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Abstract. We continue the analysis of the "conjugate" equation for the
generating function of a Gibbs random point field corresponding to a stationary
solution of the classical BBGKY hierarchy. This equation was established and
partially investigated in the preceding papers under the same title. In the present
paper we reduce a general theorem about the form of solutions of the
"conjugate" equation to a statement which relates to a special case where the
interacting particles constitute a "quasi" — one dimensional configuration.

0. Introduction

This paper continues the preceding papers of the authors [1, 2]. We continue here
the proof of Main Theorem, more precisely, of its part which was formulated as
Theorem 2, 11. Theorem 2' proved in [2] contains the assertion of Theorem 2, 1 for
the case n0 = 2 and is the initial step of the inductive proof for arbitrary n0 ̂  2 (for
the notations used without definitions, see [1, 2]). The purpose of this part of the
work is to reduce Theorem 2, 1 to a special case where the configuration of
interacting particles is represented by a one-dimensional graph ("chain"). The
corresponding assertion (Basic Lemma) is formulated in Section 2 and will be
proved in a separate paper.

In this Section we follow the assumptions of [1]. On account of Theorem 2', 2 as
the initial inductive step w.r.t. n0, it is not hard to see that Theorem 2, 1 follow from :

Theorem 0.1. Let U(r) obey (J^l-J^l) and f(x) obey (G1?1-G6,1) with n0^3.
Suppose U and f satisfy Equation (2.8, 1) :

Σ [f(x\y\ V(x\y\y)}=0, xeD* . (0.1)
yex

Then /(3c) = 0 for any xeMnonD°.

* Permanent address: Institute for Problems of Information Transmission, USSR Academy of
Sciences, Moscow, USSR
1 As in [2], we mark the references to [1] by the index 1. The references to [2] are marked by the
index 2
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1. Particle Configurations and Their Types

Definition. We say that x = (q, u)e x is an external point in x, xe D°, if g is an extremal
point of the convex hull spanned by {qeRv:qex}2.

For the sake of brevity we say sometimes "qex is an external point" instead of
"x = (q,υ)ex is an external point". The same is related to the definitions which
follow.

For every external point qex there exists an open cone Be

q CR v with the vertex q
such that

1) for all qΈBe

q and any qex, qή^q, the inequality \q' — q\>\q — q\ holds, and
2) every qf e Be

q such that \q' — q\ > d0 is an external point in xux' where x' = (qf, ι/),
v'eR\

Definition. We say that x = (q, v)ex is an accessible point in x, xeD°, if there
exists a non-empty open set BqcRv such that |g'-g|>d0, L/'dg'-gDΦO and

min \q' — q\>d1, whenever q'eBa

a

3.
qex q^pq y

It is clear that every external qex is accessible, and the corresponding Ba

q may be
chosen as a subset of Bq. We suppose below that for external qex, Bq is always
chosen belonging to Bq.

Definition. We say that x = (q,v)ex is an isolated point in x, xeD°, if \q — q\>d1 for
any qex,q + q. We say that x = (q, v)e x is an end point in x if there exists a unique
qex, qή=q, such that \q — q\^dlt

Clearly, for any isolated qex, the mutual energy l/(x\x|x) and its gradient
dqU(x\x\x) vanish.

Definition. Let xeD°, yζx, n(y) = s^2. We say that y is a chain in x if:
(i) the points qey can be labelled by / = !,...,s so that 1̂  — ̂ -1^^! iff |i—7!^!,

1 = W = S;

(ii) for any §ex\y, qey, min|g — q\ >d1. In that case we write y = \_q^..., qj. The
points qί and ^fs are called the ends of the chain y.

Definition. Let x = (q,v)ex, xeD°. We say that x is a c-poίnt in x, if there exists a
chain [<?!,...,#J in x with q1=q. We say that x/ = (^',ι;/)e^\:x: is a c(q)-point in x if
there exists a chain [#15...,#S] in x with qί=q, qs = q'

Definition. We say that the order o/ xeD° w.r.ί. qex is zero in the following three
cases:

1° there is no end point in x,
2° q is the unique end point in x,
3° q is a opoint in x, and the set of the end points in x is exausted by q and the

c(q)-pomt q'ex.
We say that the order ofxw.r.t.qex equals k, k = 1,2,..., if for every end non-c(g)-

point x' = (qf, v')ex, q'ή=q, the order of x\x' w.r.t. q is ^fc— 1 and for some such a
point x' the equality holds.

2 As in [1,2], qex (resp., vex) means that (q,v)ex for some veRv (resp.,
3 We suppose below that dλ is chosen so that d1 =min[d: t/(r) = 0 for r^

It is not hard to check that for every ε>0 there exists re(d1 —ε^d^) such that t/'(r)Φθ
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Proposition 1.1. There exists a unique non-negative integer-valued function k(x,q\
5ceD°, qex, with the properties indicated in the definition of the order of x w.r.t. q.

Proof. We use the induction w.r.t. n(x), the number of points qex. Clearly, fc(5c, q) = 0
for n(5c) = l. Assume k(x\qf) is defined for all 5c'eD° and q'ex' with n(xf)<n, and
consider 3ceD0nMM and qex. If neither of conditions 1° —3° holds then one can
find an end non-e{g)-point q'ex. Let Eq(x) denote the set of all such points q', and

k(x,q)= max k(x\q', q) +1.
q'eEq(x)

It is easy to check that the function k(x,q) defined by this relation has the
properties claimed in the definition of the order. The uniqueness is evident.

Definition. The minimum of k(x,q\ 5ceD°, over the set of external points qex is
called the order of x and denoted by k(x). The type of 3ceZ)° is the triple (n(x), m(x\
fc(3c)) where m(3c) is the number of (unordered) pairs q,q'ex such that \q - q'\ ̂  dv We
say that a triple of non-negative integers (n, m, k) is admissible if there exists 5ceD°
such that n(x) — n, m(x) = m, k(x) = k.

Clearly, the type of 3c does not depend on v, vex, and, in the case where
\q — qf\^rd1 for any pair q, q'ex.it does not change for small shifts of qex. Our
inductive assertion giving the passage from n0 = n — 1 to n0 = n may be reformulated
as follows.

Theorem 1.2. Let the conditions of Theorem O.ί hold and (n,m,k) be an admissible
triple with n = n0. Then

/(S) = 0 if xeD° and the type of x is (n,m,fc). (0.2)

In this paper we prove Theorem 1.2 assuming that some auxiliary statement
(Basic Lemma) is true (see the next section). This statement will be proved in a
separate paper. Henceforth it is convenient to suppose that the interaction potential
U(r) and the generating function /(3c), 5ceD°, satisfy conditions (/i,2 — /'3,2) and
(Gj, 2 — G7

4,2) respectively except that C2 in (/'1? 2) is replaced by C3. In what follows
we suppose these conditions to be valid as well as Equation (0.1) and do not specify
this in the assertions formulated below.

2. Basic Lemma

We start with formulating the auxiliary statement from which Theorem 1.2 will be
deduced below.

Basic Lemma. Let xeD° and n(x) Ξ> 3. Suppose one can choose in x a chain [ql9..., gj,
s^2, where qί is an external and qs an accessible point, and the following holds. For
any x/ = (x\xί)^jχ'1 with xf

1=(q\,vr

l)eBq x Rv there are a non-empty open Bc

q>ίCB^
and a non-empty open set Bc

qsCBa

qs such that for all x0 = (q0,v0)eBc

q,ίxRv and
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xs+1 = (qs+1, vs+1)eBqs x Rv, Equations (2.1a-e) below are valid

4- {/((S'uxo)VO, U(\qs_ ̂ J)} = 0, (2. la)

0, (lib)

{/(SO, H (*0) + [f(x\xά 1%; -

+ {/(*\(*ιuxs)), [%,_ ! -«J)} =0, (lid)

«2|)} = 0 (He)

[/or 5 = 2, Equations (2.1d,e) have the form {/(xV^), H(x\xί)}=0 and {f(x'\xs),
H(x'\xs)}=Q respectively^. Moreover, suppose Equations (2.1a-e) remain valid if xf,
f = 1, . . ., s, are slightly changed. Then /(*') = 0, x^ e J5J x ̂ v.

By induction it easely follows from Basic Lemma that if x contains a chain
? = [#ι j •> 4J where ̂  is an external and qs an accessible point, and \q — q\ > dί for
any pair q, qe x\y, then /(x) = 0.

Proposition 2.1. Lei xe D° and n(x) = 3. Suppose one can choose xt = (qi9 vt)ex, i = 1, 2,
where qί is an external point such that the following holds. For any
X'ι=(<ϊi9 ϋΊ)e^ι x ^V one can flnd a non'emPty °Pen set Bq\tBq\ sucn tnat for att
XQ = (q0,v())eBc

q,ί xRv Equations (2.2a,b) below are valid:

(2.2a)

*2I)} = 0 , (2.2b)

where, as above, S' = (x\x1)ux'1. Thenf(x') = Q, x'ίeBe

qxRv.

Notice that Proposition 2.1 yields the assertion of Basic Lemma under the
additional assumption U'(\qs_1—qs\) = 0.

Proof of Proposition 2.1. We use the elementary identity dqU(\q\)=U'(\q\)q/\q\ and
the properties of the potential U(r). It follows from (12a) that for any x\eBe

qi x #v,
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Since Bc

q,^ is open, this implies that dυ,J(x') = 0. Then Equation (2.2b) takes the form

Apply to this equation the operator δcl . We get

δβi/(xO=0, βie^. (2.3)

Hence f(x') does not depend on x\ e Bqι x Rv. The set Be

qι is unbounded, and thus
condition (64,2) implies that /(3c') = 0 on Be

qι x R\
We prove here two more auxiliary statements used below.

Proposition 2.2. Let the conditions of Basic Lemma hold. Then

<^/(*\*ι)=0. (2.4)

Proof. According to Basic Lemma, f(x') = 0, x' = (x\xl)^jχ'i9 x^eB^ x Rv. Applying
to (2.1c) the operator dVs we have the equation

According to the definition of Bqι and the fact that \qι—q2\^di([q1,...,qs~] is a
chain) we can choose a nonempty open B C Bq such that U'(\qf — q^ |) φ 0 for all q' e B
(see footnote 3, p. 226). Hence d^2tVβf(x\x^ (g2~

<?ι) = ̂  <2ιe^ and the matrix
dϊ2,vj(x\xι) is zero ' S -
Proposition 2.3. Let xeD° and n(3c)^3. Suppose one can choose in x a chain
[#ι,... ,<?J, 5^2, where q is an external point and the following holds. For any
x\ =(q'ί,v'1)eBqί x Rv one can find a non-empty open set B^CB^ such that for all
x0=(q0,v0)eBq,ί xRv Equations (2.1c), (2.2a), and (2.5) below are valid:

3?lfl,..1/(S/W = 0. (2.5)

Thenf(x') = Q, x^^xjux;,

Proof of Proposition 2.3. As above, Equation (2.2a) implies that dv,J(x') = Q. On
account of this and of (2.5) we apply to (2.1c) the operator dvι. Then we get (2.3)
whence it follows that f(x') = 0.

3. The Case fc = 0

Assuming Basic Lemma to be proved we establish some technical results which,
together with Lemma 3.1, enable us to prove Theorem 1.2. We start with the case
fc = 0.

Lemma 3.1. Let (n, w,0), n^3, be an admissible triple. Suppose (0.2) holds for the
following triples (if they are admissible) : (n + 1, m + 1, 0), (n, ml9 /c1), (n — 1, m2, fc2),
(n-2, m3, fc3), where Q^m^m-ί, fc^O, i = l,2,3. Then (0.2) holds for the triple
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Proof. Let xeD°, τι(x) — π, ra(x) = ra, /e(x) = 0, and x = (q,v)ex be an external point
with /c(x, q) = 0. Then, according to the definition of the order, q may be of one of the
following four kinds :

a0) q is isolated in x,
b0) q is a non-isolated and non end point in x, i.e., there are q', q"ex\x, q' φg",

such that \q-q'\^di9 \q-q"\^dί9

c0) q is an end non-opoint in x,
d0) g is a c-point in x.
We shall consider successively all these cases. Due to condition (G'ί9 2), we may

assume that \qf — qff\+dί for any pair q'9 q"ex, and so, we can slightly change each
(q9 v)ex conserving the type of x and the kind of q.

a0) In that case x has no end points. Let x' = (q',v')eBe

qxRv, x' = (x\x)ux';
clearly, k(x'9q') = 09 i.e., the type of x' is («,w,0).

If q0eBq,cB*,9 then q0 is an external point in x'ux0, Xo = (qo,v0). The type of
x'ux0 is (n + 1, m + 1, 0), and hence, /(x/ux0) = 0. Due to the above assumption, the
gradients δ/(x'ux0) also vanish.

Furthermore, for every x = (q9 v)ex\x one has two possibilities: either q is
isolated in x'ux0 or there exist #",#'" ex\(xux), q"3=q'"9 such that \q" — q\<dί9

\q'" — q\ <di. In the first case d9U((xfux0)\x\q) = 09 and in the second one the type of
(x'ux0)\x is (n9 mί9 fej) with mί ^m— 1. Hence, in the second case /((x'ux0)\x) and
the gradients δ/((x'ux0)\x) vanish.

These arguments show that Equation (0.1) for x'ux0 takes the form

(dυ,f(x'ldq,U(\q0-q'\)y

+ <δϋo/((x\x)ux0), 3βo I7(|io - q'\)y =0 . (3.1)

Equation (3.1) coincides with (3.8b, 2). By repeating arguments used in the proof of
Lemma 3.1, 2 we obtain from (3.1) the following representation:

/(*') = *ι(*\*>«')

(3.2)

Notice that for g0e(x\x)ux0 all the conditions indicating the Case a0) hold. Hence
the same arguments give

/((x\x)ux0) = aί(x\x, q0) + (affix, q0\ voy .

Now Equation (3.1) takes the form

<affix9q')9dq,U(\q0-q'\)y

or, on account of Proposition 2.1(i), 2 and our choice of q0,

(affix,qflqf-qoy + (affix9q()lq0-q'y=Q. (3.3)

Applying to (3.3) successively the operators dqo and dq, we obtain
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This means that, for fixed x\x, the matrix d^a^x^q') is locally constant w.r.t.
q'eBe

q. The set Be

q is linearly connected hence, δg,α1(x\x, qf) does not depend on qr.
Therefore,

aί(x\x,q') = A1(x\x)q' + a2(x\x)) qΈBe

q.

Using condition (G^, 2) and the fact that Bq is unbounded, it is not hard to show that
both ^(xVx) and α2(x\x) vanish. Thus the analysis of Equation (3.1) gives that/(x')
does not depend on v'.

Now consider Equation (0.1) for x'. As above, for every x = (q9v)ex' either q is
isolated in x' or there exist q", q"'e x'\x, q" φ q'", such that \q" — q\<dί9 \q'" — q\ < d ^ . In
the first case dq U(x'\x\q) = 0, and in the second one the type of x'\x is (n — 1, w2, fc2)
with m2^m — 2. Hence in the second case /(x'\x) and the gradients δ/(x'\x) vanish.
Equation (0.1) for x' takes the form

=0, (3.4)

or, due to the fact that /(x') does not depend on v ',

= (q,ΰ)ex\x

V. (3.5)

Apply to (3.5) the operator dυ,. We get

Hence /(x') is locally constant w.r.t. q'eB*. From this and the fact that Bq is
connected, it follows that/(x') does not depend on q'. Now condition (G'4, 2) and the
fact that Bq is unbounded imply that /(χ') = 0.

b0) As in the Case a0), x has no end points. Let Bq denote the subset of Bq

consisting of the points q such that for any qex\x, \q — q\<dί iff \q — q\<dί. It is
clear that Bq is a bounded open set, and q is a limit point for Bq. We denote the
closure of Bq in Be

q by Bq. Let x' = (q',v')eRv x R\ and x' = (x\x)vx'. Iίq'eBq, then,
clearly, x; is of the type (n, m, 0). At the same time the complement Bq\Bq consists of
the points ̂  for which the type of x' is (n, m l 5 fe) with O^mj ^m— 1. Hence/(3c') = 0
for qfeBq\Bq. To prove this equality for g'e£g, we have to check that/(5c') is locally
constant w.r.t. q'εBq.

Let x' = (q'9v')eBq x RV

9 x0 = (q0,Vo)EBq, x Rv. Then /c(x/ux0,^0) = 0, and hence,
the type of x rux0 is (n + l,m + l,0). Thus /(x'ux0) and the gradients 3/(x'ux0)
vanish.

Furthermore, for any x = (§,£) ex' one has two above mentioned possibilities:
either q is isolated in x'ux0 or there exist q"9 q"rExr\x, q" Φ q'"9 such that \q" — q\<dl9

\q'" — q\<dί. The analysis of the both possibilities is similar to that in the Case a0).
Finally, Equation (0.1) for x'ux0 takes the form

<5ι;,/(5c'),δβ, £7(|«' -ίo|)> = 0, (3.6)

i.e., coincides with (2.2a). From Equation (3.6) it follows that dυ,f(x') = Q9

xf = (q'9 v')eBq x Rv (see the proof of Proposition 2.1).
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As above, a simple analysis shows that Equation (0.1) for x' takes the form (3.5),
whence we get

V(S') = 0, qΈBq. (3.7)

This completes the proof for the Case b0).
c0) In that case q0 is the unique end point in x. We define the set BqCBq in the

same way as in b0). Consider Equation (0.1) for x'ux0, x0 = (qQ,v0)eBq,xRv,
x' = (qf, v')eBq x Rv. Repeating the above arguments one can show that Equation
(0.1) for x'ux0 is of the form (3.6). Next we establish that Equation (0.1) for x' takes
the form (3.4). But we have seen above that (3.4) and (3.6) imply (3.7), and it follows
from (3.7) that/(5c') = 0.

d0) Let y = [<?!,...,gj, 5^2, be a chain in x with qί=q.
In the Case d0) x has just two end points: q± and qs. As in the Cases b0) and c0),

consider the set BqcBe

q which is defined by the same conditions. It is enough to
prove that /(*') = 0 for x' = (x\x)ux'i9 x'x = (q'l9 v'JeB^ x Rv.

Let x'i =(q'l9 v\)eBqi x Rv, and x0 = (qQ9 ι;0)e 5^ x Rv. The type of x'ux0 is (n +1,
ra + 1,0), and hence all gradients δ/(x'ux0) vanish. For any x = (q9v)ex'9 q + qs,
there are two possibilities which we have discussed before, and so, Equation (0.1) for
x'ux0 takes the form

{/(*'), U(\q0-qr

1\)} + {f((x'ux0)\x^ l/(ks-ς[β-1|)} = 0. (3.8)

Equation (3.8) coincides with (2. la).
A similar analysis shows that Equation (0.1) for x', x\xί and x'\xs takes the form

(2.1c), (2.Id), and (2.1e) respectively.
The remaining part of the proof for the Case d0) proceeds in two stages. First,

consider the particular case where qs is an accessible point in x'. This assumption
allows us to consider x'uxs+1, where xs+1 =(qs+ί,vs+ί)eBqsxRv. As above, we
conclude that Equation (0.1) for x'ux s + 1 takes the form (2.1b). Thus, all the
assumptions of Basic Lemma are valid. Using Basic Lemma, we obtain that f(x'\
and hence the gradients df(x') vanish. Moreover, due to Proposition 2.2, Equation
(2.4) holds.

Now consider the general Case d0). If Uf(\qs^.1—qs\) = 09 Equation (3.8) [i.e.,
(2.1a)] coincides with (2.2a), and Equation (0.1) for x' [i.e., (2.1c)] takes the form
(2.2b). Due to Proposition 2.1 we get /(χ') = 0. Thus we may assume that
U'(\qs_ 1 — qs\) ΦO. This means that qs_ 1 is an accessible point in (x'ux0)\xs. Since qQ

is an external point in (x'ux0), we obtain that (x'ux0)\xs with the chain
[#o> - - - j ^s-i] satisfies the conditions of the particular case just considered. Hence
the gradients δ/((x'ux0)\xs) vanish, and Equation (3.8) takes the form (2.2a).
Furthermore, due to Proposition 2.2, Equation (2.5) holds. Since it was established
above that Equation (0.1) for x' is of the form (2.1c), the assumptions of Proposition
2.3 are valid. Hence /(x') = 0. This completes the proof for the Case d0) and the
proof of Lemma 3.1 in the whole.

Remarks, a) The C3-property of U is used only in the Case d0) (via Basic Lemma),
otherwise it is enough to have the C1-property.

b) Relation (0.2) for (n — 2, m3, /c3) with 0^m3 rgm — 3 is used only in the Case

do)-
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c) There are two triples, namely (2,1,0) and (1,0,0), for which (0.2) is known to
be false. We shall refer to them as exceptional. For n = 3,4 there are exceptional
triples among those listed in the conditions of Lemma 3.1. However using the
previous remark one can easily check that for any (n, m, 0) except (3, 3,0) these
exceptional triples may be omitted from the conditions of Lemma 3.1 without
detriment for the proof.

The case (3, 3,0) requires a special analysis.

Lemma 3.2. Suppose (0.2) holds for the triples (4,4,0), (3,2,0), (3,1,0), and (2,0,0).
Then (0.2) holds for the triple (3, 3,0).

Proof. First we show that the assumptions of Lemma 3.2 imply that the function
/(x) for n(x) = 2 does not depend on v, vex. We may suppose that x = (xί9x2),
xi — (#i> vi)> I = 1> 2, where \q1 — q2\<d1. Clearly, both q^ and q2 are external points in
5c. Taking x0 = (q0, v0)eBa

qi x Rv we may write Equation (0.1) for 5cux0 in the form

<3,/(5),3βll7^ (3.9)

This follows from the fact that 3cux0 is of the type (3,2,0). Equation (3.9) coincides
with (3.12,2). Further, Equation (0.1) for 3c is of the form (3,2b, 2). The analysis of
this pair of equations does not differ from that in the proof of Lemma 3.2(i), 2. As a
result we get the assertion claimed.

Now let 5ceZ)° is of the type (3,3,0), and \qf-qff\=¥d1 for any pair q',q"ex.
Clearly, any x = (q, v)εx is external in x. Consider the set BqCBq, qex, defined as
above. Let q'eBq, xf = (qf, v'} and x' = (x\x)uxf. Then the type of x' is (3, 3,0). Again
we have to prove that f(x') is locally constant w.r.t. q'eBq.

Let x'eBqxRv, XQ = (q0,VQ)EBq,xRv. Due to the conditions of Lemma 3.2,
Equation (0.1) for x'vx0 takes the form (3.6), whence we obtain that dΌ,f(x') = Q.
Due to the assertion above, Equation (0.1) for x' takes the form (3.4) which gives
(3.7).

4. The Casefc>0

In this section we consider the case fe> 0. Assuming Basic Lemma to be proved we
establish here the following

Lemma 4.1. Let (n, m, k), n^3, k^O, be an admissible triple. Suppose (0.2) holds for
the following triples (whenever they are admissible): (n+1, w+1, fc), (n, m, kj,
(n,m^k\\ (rc-l,m-l,k2), (n-l,m2,fc'2), (n-2,m-2,fc3), (n-2,m3, k'3), where

k, fcJ^O. Then (0.2) holds for the triple

Proof. Let xeD°, n(x) = n, m(x) = m, k(x) = k, and x = (q, v)ex be an external point
with k(3c, q) = k. As for k = 0, the four cases are possible:

afc) q is isolated in 3c,
bfe) q is a non-isolated and non-end point in x : there are q', q"ex\x, q' + q", such

cfc) q is an end non-c-point in x,
dfe) q is a c-point in 3c.
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As above, we consider these cases successively assuming that \q' — qfr\ή=d1 for
any pair q',q"ex.

afc) Let x' = (q'9 v')eBe

q x R\ x' = (x\x)ux' clearly, fc(x', q') = k i.e., the type of x' is
(n, m, fe). If q0εBq,CBq,, then q0 is an external point in x'ux0, x0 = (g0> #o) We use

the following

Proposition 4.2. Let XE Z)°, x = (g, t> )e x £e an external point, and k(x) = fe(x, q). Then
for all x0 = (q0,

Proof of Proposition 4.2. We first show by induction w.r.t. fe(5c, q) that fe(xux0, q0)
= fc(x, q). For fe(x, g) = 0, this follows immediately from the definition of the order
and the condition q0eBq.

^Assume the equality fe(xux0, g0) = fc(x, q) is proved for all cases, where fc(x, q)
gfc — 1 and consider the case fc(x, q) = k. By definition, for any end non-c(g)-point

x'ex, x'Φx the order fc(x\x', q) is no more than k— 1, and for some such x' (we
denote it by x'0) the equality holds. The inductive assumption gives that
fc((xux0)\x', q0) = k(x\x'9 q)^k-l for any end non-φ)-point x'ex, x'Φx, and for
x' = XQ the equality holds.

It is obvious that every end non-c(g0)-ρoint X'EX\JXO is non-c(^)-point. Thus
from the definition of the order we get that fe((xux0), q0) = k.

The final remark is that fc(xux0, g')^fc(xux0, #0) for any external ^ ;6xux0.
Indeed, the inequality fc(xux0, q') ̂  k(x, q') + 1 holds for any q' such that x0 is a non-
c(g')-point. Hence for such q' /c(xux0, q') ̂  k(x) + 1 = k(x, q)+l= fc(xux0, q0)+ί.
If, on the contrary, q' is c(g0)-point then k(xvxθ9q') = k(xvx0,q0) as a simple
argument shows. This completes the proof of Proposition 4.2.

Using Proposition 4.2, we conclude that fc(3c/ux0) = fe. Now the type of x'ux0 is
(n+ 1, m+ 1, fe), and hence /(x'ux0) and the gradients δ/(x'ux0) vanish.

For every x = (q, v)e x\x we have three possibilities : either q is isolated in X'UXQ,
or there exist q'\q'"ex\(xvx)9q"=tq"'9 such that \q" — q\<dl9 \q'" — q\<dl9 or,
finally, q is an end point. The analysis of the two first cases is the same as that for
fe = 0. In the third case we have

fc((x/ux0)\x)^fc((x/ux0)\x, q0)^k(xf(jχ0, q0)-l. (4.1)

This follows from the definition of the order and the fact that xεx\x is a non-c(g0)-
point in X'UXQ. Due to Proposition 4.2, the RHS of (4. 1) is (fc - 1). Hence, in the third
case/((5c/ux0)\x) and the gradients df((xfux0)\x) vanish. This means that Equation
(0.1) for x'uxo takes the form (3.1). The same arguments as for fc = 0, give that /(x')
does not depend on v'.

Further, repeating the analysis of Equation (0.1) for x' given in the Case a0) we
arrive at Equation (3.4) and then (3.5). The final arguments do not differ from that in
the Case a0).

bk) The arguments used in that case are essentially the same as in the Case b0).
First, the problem is reduced to checking that /(x') is locally constant w.r.t. q'eBq,
where x' = (x\x)ux;, x' = (q',υ'), and BqCBq is defined in the same way as in
Section 3.

For x' = (q'9v')eBqxRv and XQ = (qQ9υ0)εB%,xRv we obtain in view of
Proposition 4.2 that fe(x/ux0) = fe. Hence the type of 3c'ux0 is (n + l9m+l9 fe), and
/(x'ux0) and the gradients δ/(x'ux0) vanish.
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Now for every x = (q, v)exf there are three possibilities listed above, and the
same analysis as above shows that Equation (0.1) for x'ux0 takes the form (3.6),
Equation (0.1) for x' takes the form (3.5). This leads to (3.7). The proof for the Case
b0) is completed.

ck) The proof for this case repeates the arguments we already used. So we omit it
from the paper.

dfc) Let J> = [<?!,..., gj, 5^2, be a chain in x with q1=q. As in Case d0), the
problem is reduced to checking that /(x') = 0 for x/ = (x\xί)uxr

ί9

Let x\ = (q'l9 ^Ί)eBqι x Rv, xQ = (q^ v0)eB%fί x Rv. According to Proposition 4.2,
the type of x'ux0 is (n+ 1, m+ 1, fc), and hence /(x'ux0) and the gradients δ/(x'ux0)
vanish. For every x = (q9 £)ex', q=¥qs, we have three possibilities listed in the Case
afc). The same analysis as above shows that Equation (0.1) for x'ux0 takes the form
(3.8) (with q' replaced by q'J, while Equation (0.1) for x', and x'\xs, xs = (qs> ^s)^x,
takes the form (2.1c), and (2.1e), respectively.

Consider a particular case, where qs is an accessible point in x', and q2 is an
external point in x\xlt If xs+i=(qs+i,vs+1)£BqsxRv, then Equation (0.1) for
x'ux s+1 takes the form (2.1b).

Now write down Equation (0.1) for x\x^ Our assumption on q2 and Proposition
4.2 together give

Further arguments are the same as those for x'\xs. As a result we get Equation (0.1)
for x\x1 in the form (2. Id). Thus for our particular case all conditions of Basic
Lemma are fulfilled. Due to Basic Lemma and Propsosition 2.2, /(x') and the
gradients df(x') vanish, and Equation (2.4) holds.

In general case we apply the assertion stated just now to (xux0)\xs and then
finish the proof as in Section 3, d0).

Remarks, a) As for the case fc = 0, the C3-property of U is used only in dk).
b) Relation (0.2) for (n-2,m-2, fc3) and (rc-2,m3,fc'3) with 0^m3gw-3,

0^fc 3<fc, and fc'3^0 is also used only in dk).
c) As for the case k = 0, the exceptional triples occur in conditions of Lemma 4. 1

for n = 3 and 4. The unique admissible triples (n, m, k) with n = 3, 4 and fc > 0 are
(4, 3, 1) and (4, 2, 1). The previous remark shows that both of them can be treated
without making use exceptional triples.

Summarizing all what we have said in Sections 3 and 4 we obtain

Lemma 4.3. Let (n, m, fc), rc^3, fc^O, be an admissible triple. Suppose (0.2) holds for
all admissible non-exceptional triples indicated in Lemma 3Λ fork = Q and in Lemma
4.1 for fc>0. Then (0.2) holds for the triple (n, m, fc).

5. Theorem 1.2 Follows from Basic Lemma

Assuming Basic Lemma to be proved we establish in this section Theorem 1.2. First
suppose x6D°nMM and w(x) = 0 [and, consequently, fc(x) = 0]. Lemma 3.Γ, 2
says that in that case /(x) —0; this is the first induction step.
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Now we state an assertion which immediately follows from Lemma 4.3 and
leads us to Theorem 1.2.

Proposition 5.1. Fix π'^2, m'^0, and fc'^0. Suppose (0.2) to be true for any
admissible non-exceptional triple (n,m,k) with Q^n^n0, mg O, fc^O,
n — m^n0 — m' + l and with n>ri, n — m = n0 — m', k = k'. Then (0.2) is true for the
triple (ri, n' — n0 + m', fc').

Having (0.2) established for all admissible triples (n, m, fc) with n — m^c, one uses
Proposition 5.1 to prove (0.2) successively for n — m^c+1, fc = 0, then for
n — m^c+1, fc= 1, and so on. Thus we establish (0.2) for admissible triples in the
following order (we suppose that n0 > 4):

(HO, 0,0),

(n0ΛO), K-1,0,0), (n0,l,l),

(n0,2,0), (π0-1,1,0), K-2,0,0), K,2,l), (n0-1,1,1),

(HO, 3,0), etc...., (n0,m0,fc0).

Here m0, /c0 are maximal m and /c for which (n0, m, /c) is admissible.
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