=1,2, 3,
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which are constructed as suitable bilinear functionals of the two-dimensional
spinors, and interact through the quadratic constraint

ki;q'q’ =const. (B.28)

In (B.28), k;; is the Killing form of the regular representation of the
Sp(2,R) ~S0(2, 1) Lie algebra and can be brought into the diagonal form (1, 1, — 1).
In conclusion, a universal approach emerges for the solution of non-linear two-
dimensional scale invariant classical field theories.

Concerning the content of this Appendix, we have benefited from stimulating
conversations with Fernando Lund, who patiently explained to us his work in [9].
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