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Abstract. We investigate the irreversible dynamics of infinite systems as
specified by completely positive, strongly continuous, one-parameter semi-
groups on a suitable C*-algebra. Having shown how to construct such a
semigroup from a fairly general evolution equation we determine when the
semigroup is spatial with respect to a given representation of the algebra. A
special class of exactly soluble evolution equations on the CAR algebra is
studied in detail in order to test conjectured extensions of the theory.

§1. Introduction

If si is a C*-algebra, which we shall always assume possesses an identity element 1, a
dynamical semigroup on si is defined as a strongly continuous one-parameter
semigroup of completely positive [12, p. 136; 47] identity-preserving maps Ttof<stf
into itself. Such semi-groups arise in various contexts in non-equilibrium quantum
statistical mechanics [12, 27], sometimes in the Heisenberg picture as above, and
sometimes in the Schrodinger picture. They may be obtained in the weak or singular
coupling limit when a system interacts with an infinite external reservoir [8,13, 23,
35, 38]. In the converse direction given a dynamical semigroup one may frequently
dilate it to a dynamical group, specified in some sense by a Hamiltonian, on a larger
system [11,20,22, 33].

Two special types of dynamical semigroup are fairly well understood. In the first
case [12], si is the algebra j£?(£F) of all bounded operators on a separable Hubert
space J f and Tt is obtained by duality from a one-parameter semigroup of the space
of trace class operators on #?. In the second case [19, 30,42], Tt is a one-parameter
group of *-automorphisms of si. Results known in one or other of these two special
cases motivate much of the present work.

Associated with a dynamical semigroup Tt on si is its evolution equation
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where the infinitesimal generator Z of the semigroup is a closed densely defined
operator on si. Also associated with Tt is the one-parameter semigroup Tf which
maps the compact convex set 5̂  of states of si into itself. In this paper we construct
and investigate the properties of certain dynamical semigroups whose evolution
equations are of a form previously studied in [9, 10]. Two particular goals are to
investigate the stability and spatial implementation of temporally invariant states,
defined as elements of

yτ = {φe5f:T*φ = φ for all ί^O}.

In most of the paper we assume for definiteness that si is the CAR algebra.
Much of the analysis could, however, be carried through for the CCR algebra, a
quantum spin system or even a general C*-algebra with quasi-local structure. We
leave such modifications to the reader. We conclude this section by recalling some
standard results about the CAR algebra [45] and fixing our notation.

The CAR algebra si over a complex Hubert space 3tf is a simple C*-algebra
generated by bounded operators a (/) which are conjugate linear with respect to

and satisfy

for all /, 0eJf . The symbol a*(f) denotes a*(f) or a(f) indifferently. By a Wick
monomial of degree n we mean a product of n operators a*(f). We say the
monomial is normal (anti-normal) ordered if the α*'s are all to the left (resp. right) of
all the a's.

For every unitary map U on 2tf there is a ^-automorphism α(C7) of si such that

(1.1)

for all /e J f . In particular there is an automorphism θ of si such that θ2 = 1 and

for all feJP. We define

The observable C*-subalgebra J3/0 of si is known to be simple and even *-iso-
morphic to s/ [17; 19, p. 306; 48].

If 3P = L2 (R3), fe 34? and xeIR3, we define fxeJf and the unitary map Ux on jj?
by

fx(y)=(uxf)(y)=f(y-χ) (1.2)

If Bejtf we define Bxe<$# and the automorphism αx of si by

Bje = αJC(B) = α(I7x)B. (1.3)

We shall call various maps spatially homogeneous if they are invariant under all
space translations.
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If S is an unbounded spatially homogeneous self-adjoint operator on
Jf=L2(1R3) we define fie* by

ft = eίstf. (1.4)

If Bes0 we define Bte<$/ and the automorphism St of j/ by

Bt = St(B) = oi(efst)B. (1.5)

The infinitesimal generator of the group St is an unbounded derivation [6,36] on stf
which we denote by Ds. In the symbol fxt or Bxt the first index will always refer to the
space translation and the second to the time translation.

§ 2. A Spatially Homogeneous Model

We let j/ be the CAR algebra over J f = L2(IR3) and consider the formal evolution
equation

^ =D(X)+ f {2B*θ(X)Bx-B*BxX-XB*Bx}d3

X (2.1)
at R3

where D is the derivation associated to the single-particle Hamiltonian S= — \Δ
and B is a Wick monomial of odd degree. This equation is similar to, but more
general than, those studied in [9,10]. The integral describes a stochastic influence
on the fermion system due to its interaction with an infinite external reservoir. The
slightly unusual presence of θ in Equation (2.1) is necessitated by the form of the
anticommutation relations, θ is omitted if B is a Wick monomial of even degree, or if
the evolution equation is interpreted as acting on the observable algebra j/0.

For all finite a the evolution equation

/ιv
-j-=D(X) + j {2B*θφ)Bx-B*BJί-XB*Bx}d*x (2.2)
at |x |έα

on j/ is soluble because the RHS of Equation (2.2) defines a bounded perturbation
of D. The solution

X(t) = Ta(t)X

defines a dynamical semigroup Ta(f) on j/ by use of the Trotter product formula as
in [12 p. 83]. Following [49], we show that as α-> oo, Ta(t) converges to a dynamical
semigroup T(t) on jaf. The following theorem may be adapted to quantum spin
systems or quasi-local C*-algebras by following [40] or [50] respectively. One may
also extend it to the case where the interaction term of Equation (2.1) is replaced by a
finite sum of similar terms.

Theorem 2.1. Let

B = a*(f1)...a*(f")

where n is odd and each fl lies in Schwartz space £7.
Then for all Xe^/

limTa(t)X=T(t)X (2.3)



234 E. B. Davies

in norm, uniformly for t in any finite interval. The limit T(t) is a spatially homogeneous
dynamical semigroup on jtf.

Proof. We define the bounded map Jxt : stf^stf by

The solution of

S Jx(X)d3x

is

Ta(t)X=StX+

+ ί ί ί St_sJxSs_uJySuXdydxduds+... (2.4)
s=0 w = 0 |x|=α |y | = α

Therefore

S_tTa(t)X=X+ j j JxsXdxds
s=0 |x|^α

+ J { J ί JxsJylXdxdyduds + ... (2.5)
s=0 M = 0 |jc|=α b|=a

We compare this as a-+co with the expression

t
S_,T(t)X=X+ I I JxsXdxds

s = 0 JcelR3

+ ί ί ί ί JxsJyuXdxdyduds+... (2.6)
s=0 w = 0 ΛielR3 yelR3

whose convergence has to be demonstrated.
Assuming X has the form

(2.7)

where each gj lies in &*, we estimate each of the integrands in Equation (2.6).
Assuming first that m is odd and writing

we use the canonical anti-commutation relations to contract exactly one pair of
legs, in all possible ways, in each of the two anticommutators in brackets. This yields

where each P^ is a Wick monomial of degree (m + 2n — 2) and the series has 2mn
terms. If ί0^0 Fourier analysis yields the estimate

i + MΓ4 (2.9)
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valid for all 0^ί^ί0 and xelR3. Equations (2.8) and (2.9) are adequate to control
one pair of space and time integrations in Equation (2.6). Applying Equation (2.8)
iteratively and finally estimating the uncontracted field operators in norm we
obtain

r-2)n-(2r-2)}mfa1...dsr

valid for all 0^ί^ί0, where a depends on X but c does not. By the ratio test the
series in Equation (2.6) is norm convergent if 0^ίgί0 and 4cn2t<l. A similar
conclusion for even values of m can be based on the formula

It follows that if X is of the form of Equation (2.7) and

then the right-hand side of Equation (2.5) converges uniformly to the right-hand
side of Equation (2.6). The density of linear combinations of suchX, combined with
the estimates

valid for all ί^O, implies that

lim sup ||Ta(i)X-7WH=0 (2.10)

. The semigroup property of each Ta(t) allows one to define T(t) for all
t ̂ 0 and extend the validity of Equation (2.10) to arbitrary t1 ^0. This then implies
that T(t) is a dynamical semigroup on jtf.

By Equation (2.6) the formula

(2.11)

is valid for 0^ί^ίt andZ of the form of Equation (2.7). Its validity for
follows by density, and for all ί^O follows by the semigroup property of T(t).

It is well-known with reversible evolution equations that even when it is possible
to define the dynamics as an automorphism group of the appropriate C*-algebra, it
may not be possible to make sense of the formal Hamiltonian of the system unless
one excludes spatially homogeneous pure creation terms from the interaction
Hamiltonian [28, 49]. The situation with irreversible evolution equations is similar,
as we can see from an earlier paper [9], where in order to integrate an evolution
equation similar to Equation (2.1) within the Fock representation of the CAR's, the
further restriction that B was of the form
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was necessary. An associated difference between our approach and that of [9] is
that here we are defining the time evolution of observables rather than states.

§ 3. Evolution of G-invariant States

Let si be a separable C*-algebra and G a group of automorphisms of si which is G-
abelian in the sense of [19,42]. For example G might be the group of space
translations of the CAR algebra si over L2(1R3), which is weakly asymptotically
abelian by [16].

By [19, p. 222 42, p. 158] the set <fG of G-invariant states on j/ is a simplex. The
set X of extreme points of ίfG is a Borel set in 9*G and hence a standard Borel space.
We denote by B(X) the set of bounded measurable functions onX and by P(X) the
set of probability measures on X.

If we regard^ as being a classical macroscopic phase space for jtf, the following
theorem constructs a Markov process on X which describes macroscopic irrever-
sible dynamics compatible with Tt.

Theorem 3.1. // Tt is a G-invariant dynamical semigroup on si, there is a function
Pt(x,E) defined for all ί^O, xeX and Borel sets EQX such that

(i) x,t^>Pt(x,E) is measurable for all E;
(ii) E-*Pt(x,E) is a probability measure on X for all x,t;

(iii) $PJ(x9dy)Pt(y9E) = Ps+ί(X9E)
x

for all 5, £, x, E

(iv) x(TtA}=\φ(A)Pt(x,dφ) (3.1)
x

for all x, t and

Proof. The barycentre map B :P(X)^-^G is defined by

f(Bμ)= $ f(x)μ(dx)
x

where/is an arbitrary element of the space A(^G) of continuous affine functions on
SfG. Since SfG is a simplex, B is one-one onto [2, p. 87]. Since Γ is G-invariant

and we can therefore define

where εxeP(X) is the point evaluation at x. The validity of (ii), (iii) and (iv) is
immediate.

If 2) is the norm dense subspace oϊA(^G) obtained by restricting elements of si
to ίfG, then by Equation (3.1)

*,*-+ 1 f(Φ)P&,dφ) (3.2)
x

is measurable for all /e®, and hence for all feA(^G). Identifying the monotone
sequential envelope of A(^G) with B(X) by [1], it follows that Equation (3.2) defines
a measurable function of x, t for all feB(X). Choosing / to be the characteristic
function of E completes the proof of (i).
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§ 4. Spatial Implementation of Dynamics

If Tt is a dynamical semigroup on si and π is a representation of si on a Hubert
space #f , we say that π is spatial with respect to Tt if there is a one-parameter
semigroup Tt~ of normal completely positive maps on the von Neumann algebra

such that

for all Xesi. We say that π is fully spatial with respect to Tt if there is a one-
parameter semigroup of normal completely positive maps Tt on jS?(jf) such that

for allXejtf. Unlike 77, the semigroup Tt is uniquely determined by Tt when it
exists. We say that a state φ on si is (fully) spatial with respect to Tt if the cyclic
representation associated with φ has this property. It is well-known that every
invariant state is fully spatial with respect to a dynamical group, but the same does
not hold for dynamical semigroups even when the algebra si is finite-dimensional.

Example4.1. Let j/ = M(2,(C)0M(2,<C) and define Pe^ and τ,φe¥ by

K 3
la b\

' 1 7 J XiX 1 /\c d) \c'

L (la b\ Id
Φ\\ J® '\\c d) \c'

The evolution equation

^=τ(X)P-\(PX+XP)

on s/ has solution X(t) = T,X where T, is a dynamical semigroup on s/. Since

for allXe si, φ is an invariant state on si. The GNS representation associated with
φ is two-dimensional with kernel

•MC K
It is clear from the evolution equation that J> is not invariant under Tt so there is not
any induced semigroup on «s//«/.

We recall that a state φ on si is called faithful if φQί*X) = Q implies X = 0. It is
called separating itn(siy Ω is dense in Jίf, where π is the cyclic representation on 3tf
and Ώ the cyclic vector associated with φ. If si is simple every separating state is
faithful. If φ is a KMS state with respect to any automorphism group of si then φ is
separating [51, p. 69].
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Theorem 4.2. If φ is a separating invariant state on the C* -algebra ̂  with respect to
the dynamical semigroup Tt, then φ is spatial with respect to Tt.

Proof. The normal folium Jf of φ is defined [25] as the set of states ψ on j/ which
can be put in the form

for some operator ρ ̂ 0 on Jf such that tr[ρ] = 1. Alternatively [15, p. 38] Jf is the
set of states on <$# which may be extended to normal states on i^ = (πj/)". We claim
that

Λr = {ψe£f:ψ^(x,φ for some α}~ (4.1)

the closure being in norm. Both sides of Equation (4.1) are norm closed convex sets.
If 0 ̂ ψ ^aφ then by the GNS construction there is an operator A e i^r such that

and

for allXej/. Thus

so ψeJ^ and the RHS of Equation (4.1) is contained in the LHS. Conversely since φ
is separating given veJ^ with ||f|| = l and given ε>0 there exists Aei^ with
\\AΩ - v\\ <ε and ||^4β|| = 1. Defining the state ψ on ̂  by

we see that

Since ε>0 is arbitrary the RHS of Equation (4.1) contains all vector states and
hence all states which can be represented by density matrices ρ.

The invariance of φ, the positivity of Tί? and Equation (4.1) imply that there are
positive linear maps Rt on the Banach subspace 3fi = \m(jV) of <£/* such that

for all X e j t f , ψe& and
Identifying Jf* with i^ in the canonical manner [15, p. 38 19, p. 119] there are

normal positive linear maps TΓ =R* on i^ such that

for allXej/ and ί^O. The complete positivity of Tt implies that Tt~ is completely
positive and the semigroup property of Tt implies that Tt~ is a semigroup.

We conjecture that φ need not be fully spatial with respect to Tt in the
circumstances of the above theorem.

Theorem 4.3. Let φbea separating type i factor state of the C* -algebra jtf, invariant
with respect to the dynamical semigroup Tt. Then φ is fully spatial with respect to Tt.
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Proof. By [15, p. 124] the Hubert space Jf of the cyclic representation associated to
φ may be written in the form Jf = ̂ 0^ so that

The maps Tt~ of Theorem 4.2 may therefore be considered as completely positive
maps on ̂ (^) and by [12, p. 140; 32] have representations

T~(X)= AJίA*
w = l

where
00

LJ AntAnt = 1
n=ί

the sums being convergent in the weak operator topology.
If we define Tt' : &(#)->&(&) by

then each Tt

f is normal and completely positive. Subject to normality 77 is uniquely
determined by

ΊΪ(A®B) = Tt-(A)®B (4.2)

valid for all Ae&WJ and Be^f(J«f2). Equation (4.2) implies that Tt' is a one-
parameter semigroup.

In the remainder of this section we apply some of the abstract results above to
the dynamical semigroups constructed on the CAR algebra jtf in Section 2.

Theorem 4.4. Let φbea spatially homogeneous state on the CAR algebra stf, which is
invariant with respect to the free dynamics St. Let Tt be the dynamical semigroup
associated with the evolution equation

^ = D(X) + J {2B*Θ&)BX-B*BJC
at R3

-XB*BX + 2aBxθ(X)B* - uBxB*X - aXBxB*} d3x

as in Theorem 2.1, where α^O. //

φ(XB) = κφ(BX) (4.3)

for allXejtf then φ is invariant with respect to Tt.

Proof. If we define

JX(X) = 2B*XΘ(X)BX-B*XBJ{-XB*XBX

+ 2aBx Θ(X) B* - <xBxB*X - aιXBxB*

then

0 (4.4)
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for all xeR3 and Xe^0 by the spatial homogeneity of φ and Equation (4.3). If
XEJI/I then JxKe^ί so Equation (4.4) still holds by [42, p. 178]. Therefore
Equation (4.4) is valid for all xeR3 andXej/. By Equation (2.4)

φ(Ta(t)X) =

for allXe**/, ί^O and α^O. Letting α-»oo we obtain

φ(T(t)X) =

for all Xestf and
For the application of this theorem we recall that the universally invariant state

φβ Sit the inverse temperature β is defined formally by

where N is the number operator [45].

Theorem 4.5. // the Wick monomial B is of odd degree and involves m creation and n
annihilation terms, then φβ is invariant and spatial with respect to Tt if

eβ(m - n) _ α

Proof. We note that φβ is a KMS state with respect to the automorphism group
α^Ί) of jtf. The verification of Equation (4.3) is a consequence of the KMS
property; formally

= *φβ(BX).

The KMS property also implies that φβ is a separating state [51, p. 69], so φβ is
spatial by Theorem 4.2.

Comment. It should be possible to extend Theorem 4.5 to the case where φ is a more
general KMS state and the evolution equation has a suitable form, dependent on φ.

§ 5. An Exactly Soluble Evolution Equation

Many of the above ideas can be well illustrated with the exactly soluble evolution
equation

+ f {2a*(fx)θ(X)a(fx)-a*(fx)a(fx)X-Xa*(fx}a(fx)}d^
R3

+ J {2a(gx)θ(X)a^gx)-a(gx)a*(gx)X-Xa(gx)a*(gx)}d3

X (5.1)
1R3

on the CAR algebra Λ/ over tf = L2(JR3). The three terms on the RHS of Equation
(5.1) are interpreted respectively as the free generator, a stochastic term tending to
annihilate particles, and a stochastic term tending to create particles.
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It is advantageous to consider this model at the maximum level of generality. We
let j/' be the linear span of all Wick monomials, this being a dense *-subalgebra of
stf. We let s$" be the linear span of all Wick monomials whose test functions lie in
the domain of an unbounded self-adjoint operator S on $f. The derivation Ds on stf
was defined in Section 1 and has domain containing jtf". We turn now to the
definition of abstract versions of the two stochastic terms of Equation (5.1)

Theorem 5.1. For every bounded operator A on ̂  such that A + A*^.Q there is a
linear operator ZA\$$'-^<stf which depends linearly on A and has the further
properties.

(i) If A is trace class ZA may be extended to a bounded linear operator on stf which
is the generator of a norm continuous, completely positive, one-parameter semigroup
on <$/.

(ii) If A is bounded the closure ofZA is the generator of a strongly continuous,
completely positive one-parameter semigroup T(t) on ̂  such that

a*(e~Atfi)..M*(e-AtW (5.2)

for all normal ordered Wick monomials.

Proof. If A is trace class then applying the spectral theorem to its skew- and self-
adjoint parts we obtain

00 OO

A= Σ W><S"\ + i Σ μ»\h"><h"\ (5.3)
n = l n = l

where \\gn\\ = \\h"\\ = l for all n, μn are real, λn^Q and

00 00

Σ λn<co, Σ kl<°o
n = l n = l

The formula

ZΛ&)= Σ λn{-a*(g")a(g")X + 2a*(g")θ(X)a(g")-Xa*(g")a(g")}
n = l

-i Σ μn{a*(h")a(hn)X-Xa*(h")a(h")} (5.4)
n = l

is norm convergent and defines a linear operator ZA on s# with

The complete positivity of the norm continuous semigroup Tt = eZA* follows from
[12, p. 143; 33].

Direct calculations show that for any normal ordered Wick monomial

= - Σ Π^O1) α * ( Γ Ί α * ( / ) . (5.5)
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Together with the density of #0' in si, this shows that ZA depends only on A, and not
on the decomposition of A in Equation (5.3). Equation (5.5) also implies that
Equation (5.2) holds for any normal ordered Wick monomial.

We prove the theorem for arbitrary bounded A such that A + A* ̂  0 by taking
limits. If An is a sequence of trace class operators such that An + A*^Q and
An-^A strongly as n-»oo, and if we define

Tn(t)=exp{ZAnt}

then

for every normal ordered Wick monomial, the norm convergence being uniform for
t in any bounded interval. Because ||Tn(ί)|| ^1 for all n and all ί^O, there is a
bounded operator T(t):sf->ji such that

lim sup \\TH(t)X-T(t)X\\=0 (5.6)
n-»oo O ^ t ^ t

for allXe <$/ and ί0 ̂ 0. It is an immediate consequence of Equation (5.6) that T(t) is
a strongly continuous, completely positive, one parameter semigroup on si
and that Equation (5.2) holds.

By Equation (5.2) the infinitesimal generator ZA of T(t) has domain containing
all normal ordered Wick monomials, on which it is given by Equation (5.5). Thus si'
is contained in the domain of ZA, is invariant under T(t) and so is a core for ZA by
[39, p. 241].

Comments (i). An alternative proof of parts of the above theorem could be based on
the fact proved in [21, 29, 44] that since \\e~At \\ ^ 1 there exists a completely positive
map TA(t) on si satisfying Equation (5.2) for all normal ordered Wick monomials.

(ii) It is an immediate consequence of the theorem that T(ί) leaves the
observable algebra j/0 invariant.

(iii) The theorem can be modified by supposing Equation (5.2) is satisfied for all
anti-normal ordered Wick momials, and replacing ZA by an operator YA. In the
proof Equation (5.4) is replaced by

YA(X)= Σ λn{-α(gn)α*(
n = l

-Xα(gn)α*(gn)} + i £ μn{α(h"}α*(hn)X-Xα(hn}α*(h")}
n=l

while Equation (5.5) is replaced by

ΎA{α*(fί)...α*(f*)}

= - Σ ίίΠ α*(f)\α*(Afi){l[ α*(f)\] (5.7)
j = ι L u < j J u>j J J
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valid for all anti-normal ordered Wick monomials. The action of YA on normal
ordered Wick monomials may be deduced from Equation (5.7), but the expression is
not so simple.

We combine the above results into one theorem.

Theorem 5.2. Let S be an unbounded self-adjoint operator on ffl ana A, B bounded
operators such that

A + A*^0, £ + 5*^0. (5.8)

Then there exists a dynamical semigroup T(t) on s$ whose infinitesimal generator W is
given on jtf" by

Moreover

T(t)X= lira (eDs«rez*tlre*BtlJX (5.9)

for all X erf" and ί^O.

Proof. Our method will be directly related to the computation of T(t). We define
®m>n ffl as the projective tensor product [43, p. 36] of m copies of ̂ f and n copies of
the complex conjugate Hubert space 3? ~. This is the Banach space completion of
the algebraic tensor product for the norm

We then define st~ =

There are unique linear contractions im>n from ®m>n ffl into si such that

and these may be combined into one linear contraction iN \stfχ -+si. Our plan will
be to construct the semigroup first in the si1^ and then to carry it through to si
using the Trotter product formula.

There is a strongly continuous one-parameter group of isometries SΓ on si1^
such that for all m, n we have

It is clear from Equations (1.1) and (1.5) that

iNS~x = StiNx (5.10)

for all xej/^ and all t ̂ 0. The linear span 3fχ of all elementary tensor products
fι® ®fm+n such that each ft lies in dom (S) is a core for the infinitesimal
generator ̂  of SΓ by [39, p. 241]. There is a unique bounded linear map Z^ on
si such that
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One sees by Equation (5.5) that

for all xes#χ. Using Equation (5.7) to write down the action of YB on normal
ordered Wick monomials one may show similarly that there is a bounded operator
YB on sί~
such that

iNYϊx=YBiNx (5.12)

for all xe<stfχ. Since Z^ and YB are bounded there is a strongly continuous one-
parameter semigroup T^(t) on j/^ whose infinitesimal generator is equal to

+ Yg ) on its core 2^. Moreover

T~(t)x = Hm(eD*t/reZAt/reYέt/rγx
r-*oo

for all ί^O and xe j/~ by [7]. It follows by Equations (5.10), (5.11) and (5.12) that
the limit in Equation (5.9) exists for all X in the dense subspace

00

U h^N
N=l

of si. Since each of eDs\ eZΛ\ eYBt is a completely positive contraction for all ί^O,
Equation (5.9) is proved for allJf e<s/, and T(t) is a completely positive contraction
on j/ for all ί^O. Moreover

T(ήίNx = ίNT~(t)x

for all t ̂ 0 and XEJ^^. This formula implies that T(t) is a strongly continuous one-
parameter semigroup on si. Applying ίN to both sides of

limr1 (T£ (t) x-χ)= (DS + z; + γ;)x
t-) 0

valid for all xe &£, we obtain

lim r l (T(t)X -X) = (Ds + ZA + YB)X
ί^O

foral\XεA?"= M iχ3~.
N=l

Comment. With some further work one could show that s$" is a core for the
infinitesimal generator W of T(t\

Corollary 5.3. // /, getf and

C = ίS-A-B (5.13)

then

T(t){a*(f)a(g)} = a*(eaf)a(ectg)

+ \ «B + B*)eCsf,eCs

gyds.l. (5.14)
5=0
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Proof. We first note that C is abounded perturbation of ίS and so is the generator of
a one-parameter semigroup. Moreover C is dissipative by Equation (5.8), so ect is a
contraction semigroup by [12, p. 103 52, p. 250].

Since T(f) are contractions it is sufficient to consider the case where /,
gedom(S). Since

= a(Bg)a*(f) + a(g)a*(Bf)

we find that

= a*(iSf) a(g) + a*(f) a(iSg) - α* (4f) a(g)

This may be directly integrated yielding Equation (5.14).

Comment. One may similarly find explicit expressions for T(t) applied to any Wick
monomial. We shall, however, manage to avoid doing the necessary computations.

§ 6. Quasi-free States

We study the time evolution of quasi-free states of the CAR algebra under the
dynamical semigroup T(t) constructed in the last section. If R is a bounded operator
on 3? with 0 :g R ̂  1 then by [5, 14, 34, 45] there exists a unique state ωR on si such
that

ωΛ{^n/J...αn/1)α(^O...α(^}=^mndet{<K/ί,^.>} (6.1)

for all normal ordered Wick monomials. These states are factor states and their
quasi- and unitary equivalence as R varies has been determined in [37]. The Fock
state, anti-Fock state and central trace are given by R = Q, R = l and R = ̂
respectively.

Lemma 6. 1 . The map R-^ωR is a homeomorphism of {A e & (3?) :Q^A^l} withthe
weak operator topology onto the closed set £fQF of quasi-free states on stf under the
weak* topology

Proof. This is a trivial consequence of Equation (6.1).

Theorem 6.2. The semigroup Tf maps ^QF into itself. Indeed

T*(ωR) = ωR(t) -(6.2)

where

) = ect'ReCt+ } ec*s(B + B*)eCsds. (6.3)
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Proof. By Equation (5.9) and the closedness of ^QF it is sufficient for the first
statement of the theorem to prove that £fQF is invariant under each oΐeDs\ eZA\ eYβί.

= ωR {α*(*«'/J. »** (eίStfι) a(<Pβl). ..a(eistgn)}

= δmndQt{<ReίS%eίSί

gjy}

= a)e-ίStReiSt{a*(fm)...a(gn)}

so

The proof that

(ez^)*ωR = ωe-Λ*tRe-At

is similar. To deal with eΎβt we need the formula

ωR{a(g1)...a(gn)a*(fm)...a*(fί)}

.>} (6.4)

for all anti-normal ordered Wick monomials, which may be deduced from Equation
(6.1) by straightforward algebraic manipulations. By Equation (5.7)

{(eγ-')*(oR}{a(g1)...a(gn)a*(fm)...a*(f1)}

=ωR{a(e-Btg1)...a*(e-Btf1)}

= δm,det{<(l-R)e-*fί>e-*tgj>}

so

Having established the validity of an equality of the form of Equation (6.2) the
precise value of R(t) may be deduced using Corollary 5.3. We have

<R(t)f,g>
= ωm {a* (/) a(g)} = (I? ωR) {a* (f) a(g)}

= ωR{a*(eCtf)a(ec'g)+ J
s=0

s=0

for all f,geJ<ίf. This yields Equation (6.3).

§7. Equilibrium States

Let Tίbe a dynamical semigroup on a C*-algebra jtf and let φ be a state on jtf which
is invariant with respect to 7?. There are various criteria for stability of φ which we
now enumerate.
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(i) φ is globally stable if T?ψ-+φ in the weak* topology as ί-»oo for all
(ii) φ is weakly locally stable if it is spatial and Tt*ιp ^>φ in the weak* topology

as ί— >oo for all ψ in the normal folium of φ.
(iiϊ) φ is strongly locally stable if it is spatial and Tfψ-^φis norm as ί-> oo for all

ψ in the normal folium of φ. Our condition of weak locally stability is close to that
used in [41] and other local stability conditions may be found in [3, 26] all these
refer to reversible dynamics.

Strong local stability is too strong a property to be relevant for dynamical
groups. For if Tfψ^φ in norm as £-*oo then since

it follows that ψ = φ. We include for completeness a well-known criterion for weak
local stability.

Theorem 7.1. // Tt is a dynamical group on j/ and φ an invariant state which is
clustering in the sense that

lim φ{Y*(TtX)Z} = φ{Y*Z}φ{X} (7.1)
f-»oo

for allX, Y, ZGJ^, then φ is weakly locally stable.

Proof. If π is the cyclic representation and Ω the cyclic vector associated with φ then

lim (π(TtX)(πZΩ\(πYΩ)y = (φ(X) l(πZβ),(πYβ)>
ί->oo

for all Y,Zejtf so

in the weak operator topology for allXe j?/. If ψ lies in the normal folium of φ and ρ
is a density matrix such that

for allXe.fi/, then

lim (Tfιp)(X)= lim
f-» oo ί-+oo

We can provide examples of the other types of stability with the dynamical
semigroups introduced in Theorem 5.2. Some preparatory lemmas will be needed.

Lemma 7.2. If ect converges strongly to zero as £->oo then there is exactly one
temporally invariant quasi-free state, namely ωR(oo) where

fl(oo)= J ec*s(B + B*)eCsds (7.2)
o

satisfies O^R (oo)^l.
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Proof. Equation (5.8) implies that #(00)^0 and also

This calculation also establishes that the integral in Equation (7.2) is convergent in
the weak operator topology. If Q^R^ 1 and R(f) is defined by Equation (6.3) then
R(t) converges in the weak operator topology to R(oo) as ί->oo. This implies all the
statements of the lemma by Lemma 6.1.

Lemma 7.3. Let T(t) be a strongly continuous one parameter contraction semigroup on
a Banach space <$#n and let {^r}

n

r=Q be an increasing sequence of closed invariant
subspaces of jtfn. If the induced semigroups on sίrls4r_ 1 all converge strongly to zero
as ί-κx), then for allXe^/n and ε>0 there exists ί0 such that if t^t0 then

for some 7ej/0 depending onX, t and ε.

Proof. The truth of the lemma for n = 0 is evident and we suppose inductively that it
is true for (n— 1). Given X e j t f n and ε>0 let ί^ί0 imply that

where ||| ||| is the quotient norm in sίjsίn_^
Then

\\T(t0)X-X'\\<s/2

for somQXΈ^n_1. Let t1 be such that t^t1 implies

\\T(t)X'-X"\\<e/2

for some X"EJ/O. Then ί^ίo + ̂ i implies

|| T(t)X -X" II ̂  II T(t - ί0) II II T(t0)X -X' II

This establishes the inductive step, and hence the lemma.

Theorem 7.4. // ect converges strongly to zero as t-> oo, then the state ωR(oo) is globally
stable.

Proof. We let jtfn be the norm closure in si of the set of Wick polynomials of degree
^ n. For any Wick monomial

W=a*(fί)...a#(fn)

the element W+jtfn_ί of ^nl^n-γ is independent of the order of the creation-
annihilation operators in W. Therefore for such W
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and each of these semigroups leaves all the subspaces sίr invariant. Equation (5.9)
now implies that

so

and T(t) satisfies the hypotheses of Lemma 7.3.
lϊXe^n and ε>0 there exists ί0 such that if ί^ί0

| |T ί(Y)-αl||<ε/2

where αeC depends on X, ί, ε. Now ωκ(oo) is an invariant state by Lemma 7.2 so

Combining the last two equations leads to

||Tt(Y)-ωΛ(oo)(201||<ε.

This implies for any state ω on stf that

for all ί^ί0. Hence Tt*ω converges to ωΛ(oo) in the weak* topology as ί->oo.
The following special case of the above theorem will be needed in Section 8. We

introduce the operators

2, B0 - (B + B*)/2 (7.3)

for notational convenience.

Theorem 7.5. Suppose that A, A*, B, B* all lie in an abelian von Neumann algebra Y*
and that S is affiliated to this algebra. Then ect converges strongly to zero as t-> oo if
and only if (,40 + #0) is one-one, in which case

^ (7.4)

Proof. If /e 3f then since the operators all commute

which by spectral theory and Equation (5.8) converges to zero as f-» oo if and only if
0 is not an eigenvalue of (A0 + B0). Again because all the operators commute

R(ao)= ]e
o
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Theorem 7.6. Suppose that R, A, A*, B, B* all lie in a totally nonatomίc abelian von
Neumann algebra i^ ana that S is affiliated to this algebra. If (A0 + B0) is one-one,
O^R^l and

then the states TfωR and TfωR are not quasi- equivalent when s Φ f .

Proof. Since Rεi^9 Equation (6.3) takes the form

According to [37] the states ωR(s) and ωR(t) are quasi-equivalent if and only if both

R(s)1/2-R(t)112

and

are Hubert-Schmidt. Since Ί/" is totally non-atomic these imply R(s) = R(t). If s Φ f
this in turn implies

We suggest that this theorem implies that one cannot describe the time
evolution of states in Hubert space, or spatial, terms. One may qualitatively say that
the Hubert spaces associated to different time instants are disjoint. Thus the
dynamical equations must be treated at the C*-algebra level.

We conclude the section with an example of strong local stability.

Theorem 7.7. 7/5 = 0 and ect converges strongly to zero as t—> oo then the Fock state
ω0 is invariant for the dynamical semigroup T(t) with evolution equation

~=

Moreover ω0 is globally stable and strongly locally stable.

Proof. Since B = 0, R(ao) = 0 and the Fock state co0 is globally stable by Theorem 7.4.
That ω0 is spatial with respect to T(t) follows by the method of [9]. Indeed if Vn

is the space of density matrices on Fock space 3F which are supported in the
subspace 2Fn of ^n particles then

for all n and ίj^O.
For any operator Y on Jf we define Y~ to be the unbounded operator on

which maps each rc-particle subspace into itself and is given there by

The number operator N therefore equals 1 ~. We denote by P the projection of 3F
onto the one-dimensional subspace spanned by the Fock vacuum Ω.
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If the state ψ on si is determined by an operator in Vn, and {em} is any
orthonormal basis of ffl then

m = l
oo

* c ί αtr[φα*(e

cί

em)α(eαej]
m = l

Since £C!fί ect converges in the weak operator topology to 0 as £->oo

limtr[(T?v>)JV]=0. (7.5)
ί-»00

Since

we have

which together with Equation (7.5) implies that

This in turn implies that

Iim||7?φ-ω0 | |=0.

§ 8. A Statistical Mechanical Model

Following the notation of Section 1, we let j/ be the CAR algebra over 2tf = L2(IR3)
and let S be the single particle Hamiltonian — \A. Given f,gin Schwartz space y we
consider the evolution equation

at s A B

on <£/ where

R3

-Jfα*(/Jfl(/J}d3x (8.2)
and

α^Jl^x. (8.3)

Physically ZA describes the spatially homogeneous absorption of particles from the
system and YB describes the spatially homogeneous emission of particles into the
system from an external reservoir.
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By first introducing a space cut-off into the interaction terms one sees Equation
(8.1) is of the form treated in Theorem 5.2 if the operators A and £ on ̂  are defined
by

IR3

B=S\gx><g,\d3x.
R3

If is the Fourier transform then

(8.4)

(8.5)

for all ψeJ^ and fceR3. That is A and B are bounded multiplication operators in the
momentum representation.

Theorem 8.1. //

l/(/t)l2 + »>0 (8.6)

for all fceR3 then for all states ω on stf

in the weak* topology, where the operator jR(oo) on 2tf is defined by

(8.7)

. Ifω is a spatially homogeneous quasi free state different from ωΛ(oo) then
Tfω and T*ω are not quasi-equivalent unless s = t. If

0 (8.8)

for all fcelR3 then ωR((X)) is spatial with respect to the dynamical semigroup T(f).

Proof. The formula

) = h(k)ψ(k)

defines an algebra isomorphism) of L°°(IR3) onto the von Neumann algebra if of all
spatially homogeneous operators on Jf . Therefore i^ is a totally non-atomic
abelian von Neumann algebra. Equation (8.6) implies that the operator (A0 + B0) of
Theorem 7.5 is one-one. Most of this theorem may be obtained directly from
Theorems 7.4, 7.5 and 7.6.

Equation (8.8) implies that R(oo) has neither zero nor one as an eigenvalue.
Therefore there exists an unbounded self-adjoint operator H on ffl such that

Therefore ωκ(oo) is a KMS state with respect to the automorphism group of whose
generator is DH [4, p. 18; 20; 24] and hence is a separating state by [51, p. 69].
Therefore COR(OO} is spatial by Theorem 4.2.
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§ 9. A Spatially Inhomogeneous Model

We consider an evolution equation similar to that of the last section but with
different operators A and B. We put A = αl where α>0, corresponding to the
physical assumption that particles are absorbed from the system at α rate a which is
independent of their position and momentum. We put

B = f f c ( x ) l f l f » > < 9 j d 3 x (9.1)
R3

where ge£f and b is a non-negative bounded function representing the spatial
density of an external source emitting particles into the system. If b is not constant
then the evolution equation

dt-~SY.,,~A(X)+YB(X) (9.2)

with

is not spatially homogeneous and interesting new phenomena can occur. Before we
can use any of the theory of Section 5 we need the following lemma.

Lemma 9.1. The integral in Equation (9. 1) is convergent in the weak operator topology
and defines an operator B with

Proof. As a quadratic form

0£B£ff=\\b\\ao$\gx>(gx\d*x (9.3)
R3

and by Fourier analysis

(BVf(*) = (2π)3 \\b\\ ^g(k)\2<p(k) (9.4)

for all ψejf and fcelR3, so

We now denote by T(i) the dynamical semigroup on stf associated with the
evolution Equation (9.2) according to Theorem 5.2.

Theorem 9.2. // the operator R on ̂  is defined by

R= 2e-2ate(~ίs-vtBe(ίs-vtdt (9.5)
o

then ωR is a temporally invariant globally stable state on ja/.

Proof. Since
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Equation (5.8) implies that

so the conditions of Theorem 7.4 are satisfied.
The state ωR is generally not spatially homogeneous. In order to investigate

some of its properties we recall some well-known ideas.
The particle number distribution of any state ω on the CAR algebra si over 2tf

= L2(IR3) is a non-negative countably additive measure μ on IR3 such that for any
Borel set EglR3

μ(E)= £ ω{a*(fn)a(fn)}
n=l

where {/"} is any orthonormal basis of the subspace PE3?, and PE is the projection

x) if xeE

if xφE.

If the operator jR on Jf is defined by

for all f,geJjf, so that Q^R^l, then we may alternatively write

which shows that the particular orthonormal basis of PE^f chosen is not important.
We say the state ω is locally finite if μ(E) < oo for all bounded Borel sets E.

In the spatially homogeneous case the measure μ associated to the state ωR of
Theorem 9.2 can be easily determined.

Theorem 9.3. Ifb(x) = l for all xeR3 then ωR is locally finite and its distribution μ is
given by

μ(E)= j h(k)d*k$d*x (9.6)
IR3 E

where

h(k) = \g(k)\2 {(2π)- 3 a + \g(k)\2} ~ ' (9.7)

for all fceIR3.

Proof. We first note that heL1^3) since
A simple calculation based on Equation (9.5) shows that

for all ψe Jίf. The operator Ron 34? therefore has the positive definite continuous
kernel (2πΓ3l2h(y-x).

If £ is compact then PERPE is trace class by Mercer's theorem [46, p. 128] and

E

= j h(k)d*k\d3x.



Irreversible Dynamics of Infinite Fermion Systems 255

The truth of the theorem for more general Borel sets E follows by standard measure
theory.

We now return to the spatially inhomogeneous case.

Theorem 9.4. For all non-negative bounded functions b the state ωR is locally finite.
Moreover the measure μ has a bounded density with respect to Lebesgue measure.

Proof. If £ is a bounded Borel set then

μ(E)= f 2e-2attr[PEe(-is-B»Be(is-B}tPE]dt
o

= ]2e-2at\\\Bί/2e(is-B]tPE\\\2dt
o

where ||| ||| is the Hubert-Schmidt norm. Now

ί
e(iS-B)t = eiSt_ f e(iS-BHt-sϊβeiSS(js

s=0

SO

- (B^2e(is-B^-^Bil2)(Bll2eiSsPE)ds
s = 0

and

ί

s = 0

If B is defined by Equation (9.3) then

=tr[PEFPE]

= ί \\b\\
V?

= l l & l α , Mil d3χ
E

by Equation (9.4) and the fact that B' commutes with elSt. Substituting this estimate
into Equation (9.8) there is a constant β such that

for all ί^O. Hence
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By the Radon-Nikodym theorem the density of μ with respect to Lebesgue measure
is bounded by γ.

We specialise further to the case where the emission of particles into the system
from the reservoir occurs only in the region

This is achieved by putting

[1 if xeR3.

if OC0R3..

For notational convenience we shall write u below for the element (w,0,0) of R3.
Physically one would expect that the state ωR shows a transition as one passes

from large negative values of u to large positive values. This is made precise in the
following theorem.

Theorem 9.5. The limit states

ω±= lim α*ωΛ
M-> + OO

exist in the weak * topology and are spatially homogeneous quasi-free states of s$. The
state ω~ is the Fock state while ω+ is the quasi-free state associated to R +, where

for all ψeJJf, and h is defined by Equation (9.7).

Proof. Since

= ωR{a*(UJ1)...a(Uug
ί)}

for all normal ordered Wick monomials, we see that

α*ωjR = ωϋftΛUM.

By Lemma 6.1 we have to prove that

converge in the weak operator topology to R+ (resp. R ) as u tends to + oo (resp.
-oo).

By Equation (9.5) and the spatial homogeneity of S

GO

Ru= J 2e~2ate(~lS~Bu)tBue
(lS~Bu)tdt

o

where
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It is clear that as M-> + oo, Bu converges in the weak operator topology to

Since also u^v implies BU^BV,BU actually converges to B+ in the strong operator
topology. This implies by [31, p. 502] that

lim evs-BJt = e(is-B+)t
M-> + co

in the strong operator topology for all ί^O. It follows by the dominated
convergence theorem that Ru converges in the weak operator topology to

R+= ]2e-2ate(-ίs~B+)tB+e(ίs-B+)tdt.
o

The required expression for R+ may be obtained as in Theorem 9.3.
The case u-> — oo is done similarly, the limit operator R~ being equal to 0, which

characterises the Fock state.
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