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Abstract. A continuous classical system involving an infinite number of
distinguishable particles is analyzed along the same lines as its quantum
analogue, considered in [1]. A commutative C*-algebra is set up on the phase
space of the system, and a representation-dependent definition of equilibrium
involving the static KMS condition is given. For a special class of interactions
the set of equilibrium states is realized as a convex Borel set whose extremal
states are characterized by solutions to a system of integral equations. By
analyzing these integral equations, we prove the absence of phase transitions for
high temperature and construct a phase transition for low temperature. The
construction also provides an example of a translation-invariant state whose
decomposition at infinity yields states that are not translation-invariant. Thus
we have an example in the classical situation of continuous symmetry breaking.

Section 0. Introduction

We wish to study the equilibrium states of an infinite collection of distinguishable,
classical-mechanical particles in a one-dimensional box, where the interaction is
infinitely weak as in the quantum analogue considered in [1].

The first step is to single out a certain class of states p for which there exists a
limiting derivation δp on the underlying algebra stf of observables with range in
πp(e£/)", where (2?p, πp, Φp) is the canonical cyclic representation of ̂  with respect to
p. The second step is to introduce a notion of equilibrium, and we do so by using an
extension of the static KMS condition (which is studied in [2] for another classical
situation) to the type of derivation considered here. We do not consider the
dynamical KMS condition [3] because it is not clear whether the derivation δp

generates a dynamics in the representation associated with p. The third step is to
prove that the decomposition at infinity of an equilibrium state yields equilibrium
states that are trivial at infinity, and this is done for a special class of interactions.
The fourth step is to characterize the equilibrium states that are trivial at infinity as
finite sets of functions satisfying the system (0.2) of equations, and, again, this is
done for a special class of interactions. Using this explicit characterization we prove
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that phase transitions are absent for high temperature and construct an example of
a phase transition for low temperature.

We begin by indexing the particles with Z + and letting [ — π, π] be the interval of
space to which the system is confined. Let^ be the jth copy of [ — π, π] and Yj the th
copy of R Let Xj and p7 be the independent variables foτXj and YJ9 respectively. The
interaction is defined in the following operational way :

Introduce the particles into the system one after another. When the first N
particles are present, the interaction is a pair interaction, and the potential energy
for the pair (j,k) of particles is μjk(N)f(xj — Xj)9 where μjk(N) is the coupling
coefficient and/is the functional form of the potential. In this case the energy of the
system is given by

1 N i N
HN=~ΣPl+ϊ Σ Pj

Our assumptions on the μjk(N) will include the assumption that lim μjk(N) = 09 so
N^ oo

the limiting situation as ΛΓ-> oo may be thought of as an infinite system governed by
an "infinitely weak" interaction.

We take jtfj=Coΰ(Xj x Y,-), the algebra of continuous functions on Xj x Yj that
either vanish at infinity with respect to PJ and are periodic with respect to Xj or
are constant, to be the algebra of observables for the jth particle. For a finite

lQt3/Ω = CJT](Xjx Yj)}9 which is isomorphic to

Since the particles are distinguishable, J/Ω is the algebra of observables for the set Ω
of particles. The family {<$#Ω} is a directed system of C*-algebras in the usual sense.

We take the C*-closure of (J sίΩ to be the C*-algebra of the infinite system. We will
Ω

refer to j/ as a quasi-local algebra and an element of (J j/β as a local observable.

Note that "local" refers to the number of particles and has no spatial meaning.
Notice also that si is a separable C*-algebra.

In Section 1 we single out a certain class of states and show that the set of all such
states is a convex, Borel set. We give a result concerning integral decompositions of
such states. Further, we give a definition of β-equilibrium state that involves the
derivation δp, whose existence is proven for p in the class of states. We show that the
set of β-equilibrium states is a convex, Borel set for each inverse temperature β. We
prove in Section 2 a preliminary result concerning the support of the measure at
infinity of a β-equilibrium state.

We develop a Fourier analysis of the interaction in Section 3, and in Section 4 we
apply this analysis in our examination of ^-equilibrium states with trivial algebra at
infinity.

In Section 5 we restrict ourselves to a special class of interactions (interactions of
the Pth kind) and prove that :

a) The measure at infinity of a β-equilibrium state is concentrated on a Borel set
of ^-equilibrium states with trivial algebra at infinity.
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b) The /^equilibrium states with trivial algebra at infinity are exactly the
extremal ^-equilibrium states.

c) There is a one-to-one correspondence between ^-equilibrium states with
trivial algebra at infinity and P-tuples (#1? ...,gp) of continuous functions satisfying
the system of equations

Φ)= Σ λ}k- I f(y-x)e-'«*»dy, (0.2)

where the λjk are given numbers related to the interaction.
This explicit characterization of extremal β-equilibrium states allows us to show

in Section 7 that for an interaction of the Pth kind there is a temperature above
which there is only one equilibrium state. Also, it is possible to give an example of a
phase transition at low temperature and show that it is also an example where the
decomposition at infinity breaks symmetry.

The quantum analogue of this situation was previously considered by the
author [1]. We state without proof results which are parallel to those in [1]. In fact,
some of the proofs that we do present are analogous to the corresponding proofs in
[1], and some of the discussion carries over almost verbatim.

The author would like to thank Michael Reed for reading a first draft of the manuscript and making
many valuable suggestions.

Section 1. Definition of Equilibrium

Throughout we assume that / is an even, real-valued, C1 function on R which is
periodic with period 2π. Let {an\neZ} be the sequence of Fourier coefficients of/,

00

and note that the an are real, a_n = an, and Σ Kl < °° We assume that £ \nan\
n= — oo n — — oo

< oo. Let μjk denote the function N-+μjk(N) on Z+. As in [1], the double sequence
{μjk} is assumed to have the following properties:

μjk=μkj, (1.1)

JV^oo

sup Σ |^(JV)|<oo. (1.3)
NJ k = l

We also introduce the following notation :
N

W — V n (ΛTΊ/Yv — Y ϊ Π 4Ϊvyj,N~ L MjWV/lXj xk)> U τ!
k=ί

»W*)= Σ μjk(N)f(x-xk), (1.5)

FJ,N= Σ μjk(N)f'(Xj-xk), (1.6)

***'*
EJ,N(*)= Σ μjk(N)f'(x-xk) (1.7)
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for + oo < x < oo. These quantities are obviously uniformly bounded in 7, N, and x,
by (1.3).

For every finite ΩcZ+, we denote by @Ω the set of all C°° functions in j/Ω that

are either of rapid decrease in the momentum variables or constant. Let Sl=\] &Ω

and define δN as the unbounded derivation on si with domain J* such that

^ v _ dA
W)=ΣP7ftΓ- ΣFJ,Nfi-

jeΩ UXj jeΩ °Pj

for Aeέ%Ω. Notice that & is dense in si.
The states of the physical system are states on the C*-algebra si. Let ̂  be the set

of states on si. It will be understood that Sf has the weak* topology. Let / denote
the set of all states p such that the strong limits

s-]imπp(WJtN)=WJ9p

N— > oo

N-+OO

exist for — oo <x< oo, where (jΊfp, πp9 Φp) will always denote the canonical cyclic
representation of si with respect to p. We will call such states asymptotic states. For
every increasing sequence 5 in Z + , we denote by Js the set of all states p such that the
strong limits

s-limπp(VJ9SN(x))=VSJ>p(x)
ΛΓ-»oo

s-lim πp(EL SN(X)) = Es Λ p(x)
N^ ao

exist for — oo <x< oo, and we will call such states S-asymptotίc states.

1.1. Theorem. For every increasing sequence SinZ+,Js is a convex, Borel set in £f. In
particular, I is a convex, Borel set.

Proof. The convexity of Js is obvious.

Let {Am} be a dense sequence in si. The existence of such a sequence follows
from the separability of si. It follows that {πp(Am)Φp} is dense in j^p for every state
p. The remainder of the proof is similar to the proof of the parallel result in [1].

1.2. Theorem. // μ is a probability measure on £f whose resultant lies in /, then μ(Js)
= 1 for some increasing sequence S in Z+.
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Aside from using the sequence {Am} introduced above, one proves this theorem
in the same way that the parallel theorem in [1] is proven.

Now, consider an asymptotic state p and an observable Ae$Ω for some finite
ΩcZ+. The strong limit

s-limπp(δN(A))^δp(A)
N-χχ>

exists and is equal to

γπ I ^]_ y F π /M
jeΩ \ 3dXjl JeΩ J'P ** WPj

Thus δp is a well-defined linear mapping from $ into πp(<$/)". Moreover, δp is an
unbounded derivation on j/ in the sense that $ is dense in j/ and

δp(AB) = πp(A)δp(B) + δp(A)np(B)

for A, Be&.

1.3. Definition. Let pel and j?>0. p is a ^-equilibrium state if and only if

?}) (1.8)

for A, Be&. We denote the set of such p by δβ.
(1.8) is an obvious extension of the static β-KMS condition forced upon us by

the fact that the range of the derivation does not lie in j/. Later in our discussion we
will refer to the ordinary static β-KMS condition simply as the β-KMS condition.

1.4. Theorem. δβ is a convex, Borel set in £f.

Proof. Let {Am} be a sequence in $ such that for every finite ΩcZ+, {Am}n&Ω is
dense in J*β in the C1 norm. There is such a sequence because each OSΩ is separable in
the C1 norm. It is clear that pe / is a ^-equilibrium state if and only if (1.8) is satisfied
for A = Am and B = An for all m,neZ+. Thus $β is defined by a countable number of
equations. It is therefore sufficient to show that the functions p-+p({A,B}\
p-+(δp(A)πp(B)Φp)Φp) are Borel functions on / for fixed A, Beέ%.

The first function is continuous. The second function is the pointwise limit of the
sequence of functions p-*p(δN(A)B) on /, and these functions are continuous. This
completes the proof.

Let p be an 5-asymptotic state for some increasing sequence S in Z+. and
consider an observable Ae&Ω for some finite ΩcZ+. The strong limit

Λί^oo

exists and is equal to

—}-VF n I—}
jeΩ \ ' δxj) jeΩ

 S>J'P p \dpjj

1.5. Definition. Let S be an increasing sequence in Z+, pe Js, and β>Q.pisanS — β-
equilibrίum state if and only if

(δs

p(A)πp(B)Φp9Φp)β^p({A9B}) (1.9)

for A, Be&. We denote the set of such p by δl.
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1.6. Theorem. For every increasing sequence S in Z+, $j is a convex, Borel set.

The proof of this theorem is identical to the proof of Theorem 1.4.

Section 2. Decomposition at Infinity of an Equilibrium State

Our next step is to examine the measure at infinity of a /^-equilibrium state. By [4],
the decomposition at infinity of a state on a separable quasi-local algebra is
concentrated on a Borel set of states with trivial algebra at infinity. We wish to
answer the following question : is the measure at infinity of a ^-equilibrium state
concentrated on a Borel set of β-equilibrίum states with trivial algebra at infinity?

2.1. Lemma. Let p£$β and μ the measure at infinity of p. Let 3F be a Borel set of states

such that μ(JΓ)>0. Then the state λ(A)= j σ(A)dμ(σ) is also a ^equilibrium

state.

Proof. By the nature of the decomposition at infinity [5], there is an orthogonal

projection Ee Q πp(^Ω)ff such that

(Eπp(A)Φp,Φp)= $ σ(A)dμ(σ)
&

for all 4e«a/, so

\\EΦP\\2"

Hence (EJ^p9A-^πp(A)\Ejg>p9 EΦp/\\EΦp\\) is the canonical cyclic representation of λ.
It follows immediately that λel. Also, δλ(a) = δp((A))\E#p for all AeΰS, so in order to
show that λetfβ, it suffices to show that

β(δMA))πv(B)EΦV9 Φp) = (π,({A, B})EΦP, Φp)

for all A, Be Λ.
Fix A, Be@Ω for some finite ΩcZ+. Since Eeπp(j/β)", there exists a net {Aa} in

jtfΩ such that πp(,4α)->£ strongly. Since every element of ̂  can be uniformly
approximated by elements of Sί^ we may choose {AΛ} to lie in J .̂ For each α we
have

β(δp((A))πp(BAΛ)Φp, Φp) = p({A, BAJ).

But {A,BAΛ} = {A,B}Aa because AΛe&£ and Ae8Ω. Hence

β(δp((A))πp(B)πp(Aa)Φp,Φp) = p({A,B}A«)

from which it follows that

β(δp((A))πp(B)EΦp, Φp) = (πp({A, B})EΦp, Φp).

This completes the proof.
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2.2. Theorem. Let pe$β and μ the measure at infinity of p. Then μ(<ί|) = 1 for some
increasing sequence S in Z+ .

Proof. By Theorem 1.2, μ(Js) = l for some increasing sequence S in Z+. Now
suppose μ(Js\^'s,β)>^' Let {Am} be as in the proof of Theorem 1.4 and set Imn

= {σeJs\ (1.9) does not hold for A = Am, B = An}. Then Js\<$Stβ= (J Imn and the
m,n= 1

/mn are Borel sets. Hence there exist m1? n1eZ+ such that μ(/mιΠl)>0.
Let ̂ N be the set of all σe/mι/ll such that the complex number

c(σ) = ̂ (^(μmι))πσμπι)Φσ, Φσ) - σ(Mmι, 4.J) ,

satisfies |c(σ)| > — and 2π — — ̂  arg c(σ) < 2π — . Then the KrN are Borel sets and

oo 17

Λnim^ U (J KrN. Hence μ(KrιNί)>0 for some r^Nt. Thus
Λ Γ = 1 r = l

Let Λ,(/4)=-— - - J σ(A)dμ(σ) for all ^4 in ja/. Then A 6^ by the preceding

lemma. We also have that

But (^(μmι))πσμMl)Φσ, ΦJ= lim σ(3Sw(AmιMBl) and the uniform boundedness of
W-> oo

the sequence of functions σ->σ((5S2V(^Wι)^4nι) follows from the uniform boundedness
of the F j f N , so by dominated convergence,

β lim A(<5SwμmιMΠl)ΦA(Mmι,^nι}).
N-+CO

Since Jle /, we certainly have that (δλ((Amι))πλ(Anι)Φλ9 Φλ) = lim λ(δSN(4Wl)4nι), so A
N-+OQ

does not satisfy (1.8) for A = Amι, B = Anι. This is the desired contradiction.
Combining this result with the remark at the beginning of the section, it follows

that the measure at infinity of a /J-equilibrium state is concentrated on a Borel set of
S — β-equilibrium states with trivial algebra at infinity for some increasing sequence
S in Z+. Therefore it is important to analyze such states.

Section 3. ίourier Analysis of the Interaction

On the space of all bounded, complex sequences select an arbitrary Banach limit λ,
as was done in [1]. Ultimately there will be no dependence on our choice of λ. In
order to avoid confusion with regard to indices, we will denote a sequence {bN} by
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3.1. Definition. Let p be a state on si. Then Bj>n>p is the operator on j^p defined by

Σ μjk(N)(πp(eίnx-)Ψ^Ψ2)} (3.1)
fc=ι /

for all Ψ19 Ψ2e^p.
It follows from (1.3) that the sequence in the argument of λ is indeed bounded, so

(3.1) makes sense. Note that the Bj n p are uniformly bounded, and recall that
{αJweZ} is the sequence of Fourier coefficients of /

00

3.2. Proposition. Bjfn>pe (°) πp(^^)ff, and Σ nanBjfnfpπp(e~ίnXj) converges absolu-
te n- - oo

tely in norm.

00

Proof. The second part of the statement follows from the fact that Σ \nan\ < oo.
«= — oo

Let Ω be a finite subset of Z+ and Aenp(^)'. It suffices to show that BjtΛtp

commutes with A. Letting Ψi9 Ψ2eJ^p and AΨ^ Ψ2 be the vectors in (3.1), we
obtain

l9 Ψ2)}.
k=ί

Letting Ψ ί 9 A*Ψ be the vectors in (3.1), we have

k=l

Since A commutes with πp(einXk) when keΩ, it follows that

Ψ2) = λ (N^ Σ
\ keΩ

= lim Σ
tf^oo keΩ

This completes the proof.

3.3. Proposition. If pel, then

WJ,P= Σ ajί^jf

,P= Σ nαΛ ,,,.

The proof is entirely similar to the proof of the parallel result in [1].
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3.4. Definition. Let p be a state on si and 8 an increasing sequence in Z+. Bs j n p is
the operator on 3Sfp such that

(BSJtΛtpΨl9 Ψ2) = λίN-+ f μjk(SN}((πp(eίnx*)V^ ^2)) (3.2)

for all y l9 <
It is clear that BSj>n>p has the properties stated in Proposition 3.2 for £,. π p.

Furthermore, if peJs, then

WSJ.P= Σ αAj,«Λ(e-^)
n= -oo

^J» = Σ βA.A..p*~te

n= — oo

FS.J.P = Σ nfl»Bs.A..J,πJ,(β-fa*')
n= — oo

£s;J ,PW= Σ ««A,An,P
e~^

n= — oo

Section 4. Equilibrium States with Trivial Algebra at Infinity

Let p be/a state in δβ with trivial algebra at infinity, i.e., such that P| KP(^Q)"

= Cl^p. Then the operators #7 } Π j p of the preceding section are scalar multiples of
the identity operator. By the equations in Proposition 3.3, it follows that Vj>p and
Ej>p are real- valued continuous functions times the identity operator, and,
identifying V j t p and E^p with the corresponding functions, it also follows that

In physical terms, V j t p is the potential field in which thejth particle is moving when
the system is in state p, while Ej>p is the force field.

Now recall that

jeΩ

for all Ae ΛQ. Thus

dA dA

^A ^ dA
PjfrΓ ~ Σ ViM-

jeΩ °Xj JeΩ V

Since peδβ9 it follows that

/ ?>A
βp( Σ pjfr-B- Σ vJ

\jeΩ °Xj JeΩ
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for all A, Beέ%Ω. This equation may be rewritten as

where the measure pΩ is the restriction of/? to j/fl, and where the derivatives of pΩ are
taken in the distributional sense with respect to the space J*Ω. Setting A = elXk, we get

On the other hand, if A = exp(— £p£), we obtain

βpk

 exP( - 2 Pi ) K'f p(**)Pβ =

or

From these equations it follows that pΩ is an absolutely continuous measure whose
density is

ίίexp

Thus we have the following result :

4. 1. Theorem. If pe<oβ and has trivial algebra at infinity, then the V j t p are real-valued
functions and

for Ae<$/Ω.

4.2. Corollary. // pe S'β and has trivial algebra at infinity, then p is a product state.

Now recall that Vj (x) = s-limπp ^ μjk(N) f(xk - x) . Since Vj p(x) is a scalar,
N^oo

we have in particular that

= lim

= lim
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Hence, we have the following compatibility conditions :

VJtp(x)= lim £ μjk(N)
N^CO fe=l

= lim £ μjk(N)

- - ί f(y-x]e-βVl"*Wdy. (4.3)
J e~β

— π

The equations for the functions V j t p are necessary conditions for the state p to be
a ^-equilibrium state with trivial algebra at infinity. This fact alone, of course, is not
enough to make the equations themselves interesting from the standpoint of
computing /^-equilibrium states. There will be more to say about this problem when
we consider a special class of interactions in the next section.

Suppose that S is an increasing sequence in Z+ and pe$j with trivial algebra at
infinity. Then by reasoning identical to that given above, we* obtain that p is a
product state,

for Aεjfp and

FSJjp(x)= lim Σ μjk(SN)

ί f(y-x)e-βVs>k>p(y)dy. (4.5)

Section 5. Interactions of the Fth Kind

We are now ready to consider special classes of interactions for which more
complete results can be obtained.

5.1. Definition. {μjk} is said to be of the Pth kind if and only if {μjk} has period P with
respect to j (and therefore with respect to fe) and

lim μjk(N)\{neZ+\nP + k^N}\ = λJk (5.1)
N-» oo

exists for Irg/c^P, where || denotes the cardinality of the set.
Suppose {μjk} is of the Pth kind, and let pe$j have trivial algebra at infinity,

where S is an increasing sequence in Z+. Then by reasoning similar to that given in
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[1] for the parallel situation, it follows that pe£β, {Vjtp} is periodic in7' with period
P, and

P ί f(y-x)e-βV> >Wdy

Vj.iM= Σ
k = l J

Thus we have the following result.

5.2. Theorem. // the interaction is of the Pth kind, the measure at infinity of a β-
equilibrium state is concentrated on a Borel set of β-equilibrium states with trivial
algebra at infinity.

We also have the lemma corresponding to Lemma 8.2 in [1],

5.3. Lemma. Suppose {μjk} is of the Pth kind, and let p be a product state such that
{p(eιnxj)} is periodic in j with period p for all n. Then pel.

Our next step is to characterize the states in δβ that have trivial algebra at
infinity for interactions of the Pth kind, and we begin by summarizing what we have
accomplished so far. If p is a state in δβ with trivial algebra at infinity, then p is a
product state,

~ - (5.2)

— oo —π

for all A in jtfj, and

)= Σ λjk~ - - - J /(y-xϊe-n.Mdy (5.3)
k = 1 J e-

βV

forall./eZ+ .
These conditions are necessary for p to be a ^-equilibrium state with trivial

algebra at infinity. The following result establishes that the consistency equations
(5.3) are sufficient conditions for the state corresponding to the functions via (5.2) to
be a state in $β with trivial algebra at infinity.

5.4. Theorem. Suppose {μjk} is of the Pth kind, and let {g^ be a sequence of bounded,
real-valued, measurable functions such that

Φ)= Σ *•*-;— ̂ - ϊ f(y-x)e-^dy. (5.4)

Let p be the product state such that

] ]
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for all AEJ&J. Then pε$β and has trivial algebra at infinity. Furthermore, V^p exists
and is equal to g^.

Proof, p is a product state. Moreover,

1 π

p(j«*j) = - - J e

ίnye ~

Since {#,-} is periodic in j with period P, so is (p(eίnXj)}. By Lemma 5.3 it follows that
pel. In particular, Vjtp exists.

The next point to notice is that p is a β-KMS state on j^ with respect to the
unbounded derivation

_> dA _ >( \dA

(gj is clearly in C1( — π,π) because / is.) Further, p is β-KMS with respect to the
unbounded derivation δ on jtf that is locally defined in this way. We wish to show

Since p is a product state, it follows from [5] that p has trivial algebra at infinity.
But recall that for a state in / which has trivial algebra at infinity, Vjtp is an ordinary
function and

&j. Since (4.2) holds for all asymptotic states with trivial algebra at infinity,
we have

*j»= Σ V(/K-*»
k=l

By our definition of p, we have

x))=- - 1 - J f(y-x)

Since the ̂  are assumed to satisfy the consistency relations, it follows that

Hence δp(A) = πp(δ(A)) for all A e £%, so the statement that p is β-KMS with respect to
δ is exactly the statement that peδβ. This completes the proof.

Combining this theorem with the remark preceding it, we obtain

5.5 Theorem. Suppose the interaction is of the Pth kind. Then there is a one-to-one
correspondence between states in S'β with trivial algebra at infinity and P-tuples
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(gl9 ..., #p) of bounded, real-valued, measurable functions satisfying the system (6.4) of
equations.

Thus, the computation of β-equilibrium states with trivial algebra at infinity is
reduced to a very concrete problem. Notice that there is one and only one solution

P I
(g1,...,gp) whose entries are constant, namely #. = α0 £ λjk. Recall that

k=l \

1 π \
a0 = — J f(y)dy. This state is a "free" state, since the effective force fields in which

2π _π /
the particles are moving are zero. It should not be surprising that there is such a
state, since the interaction we are considering is "infinitely weak". We note that the
constant solution is independent of β, while the corresponding product state

J(A)=- - - - ] A

is dependent on β. In particular, <^Φ0 for all /?>0.
In Section 6 we will give an example where the free solution is not the only

solution. We note at this point that if ( g ί 9 ...,gp) is a solution with nonconstant
entries, then all of its spatial translates modulo 2π are also solutions.

Our characterization of /J-equilibrium states trivial at infinity for interactions of
the Pth kind enables us to prove the following theorem:

5.6. Theorem. Suppose that the interaction is of the Pth kind and pe$β. Then p is an
extreme point of $β if and only if p has trivial algebra at infinity.

The proof of this result is identical to the proof of Theorem 7.7 in [1], so we omit
it. Thus the decomposition at infinity of a /^-equilibrium state is also an extremal
decomposition. Whether the extremal decomposition is unique or not is an open
question.

We close this section with the statement of a result which is stronger than the
converse of Theorem 5.2.

5.7. Proposition. Let μ be a probability measure concentrated on $β. Then the
resultant of μ lies in $β.

Proof. Let p be the resultant of μ. Since μ is concentrated on /, it follows by
dominated convergence that the limits in question exist on the dense subspace
πp(<$tf)Φp of 3J?p, therefore on fflp by uniform boundedness. Thus pel.

Let A,Be&. For every σe<^ we have

(δσ(A)πσ(B)Φσ,Φσ)β = σ({A,B})

and

δσ(A)=s-limπσ(δN(A)),
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SO

]imσ(δN(A)B)β =

By dominated convergence it follows that

lim J σ(δN(A)B)dμ(δ)β= f σ({A, B})dμ(σ) .
N^cogβ Sβ

Therefore,

(δp(A)πp(B)Φp,Φp)= limp(δN(A)B)
N-+OO

= lim J σ(δN(A)B)dμ(σ)β
N^co gβ

! = J σ({A,B})dμ(σ)
sβ

=p({A,B}).

Section 6. Phase Transitions

Our next step is to examine the bifurcation theory with respect to the inverse
temperature β. We have the following result :

6.1. Theorem. Suppose that the interaction is of the Pth kind. Then there is only one β-
equilibrίum state for β sufficiently small.

Proof. By the decomposition theorem, it is sufficient to show that there is only one β-
equilibrium state with trivial algebra at infinity for β small enough. By our
characterization of such states and the remarks of the preceding section, it is enough
to prove that the free solution is the only solution to our system of equations for β
sufficiently small.

Notice that if (#1? ...,#p) solves the equations for/, then for a real constant C,
I P P \

(01 + C Σ ^u> •• ?0p + C Σ λpk) solves the equations for/+C, so the abundance
\ k=ί k=l /

of solutions is unaffected by the assumption that

} /(x)Λc=0.

In this case (0, . . . , 0) is the free solution. Let (gί9 . . . , gp) be an arbitrary β-solution. We
need to find a )S0>0, independent of (01? ...,gp\ such that if β^β0, then #,- = 0 for
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We have

ί/x)|£ Σ i^J
k=l

P

V i; I
L \Λjk\

P

Y n i
L \Ajk\

k = l

P

^ Σ IVI
k = l

1
π

— π

— π

π
Γ π \1 i l l ? V uJ / U XJ*

— π

π

f fίv YΪJ JO7 X;
— π

π

ί fCv γ1J j(y x)
— π

1
H / l l o o l l Λ l l o o π _

Hence

t

But we also have the crude estimate

p

so

2 / ϊ l l / H o o |λkr|

k=ί

It is clear from this estimate that the gk = Q for β small enough.
In considering interactions of the 1st kind, the /^-equilibrium states with trivial

algebra at infinity correspond to functions g satisfying the equation

(6.1)

where A is a constant depending upon the strength of the "infinitely weak"
interaction. We wish to find an interaction and a temperature for which a phase
transition occurs—that is, a function / with the required properties and a number
β > 0 for which (6.1) has two solutions. For each β > 0, (6.1) has a constant solution
g = λa0, so it is necessary only to find an/and β such that (6.1) has a non-constant
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solution. Taking the Fourier transform of (6.1), we get

In π

bn = —^ — \ e'^e-^dy, (6.2)

where {bn\neZ} is the sequence of Fourier coefficients for g. Thus we need to find a
sequence {αj with the appropriate properties such that (6.2) holds and b f cφO for
some kφO, so we simply pick a convenient {bn} and solve for {αj :

an = , -" - e-»o>dy . (6.3)

The only remaining obstacle is the possibility that the denominator may vanish for
some n where b_n φ0. We must find a β > 0 such that this does not happen for any
such n. In this way we will have found an/and a β which yield as a solution the non-
constant function g that was picked to begin with.

To this end, let b t = b _ ί = — | and bn = 0 for all other n. Then g(x) = — cos x. We
π

need to show that there is a β>0 such that neither J eiye~βg(y)dy nor
K 71

J e~ίye~β9(y}dy vanish. Since one is the complex conjugate of the other, it is enough
— π

to show that the sum does not vanish, so the problem is reduced to showing that
π

J cosyeβcosydyή=Q.
— π

But the integral is also the integral of cosy with respect to the measure eβcosydy,
whose density eβ cosy is increasing for — π ̂  y ̂  0 and decreasing for 0 ̂  y rg π. By the
nature of cosy, the integral cannot vanish for any value of/?, so we have what we
want. Notice that this does not contradict Theorem 6.1 because the estimate
involves H / H ^ , and for different values of β we have different functions / yielding
the same function g.

By reasoning parallel to the reasoning at the conclusion of [1], this example of a
phase transition also provides an example where the decomposition at infinity
breaks symmetry with respect to spatial translations.
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