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Some Global Properties of Massless Free Fields
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Abstract. Elementary group-theoretical considerations show that global so-
lutions to the massless free field equations are functions on the bundle of twistor
dyads, rather than the bundle of conformal spin frames. Only in certain
degenerate cases may they be thought of as ordinary spinor fields. This is the
origin of the "Grgin discontinuity".

I. Introduction

It has been known for some time that global solutions to the massless free field
equations

rAA'<pA'B'...c> = <> (1)

cannot generally be constructed on the conformal compactification of Minkowski

space: if one attempts to extend a local solution to cover any closed null geodesic, a

point is encountered at which the one-sided limits differ by a factor i~ 2 | s | " 2 , where s

is the helicity of the field. This phenomenon was first noticed by Grgin [1], and has

recently been discussed by one of us [2] from the point of view of U-spinors. In this

note, we show that the "Grgin discontinuity" arises from purely group-theoretical

considerations—in particular from the fact that ψ is required to be a density of

conformal weight — |s| — 1 in order that the field equations be invariant under

SU(2,2). Given the correct transformation properties under the conformal group,

the discontinuity will occur whether or not (1) is satisfied. Although global solutions

to the field equations do exist for all values of 5 [3], they cannot consistently be

thought of as spinor fields in the usual sense.

This all turns out to be intimately related to the question of when a twistor dyad

can be identified with a spin-frame, and this is the point of view from which we shall

approach the question.
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II. Twistor Dyads and Representations of SU(2,2)

The massless free fields of positive helicity can be conveniently realized as certain
functions on the bundle of twistor dyads, the construction of which goes as follows
(see [4] for more details):

Let Jί be the 0(2,4) null cone1, and regard M 4 (Minkowski space) as a
hyperplane section of this via the embedding

σ(x) = (*, i [ l + xμx
μl i [ l - x μ x Ί ) . (2)

Let M: =J^/JR.+ be the rays of Jί this is a double covering of Ji, the conformal
compactification of Minkowski space. The isomorphism P between simple twistor
bivectors and points of the complexified null cone ^Jί is fixed by requiring that if
(Ua) = (ixAA'πA,,πA) and (Va) = (ixAA'ωA,,ωA) are two twistors through x [6], then

P:UΛV->(πA,ω
A')σ(x). (3)

Let ^ * : ={(l/,F):(7φzKzeC*}, and define π\&*-*<ejr by π(U, V) = P(UΛ V).
Then £f: = π ~ \Jf) is called the bundle of twistor dyads over Jί. It can be made into
a principal SL(2, C) bundle by defining

WO, = U,WV = V (4a)

and

WΛ. β = WB.ffi, /?eSL(2,C). (4b)

In the obvious way, £f is also an 1R+ (χ)SL(2, C) bundle over Jί, while over Jί itself,
the structure group consists of those elements of GL(2, (C) with real determinant.
Notice that this last group is not connected.

Now consider SU(2,2) as a bundle over Jί with structure group
2B = {R+ ® SL(2, (C)} % where 91 is the identity component in SU(2,2) of the four-
parameter abelian group which covers the special conformal transformations. In
any representation of SU(2,2) induced by a representation τ of 2B with 9Ϊ Q Ker(τ),
the "Mackey functions"2 will be constant on the cosets of 91 and may be realized as
functions on SU(2,2)/2l. The utility of £f lies precisely in the fact that its elements
parametrize this coset space in a convenient way. Each dyad WA, labels the coset of
SU(2,2) consisting of all matrices of the form [X, X -Wv, Wo,] (see [4]).

In order to obtain the free fields of helicity n/2, the first step is to induce with the
non-unitary representation

τ(r9β9A):ξA..mmΛ.^i*+2fi.... ffiξσ..miy9

(r,/U)e{IR+<x>SL(2,C)}.2I

on the symmetric subspace of (x)w((C2). The resulting functions on £f satisfy the
subsidiary condition

f:) = r-»-ψA,... βZWc^ϋiWj) (6)

and are thus each homogeneous of total degree — n — 2 in their arguments. To
obtain a solution to the free field Equations (1), it is necessary to impose an

1 We take signatures (1, - 1 , - 1 , - 1 , -1,1) in IR6 and (1, - 1 , - 1 , - 1 ) in M 4. Our twistor conventions
are those of Penrose and MacCallum [5], except that we shall not be using abstract indices
2 Cross-sections of the homogeneous vector bundle lifted to the principal bundle. See [7], for example
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additional condition on ψ however, this is not strictly necessary for our purposes,
since Equation (6) is sufficient to establish the conformal weight of the fields.

III. The Grgin Discontinuity

Now consider 9* as a bundle over M. A matrix in the structure group can be written
uniquely as either rβ or irβ (r > 0, βe SL(2, (C)), and (6) must be supplemented by the
additional relation

ψ(ίWA,) = Γn-2ψ(WA,).3 (6')

[We are compelled to choose (6') rather than, say, ψ(iW) = i~nψ(W), because (6')
holds automatically for any ψ which is real analytic: any such ψ admits a
holomorphic extension to £f* which is complex homogeneous of degree — n — 2.]

Although ίf itself is connected, its fibers over Jί are not this means that the
bundle Sf-+M has no global cross-sections, and this in turn means that Sf is not a
trivial double cover of a bundle of conformal spin-frames on Jί. Thus a function
such as that displayed in (6) cannot possibly be thought of as an ordinary spinor
field on Jί, even though it has, in a certain sense, the correct local behavior. It
should be noted that this holds independently of whether or not ψ satisfies any field
equations.

To see the relationship between functions on Sf and functions on the usual
bundle of conformal spin-frames, note that Sf is a four-fold covering of
c€\ = CO(1,3)/A, where A is the subgroup of special conformal transformations.
Now ^-^Jί is an R + ®L\ bundle which does admit a global cross-section: identify
M with the 1/(2) subgroup of C0(l,3), and take the image of this in <β% There is
another "natural" R + ®L\ bundle over M—the subbundle <€' of the frame bundle
consisting of those frames which are orthonormal (and properly oriented) with
respect to some metric on M conformally related to that of Minkowski space. While
there is no canonical isomorphism connecting these two bundles, there is an
"obvious" one, obtained as follows:

Let xoeJί be the point representing the origin of Minkowski space, and let
[eα(x0)] be the standard (Minkowskian) orthonormal tetrad at x0. At any other
xeJi, define a frame by

ίea(xϊ]:=f(xUea(x0)-], (7)

where/(x) is the unique element of U(2) mapping x0 to x. Let F(x) be the image of
f(x) in <S9 and identify this with [efl(x)] This maps a global cross-section of # onto
one of <€' and is enough to fix the isomorphism. Note that we can now identify
suitable vector-valued functions on # (obtained by inducing a representation of
C0(l, 3) with one of IR+ ®L\) with appropriate conformally weighted densities on
Jί (as opposed to just M+). This is analogous to identification of spin and
conformally weighted functions with symmetric tensor densities on the two-sphere
[8].

Now to see which of the massless free fields can be regarded as spinor fields on
Jί, note that a frame in <#' ^Ή is covered by precisely four elements of Sf. If WA, is
one such, the others are {JkWA,: k = 1,2,3} where J: = i/4 x 4 generates the center of
SU(2,2). Consider a set of functions ψ obtained from (6) above. In order that they be
3 This representation clearly extends to £/(l)(x)lR+(x)SL(2, C), giving "conformal" C/-spinors [2]
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consistently identifiable as spinor components on M, it is necessary and sufficient
that they be

(a) Single-valued on if if n is even
(b) Double-valued if n is odd.

But, using (6'),

WWΛ.) = Γ"-2xμ(WΛ.) (8)

so that case (b) never occurs, while (a) occurs only for n = 2(mod4), i.e., only in
representations of Co (1,3).

If, in spite of this, one tries to interpret ψ as a spinor field on Jί for other values
of n, a spurious discontinuity will arise.

IV. Spinor Fields on Jt

We return to thinking of Sf as a bundle over Jt. By repeating the argument above,
Sf is a double covering of #', the bundle of conformal frames over J4, and so a
conformal spin structure. Since Jt is S1 x S3, πγ{M)—TL, and there exist precisely
two such spin structures; these may be constructed by choosing one of two
inequivalent cross-sections of #', so as to decompose it into a product
Jί x (R+ ®L\\ and hence "unwind" it. The structure Sf corresponds to choosing
the cross-section on a spacelike S^-hypersurface and then dragging it round along a
congruence of closed null geodesies [2] the other corresponds to simply dragging
round the S1 component of Jt by time-translation.

Although the second seems to be a more natural spin-structure geometrically, it
leads to a Grgin-type discontinuity of (— l)~n~2 for the half-integer spin fields we
are dealing with here.

As a final remark, we note that the restriction of £f to any simply-connected
region of Jt {ovJί) is trivial it is this which allows one to identify a spin-frame at a
point of uncompactified Minkowski space with a unique twistor dyad in a
consistent fashion [3,4].
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