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On the Integrability of the Lie Algebra
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Abstract. It is shown that the infinitesimal con formal symmetry implies (in any
quantum field theory which satisfies the Wightman axioms without invoking
locality and global Poincare symmetry) that there exists a uniquely defined
unitary representation of the universal (oo-sheeted) covering group of the
Minkowskian conformal group S0e(4,2)/z. Proof was obtained using sufficient
conditions for the integrability of a representation of a Lie algebra given by [8].

Introduction

Many papers have been written about global representations of the conformal
group in the quantum field theories.

It has been first shown by [1-4] that global conformal transformations for free
fields or generalized free fields can be defined without violation of causality.

Then Lϋscher and Mack [5] proved that global Euclidean conformal symmetry
of the Schwinger functions (weak conformal symmetry) implies that there exists
a unique representation of the universal (oo-sheeted) covering group of the
Minkowskian conformal group S0e(4,2)/Z2. In the same paper it has been stated
also that a weak conformal symmetry implies the infinitesimal conformal
symmetry of the fields.

The aim of the present paper is to prove that the infinitesimal conformal
symmetry of the fields implies (in any quantum field theory which satisfies the
Wightman axioms without invoking locality and global Poincare symmetry) that
there exists a uniquely defined unitary representation of the universal (oo-sheeted)
covering group of SΌe(4,2)/Za. Our method is different from that used in the paper
by Lϋscher and Mack.

The problem is investigated in the following way: In Section 1 we present some
facts concerning the mathematical background of the integrability problem.

The definition of a conformal quantum field theory is given in Section 2.
Finally, Section 3 deals with the problem of the integrability of the Lie algebra of

the conformal group defined in Section 2.
Some details are included in the Appendix.
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1. Preliminaries

In this Section we shall collect some definitions and theorems without giving proofs.
They are either contained in given references or they are simple consequence of

things established there.
Let G be a finite dimensional real Lie group. The unitary (continuous)

representation of G in a Hubert space 2tf is the mapping g\->U(g\ geG, U(g)-
unitary operator in jtf, which satisfies the following conditions :

(i) foτ*Άgl9g2eG U(gίg2)=U(gί)U(g2\
(ii) g^ΊJ(g) is continuous in the strong operator topology.
Let & be the Lie algebra of the Lie group G. For QachXe^ the one-parameter

subgroup, ίH»expίXe G, ίelRis mapped (due to U(g)) into strongly continuous one-
parameter group, ίi-»l/'(expίX') of the unitary operators.

From Stone's theorem follows the existence of the unique selfadjoint operator
dU(X) in Jtf such that U(Q*ptX) = expitdU(X) for each ίeR

Theorem 1. For each unitary representation of G in 2tf there exists a dense set
@VC^ for which dU(X) is defined, essentially selfadjoint for all Xt^ (i.e.
(dU(X)l 2υ)*=(dϋ(X)\ ®v)** = dU&)) and dU(X)^uC^u. Moreover, idU(X)
satisfy on &υ the linear and commutation relations of the underlying Lie algebra $.

Proof. See [6].

We may generalize the scheme above and define a symmetrical representation of
the Lie algebra ^ on a dense set @ C J^ as the mapping of ^aXκ>Tpί)eL(^, Of) into
the set of linear operators defined on ,̂ with the range in Q), which satisfies:

(i) (T(X)Ψ19 Ψ2) = (Ψ19 T(X)Ψ2\ for each Ψ19 Ψ2E
(ii) T(λX + μY) = λT(X) + μT(Y), for each λ,μeIR,

(iii) iT([_X, Y^)=T(X)T(Y)-T(Y)T(X\ for each X,

We shall say that a symmetrical representation of the Lie algebra ^ on @ is
integrable (resp. uniquely integrable), if there exists in 3tf a (resp. only one) unitary
representation of the connected and simply connected Lie group G, with the Lie
algebra ^ such that

dϋ(X}\ @ = T(X] .
CO

We call a vector Ψ analytic (resp. semi-analytic) for an operator A if Ψe

and (tn/n\}\\AnΨ\\ resp. (tn/(2n)l\\AnΨ\\ converges for certain ί>0. A vector
n = 0 \ n = 0 /

Ψe ffl is an analytic vector for the representation U(g) of the Lie group GinJjf if the
mapping gt-*U(g)Ψ defined on G is an analytic vector valued function (for the
definition see Appendix 1). Since translations by elements of G are analytic
isomorphisms, g±-*U(g)Ψ is analytic on all G iff it is analytic in a neighborhood of
the group unity.

A set of vectors 71? . . . , Ym (resp. X^... ,Xn) in ̂  is a set of generators of ̂  (resp.
basis of ^) if ̂  is generated by linear combinations of the vectors

y 1 ?...,ym, [y f l l,y f l2], [Γαι,[yfl2,yα3]],... ι^l9α2,.
(resp. *!,...,*„).
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Theorem 2. Given a symmetrical operator A defined on @(A) (which is bounded from
below). If 3) (A) contains a total set— i.e. a set for which the linear hull is dense -of
analytic (resp. semi-analytic) vectors for A then A is essentially selfadjoint.

'Proof. See [7].

Theorem 3. Let T(X) be a symmetrical representation of a finite dimensional real Lie
algebra & on 2. If there exists a basis in &,XV . . . 9Xn, such that we have in Q) a total
set each vector of which is analytic for T(Xa\ a—l,...,n, then the representation is
uniquely integrable to a unitary representation of the connected and simply connected
Lie- group, the Lie algebra of which is $ (see Appendix 4).

Proof. This follows directly from the work [8,9].

As an immediate consequence of the definition of a set of generators we have the

Lemma. // T(X) is a symmetrical representation on Q) of the Lie algebra ,̂ T(^} is
integrable and there exists a set of generators such that T(IQ5α^l,...,m, are
essentially selfadjoint on j®, then the representation is uniquely integrable.

In what follows we shall denote by A the quantity T(Xa).

2. Assumptions-Formulation of a Conformal Quantum Field Theory

To simplify the notation and make the calculations more clear we shall consider a
theory of one scalar neutral field in four dimensions.

A finite set of fields with spin in any dimensions ^2 can be consider without
changing the validity of the results.

We shall assume the following Axioms, which defined a conformal quantum
field theory :
AO. The space of states is a separable Hubert space tff over the complex field C with
dinstinguished vector Ώ-vacuum state.
Aί. There exists a linear subset 2)C$f,Ωe& and a linear mapping

) such that

for each Ψί9 Ψ2E

A2. The set 00: = Un{φ(fi)...φ(fk)Ω'Jίe^(ΊR4 \k = 0, 1,...} is dense in Jf.

A3. There exist fifteen operators Pμ, Mμv, D, Kμ, μ = 0,l,2,3 defined and
symmetrical on S)0, with the range in Q) which satisfy the following conditions :

a) P^Ω-0

„ on

on 0,

c) (Ψ,P°Ψ)^Q for each <Fe®0,

d) ^0 = 0
d})f) on
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By straightforward calculation it can be checked that A@0C@0, where
A = Pμ,Mμv,D,Kμ and the following equalities are satisfy on ̂ 0:

, M"v] = ί(gsvMσμ + gσμM6V - gβμMσv - gσvMβμ)

, Mρτ] = i(gμQPτ - gμτPβ)

= - 2i(gλμD + Mλμ)

[K\ Mμv] - ί(gλμKv - gλvKμ) .

Thus we have on ^0 the symmetrical representation of the Lie algebra of the
con formal group.

Here the con formal group means the connected and simply connected Lie group
with the Lie algebra which satisfies the above equalities with — 1 replacing* i
— universal covering group of e.g., SC7(2,2) [10], SOe(4,2)/Έ2.
The question arises :

Is this representation integrable and if so — is it uniquely integrable?

3. Results

We are going to show that the representation of the Lie algebra of the con formal
group defined in Section 2 is uniquely integrable.

We present first some results about integrability of the Lie algebra of the Weyl
group.

To this aim let us introduce, following Snellman [11], the set

where

the space of Hermite functions in four dimensions i.e.

From A2 the linear hull of 0'0 is dense in ffl because evidently 3f'Q is total in 2Q. We
have the theorem which is a generalization of the theorem of Snellman [11].

Theorem. If AO, 1,3 a, 3b are satisfied, then every ΨE@'O is an analytic vector for an
arbitrary linear combination of Pμ, Mμv, D.

Proof. See Appendix 2.

From Theorem 2, 3 of Section 1 follows
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Corollary. // Axioms AO, 1, 2,3a,b are satisfied the Lie algebra of the Weyl group is
uniquely integrable to a unitary representation of the Weyl group. The operators
Pμ, Mμv, D are essentially selfadjoint on 2Q.

Using results of [9], Theorem 3 (see also [11]), we have the

Corollary. Every ΨE&O is an analytic vector for the representation of the Weyl
group.

Thus we can assume instead of A3a,b,c equivalently :
A3'a,b,c (resp. A3'a,c). There exists a continuous unitary representation of

the Weyl (resp. Poincare) group on ffl such that

Ud(a, A, λ)Ω = Ω, Ud(a, A,

(resp. λ = 1), and the generators of translations Pμ have their spectral support in V+.
So far the operators constituting the symmetrical representation of the Lie

algebra of the conformal group were defined only on £^0. This is not convenient to
prove integrability.

Taking into account the lemma from Appendix 3 we can define some
symmetrical extension of the representation defined in Section 2 from ^0 to ̂ z 0

(see Appendix 3 for the notation).
Namely we define

ί = l

where W*9 a= 1, . . . , 15, is one from the fifteen differential operators from the right
hand side equalities A3a,b4, Ψ(f) is "an extension" of φ(fv )...φ(fk)Ω, and

where

Ψ ( z ί , . . . , z k ) is "an extension" of Ψ(f\ Rk is an operator polynomial in zf, δ/δzf,
μ = 0,l,2,3, ί = l , . . . , fe .

By straightforward calculation one can check the

Lemma. This new operators form the symmetrical representation of the Lie algebra of
the conformal group which coincides with the former one on @0 (for details see
Appendix 3).

The new representation is also an extension of the representation on Q)z which
we obtain by the restriction jtf to @z.

We have the

Theorem. Each vector Ψe@z is an analytic vector for <$/.

Proof. Consider Ψ(zl,...,zk) with fixed (z1?...,z fe)eZ(fc).
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Lemma. We can take such an open neighbourhood of the unity 0(z l5...,zk) in the
conformal group G and such a parametrization that :

(i) (gz1? . . . , gzk)eZ(k) for ge 0(z1? . . . , zk) and (gz1? . . . , gzk) is the analytic function
of the parameters of the group. This analytic function is defined for 0eO(z l 9...,zk)
with values in Z(fc). By gz we understand the standard action of G on the variables e.g.
gz = (z — z2 ag )/σ (z), σag(

z} = ̂ ~ ̂ a

g

z + agz2 for special conformal group,
gz = λgAgz + tg for Weyl group.

(ii) The functions F(g, zi9d), i = 1, . . . , k are analytic in 0(z1? . . . , zk), where

1 for ge Poincare group

λά for dilatation group, d^.1 (spectral condition)
F(g, z, d) : = <

( l / σ a (z)) for special conformal group, with the

condition (l/σJz))d|αeΞO = l .

Proof. See Appendix 5.

Let us examine for 0eO(z l 5...,zk) the vector

): = F(g,z1,d)...F(g,zk,d)Ψ(gzί,...,gzk).

Since it is a product and composition of analytic functions, it is itself an analytic
function in 0(z l5...,zk) with the values in ffl (see Appendix 5).

Let us choose g = QxptXa, where Xa corresponds to j/ in the representation.
Then

k

Φ(exptXa)= Π F(expiXaίzi9d)Ψ(exptXazl9...9&iptXazJ
ί= 1

is an analytic function for |ί|<ε(z1,...,zfc), ε(z l5...,zk)>0.
Let us now expand this expression in a power series with respect to t (see

Appendix 1, Theorem 1). The coefficients of this expansion coincide with the
coefficients of the series

Σ -(Mγψ(z»...,zk).
n=0 n>

So we conclude that Ψ(zί9 . . . , zk) is an analytic vector for s#. Of course the same
holds for linear combinations of Ψ. This accomplishes the proof.

Thus from Theorem 3 (Section 1) we have the

Corollary. The symmetrical representation of the Lie algebra of the conformal group
on Q)z 0, obtained by the extension of the original Lie algebra defined on £$0, is
uniquely integrable.

Since ^Z > 0D®0 we have the

Corollary (integr ability) . The symmetrical representation defined in Section 2 on @0

is integrable to the unitary representation of the conformal group.

We have also from the definition of Φ(g) (Appendix 5, Lemma 6) the

Corollary. The vectors Ψe@z are analytic vectors for the obtained representation of
the conformal group.
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If we denote the generators of the one-parameter subgroups of the obtained
representation of the conformal group by dU(Xa), a = !,..., 15, we get

dU(Xa}t @Q=A.

So far we were able to show that the symmetrical representation of the Lie algebra
on 2ZjQ is uniquely integrable. To show that this is also the case for the
representation on @0 it is sufficient (see lemma from Section 1) to find a set of
generators of this algebra such that each of the elements of this set is essentially
selfadjoint on @fQ.

We choose as our set of generators {Pμ, Mμv, D, K°}. It was readily shown that
Pμ, Mμv, D are essentially selfadjoint on £^0.

Now we show the

Lemma. Operator K° is essentially selfadjoint on @0.

Proof. To the conformal group belongs an element R (the conformal inversion
followed by the spatial inversion) so called operator of dimensional reflection1,
which in the representation yields the unitary equivalence between dU(Xp0) and
dU(Xk0) (see [12]). Since P° and dU(Xp0) are positive definite K° = dU(Xk0) Γ ̂ 0

 is

also positive definite. On other hand ^'0C^0 is a total set consisting from semi-
analytic vectors for K° (see Appendix 2). Hence, using Theorem 2 (Section 1) we
conclude that K° is essentially selfadjoint on 3)Q.

Therefore we have the

Corollary (uniqueness). The symmetrical representation of the Lie algebra of the
conformal group defined in Section 2 on @0 is uniquely integrable.

Let UR be the operator which corresponds to the dimensional reflection. From
the properties of UR and proved before lemmas we have the

Corollary. Each Ψe UR&'0 is an analytic vector for an arbitrary linear combination
of dU(Xkμ), dU(Xmμv), dU(Xd) which are essentially selfadjoint on UR@0. The vectors
of UR@'Q are semi-analytic for dU(Xp0) and dU(Xp0) is essentially selfadjoint on
UR@Q. The symmetrical representation of the Lie algebra of the conformal group on
UR@0 obtained by the restriction to UR@0, dU(X)l UR@0 is uniquely integrable to
the unitary representation of the group.

We see that we have four dense sets: ^0, ^z, UR@Z, UR@Q on which the
representation is uniquely integrable.

We do not now, however, whether these sets have common vectors other than
cΩ.

We do not know either whether Kl, i = 1, 2, 3 are essentially selfadjoint on D0 (or
equivalently P* on UR@0). We know that U(g)@0 C @0 for ge Weyl group but we do
not know whether U(g)@0C@ for ge conformal group. So we do not know also
what are the transformation properties of the fields. Since U(g) may lead beyond
2, U(g)φ(f)U(g)* does not need necessary make sense on ̂ 0 or 2.

1 The author is greatly indebted to Prof. J. Lopuszaήski for inspiring discussions and many
suggestions concerning the question of the dimensional reflection
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Appendix 1. Analytic Functions with Values in Some Banach Space

Let E be a field of real IR or complex numbers (C. We call on open polydisc P(a) a set

P(a):={zeEk',\zi-ai\<ri, l^i^k, rt>0} .
Let 0 be on open set in Ek and / a function on 0 with values in some Banach space
& over a field E. / is said to be analytic in 0, if for each point z0eO, there exists an
open polydisc P(zQ) contained in 0 such that in this polydisc

/(*)= Σ Σ <φ-*o)v, v: = K,...,/ιk), z v: = ̂ ...zjk,
n = 0 |v| =n

\v\ : = nl + ... +nk, where the right hand side is absolutely convergent in P(z0) i.e.
00

Σ Σ ikiι |z-z 0p<oD
n = 0 \v\=n

Because for absolutely convergent series any series obtained by an arbitrary
change of the order of the terms is still absolutely convergent and has the same sum
as the given series, the above choice of order is of no importance. So we will write

Let 0 be an open set in Efe, / a function defined in 0. We say that the function is
differentiate at a point z0e0, if there exists a linear map Df(z0) of Ek into £β such
that:

where ||o(Λ)|| ^s\\h\\ for some ε>0. We have D/(z0) Λ = £ ̂ /(^0)^ where Dif(zQ)
i= 1

is said a partial derivative at a point z0.
We define higher order derivatives inductively as follows

Drf(z0) : = DDr ~ lf(zQ) if it exists r ̂  2, 3, . . . .

So

D'f(z0).(h\...,hr)= Σ DJί9...9DjJ(z0)hjl9...9h'Jr9 Λ j e E .
l £ j l , . . . , j r i f c

We have

Theorem 1. A function f analytic in an open set OcEk is indefinitely differ entiable
and all its derivatives are analytic in 0; furthermore, for each z0eO, there exists a
polydisc P(z0) in which the function is equal to its Taylor series which converges
absolutely in this polydisc.

1 n

f(z) = £ - D(v>/(z0)(z - zor , D" : = D«> . . . Of , D"t : = D^D;
v ^

v ! : = n1 ! . . . nk ! . We have also D(v)/(z0) = a vv ! .
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Theorem 2. Let Ol be an open set in Efc, 02 an open set in Έq, gt (l^z'^/c) fe-
functions analytic in 02 with values (gl9...,gk)ίnO1, and f a function analytic in 0^
with values in 3$. Then the composed function /(#1?. ..,gk) is defined and analytic inO2.

Theorem 3. Letf, F be functions analytic in OcΈ* with values in & and E resp. Then
F f is a function analytic in 0 with values in <%.

Proof. See [13].

Appendix 2

Lemma 1. Let Te^'(R4fe) and /{n}e#(IR4)— the space ofHermite functions in four
dimensions.

We then have

where (1 + {n}}(p}\ = (1+«0)*0...(1 +W3)
P3 , nμ,pμε~N, c>0 depends only on T.

Proof. See [14].

Lemma 2. Let 2'Ό be as in Section 3. Let assume further that A0,i hold and there
exists an operator A defined on @0, with the range in Q) which satisfies

lA,φ(f) ] = φ(af) on ^0, AΩ = Q ,

where a = P(x0, . . . , x3, δ°, . . . , δ3) is a polynomial in xμ and dμ of degree s.
If s^2 (resp. s^4) then every ΨeQ)'Q is an analytic (resp. semi-analytic) vector

for A.

Proof. We have A@0C@0 and

hence

\\Amφ(fM)...φ(f(nk])Ω\\

max
0 ^ / ι , . . . , Z k ^
Zι + ... +Z k =

We will look for the estimate of the expressions

II #«%,,)... Φ(β%fc>)β|l
To this end we express α in terms of the annihilation — creation operators

μ y = μ μ , . -~

For which

-dμ}, 0=0,1,2,3.

} f(. . . nμ + 1. . .) > ^μ/(. . .nμ. . .)
 = n μ
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Then a = : W(b% ,..., b3). We have

= \(Ω, φ(fM) . . . φ ( f l a ι } ) φ ( f ί n ι } ) . ..φ(f(nk})Ω)\ ίl2

= (T(f(nk},...,f(nί],f(nι},...,fM))ί/2, where from Ai

\\Φ(^f{nι})...φ(a'"f(nk})Ω\\

So

where W was obtain from Wby replacing every coefficient of the polynomial Wby
the maximum of their absolute values. Let the common coefficient of ί^be α. From
Lemma 1 and the properties of ί>+, b we have:

Hence we infer that the estimate made according to the Lemma 1 of any expression
depending on bμ and bμ is not smaller of the corresponding estimate of the quantity
constructed by replay of bμ by bμ and increasing of the power of bμ in certain places
in the original expression.

In this way we obtain from WUIQ sum of monomials of degree s of the form

a((b0

+r^..(fo3

+)^ + ...+(b0

+r...(b3

+n, where J 0 +...+l 3 =s.

But

*..(63

+£^

TΣ- "Σ
I ttr-2 / /

-U l? 0-u

Σ=o

*r-2

' I -* U(n0 + S0(l-Uι) + ... + S0Ur - 1, . . ,«3 + S3(/ - Ml) + . .. + SΓ3 W r - ι)/l

0 + s0(/-M1)+...+s0M r_1)
p o-

...(,+.1+y-.1,+...+ίΛ.l)»ac Σ ... "Σ
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where π = max(n0,...,n3), p = max(p0,...,p3).

Hence we have

. . . (1 + n

where [ --]max = max (•-), m =
i=l.../c

From this follows

\\Amφ(f(nί])...φ(f(nk})Ω\\

and

^ c(m)m

1 + ... + lk

From d'Alembert criterion the series converges when:

rkoίtfίm — 1)
lim

•••(Mmax + "W-S+l)

<1 .

Thus

(i) in the case of analytic vectors f(m) = m\

rkat lim - l/([^]max + ws) . . . (\n Jmax + ms - 5 + 1) < 1 .

When s<2 it is satisfied for t<
1

2/cαr'

(ii) In the case of semi-analytic vectors f(m) = (2m)l

1

2m(2m-l)

When s<4 it is satisfied for t< ——. This concludes the proof.
~
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In particular e.g., for

= Γ — ±h + (h + }2 —±(h + γh — h + (ti+h}-\-2-(h + }2h -\-±h+h2 — 2-h +ίh}2

1/^L 2U0\U ) 2\U0 ) υO U0\° °) i 2\° ) °Q * 2 °0 °0 2°Q\°)

α=l/2max(|4-d|,|6-d|), r = 4, 5 = 3 .

Appendix 3

Lemma. // ίfte Axioms AO, 1,2,3'α,c /zoW and there exists an operator A defined and
symmetrical on @0 with the range in & satisfying

LA,φ(f) ]=φ(af) on ®0, AΩ = 0 ,

where a = P(x°,..., x3, δ0,..., d^-polynomial in xμ, d , then there exists an operator <zf
defined and symmetrical on the domain @Z}0 3 ̂ 0 (for definition see below) such that

Proof. Let i f ' n ( f ί , . . . , f n ) : = (Ω9φ(flL)...φ(fn)Ω). From Al, the Nuclear Theorem

[16], as well as that (x)^(lR4) is dense in 5^(IR4n), follows the existence of

) such that iTn(fι®...®fn) = irn(fι,...,tt and ΊTJJ)
C/ί, . . . ,/π) for /t ® . . . ® /„->/ in the topology of

Moreover there exists the vector valued distribution Ψ(f) such that

Ψ(f)=\\ \\-limφ(fί)...φ(fn)Ω for Λ®...®/n

From A 1

Hence

i

Σ

k

Σ ^ι+ktiiι> '><iι>fι> >afj> ' >fk)
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Taking the limit we obtain

ι + k \ \ L u i V \ >j )—" ι+k\v > £j ujj i > (2)
\ f = l / V 7=1

where

because

Λ®...α/,®...7; ̂  <*if when /1®...®/t^«ίi/,

where

Hence

i f 1 \ \ / f k \\

\ l?ιaί9! ^Ί = \ (flf)' ^ l?ιαj>/// ' (2}

Let β/? Rk be polynomial operators in xf, δ^. Since

hence

//J_ \ + \ / f e \
(3)

\ \ i = l / \ 7 =
/ / I \ \ / / k

\ \i=l l I I \ \ / = l

Now we use the spectral condition.

From A3'a,c9 ifn(f) is a boundary value of a function ^(z^...^^ defined
and analytic in the domain {(Z I ?...,ZM); Im(zί+1 —zi)eV+, z =!,...,«— 1} i.e.,

τrn(/) - lim j TT^X! + iλyl9 ...9xn + iλyn)f(^ - - - , ̂ )̂ ι - - -̂  .
λ->0
λ>0

Proof. See [15].

In a similar way *F(/) is a boundary value of a vector valued function
Ψ(zl9...,zn), said "an extension" of Ψ(f\ defined and analytic in the domain

i.e.,

Ψ(f) = || || -lim ί ψ(Xl + Uy1? . . . , Xf l + i^J/ίx^ . . . , xJ^Xi . . .d4xn
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and

1,...9ωl),Ψ(zl9...,zk)) for

, (ω1,...,ωί)6Z(0 see [16,17].

We may consider the last equality as an analytic continuation of the equality (1).
Similarly, by continuation the equalities (2), (2') we obtain for

7=1

where a{ are defined by the following equality : for each

f,geymf(x}(ag)(x)d4x = J(3/)(x)0(x)d4x and a

Finally, from (3), (3') we obtain

(4)
j=ι

where Q{ is defined by the equality: for each

and substitution x-^ω. Similarly we define Rk.
Taking the limit with Rk = 1 (<2/ = 1) we obtain

lΨ(ω1,...,ωί),ψl^aJh}}, (5)
i = ι / / \ V i = ι //

j = l

for (ω1,...,ω/)eZ(0, (zl9...9zJeZ(k)9 /ze^(ΊR4k), /e^(R4ί). Now we define

(6)

^z: = Lin{Q/

ίF(ω1,...,ω/);(ω1,...,ω/)eZ(/),Ω for / = 0,Q/ is an arbitrary

polynomial operator in ω, — , / = 0, 1, ..., Ψ is "an extension" of Ψ(f)} .
CCD

The set Q)z is dense in Jf . This follows from two facts : (i) &>0 is dense in Jf , (ii)
every Ψe&0 is the limit of the vectors from @z.
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We have also

<3)z = Lin {Ψ(ω 1?..., ω/);(ω1,...,ω/)eZ(/), Ω for / = 0, Ψ is "an extension" of

ψ(f): = Ψ(Qlf\ Qι is an arbitrary polynomial operator in x, — , / = 0, 1,...}.
C/Λ

Let S)z 0 be defined by

Of course ®Zι0D^0.
We define the operator j/ on 3)z >0 by means of the equalities

/ = ι

We shall show that the definition above is meaningful and that j/ is symmetrical on

®' o
Let £, Ce^z Q. From the definition &z 0 we have (finite sum)

Σ e^K,...^,),
Qι,(ωι,...,ωι)eZ(Z),I

h,l Rk,(Zl,...,zk)eZ(k),k

and

Σ ft Σ ^n^p...^,) ,
j = l / Qι,(ωί,...,ωι)eZ(l),l i=l

Σ RtΣZjV& ZJ
i=l / Λk,(z1,...,2k)eZ(fc),k j = l

From the equalities (2'), (4-6) we have

Thus, if £ = 0 then jtfξ = 0, because ̂ z 0 is dense in 3f. Hence the definition is correct
and the operator is symmetrical.

In a straightforward manner we conclude also from the definition that
rf\ @Q=A.

This concludes the proof.

Appendix 4

The aim of this Appendix is to exhibit some essential differences between Theorem 3
from Section 1 and Lemma 9.1 from Nelson [6].
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Let The a Lie algebra of symmetrical operators defined on a common invariant
dense domain Q)<^2tf.

We say:
(1) A vector Ψe@ is analytic for the whole Lie algebra, if for 0^ί<dp } and some
basis Al,...,An of the Lie algebra, the series

Σ ΓΓ Σ ^Aaι...AakΨ
k = 0 Kl i£aι,...,ak^n

is absolutely convergent.

(2) A vector Ψe@ is analytic for Aί9...,An separately, if it is analytic for every
oo +k

element Aa in a given basis, a = l,...,n i.e., that the series ^ —Ak

aΨ
k=o k l

(n finite) are absolutely convergent for 0^t<t(ψ\ a=l,...,n.

We have of course t(^^\
Let T ,̂ (T(2)) be a set consisting of analytic vectors for the whole Lie algebra

(for A)_,... 9An separately).

We define inf φ>= :ί(

ΓVυ ί^:= inf t™
ιp6Γ(i) , \ «FeΓ(2)

It can happen that for some T(2), l*£h = Q.

In the proof of Lemma 9.1 Nelson assumes that there exists a dense invariant set
T(1) C 2 such that ί(

ΓVi) > 0 (because he exploits in the proof the Campbell-Hausdorff
formula). The criterion given by Theorem 3 is more general. It is sufficient to assume
that there exists a dense (or total) set T(2)C^.

The method of the proof of the Theorem 3 is different from that used in the
Lemma 9.1 of Nelson and more general. For details see [8,9].

Appendix 5

Lemma 1. zd: = edlogz, where log 1=0, deC is an analytic function of ze(C in the
complement in C of the half-line (—00,0].

Proof. See [18].

Let σa(ω): = 1 — 2αω + α2ω2, ω, αeC4, aω: = α0ω0 — αω, a2: = aa.

Lemma 2. For every fixed zeC4 there exist an open set A(z) C C4 containing zero and
an open set B(z) containing z such that (σa(ω)f, (σ0(ω))d = 1 is the analytic function in
(a,ω)eA(z}xB(z)C<C8.

Proof. σa(ω) is analytic in C8. Since σ0(ω) = l there exists A(z) and B(z) such that
σfl(ω)eC\(—oo,0] for (a9ώ)eA(z) x B(z). Using Theorem 2 (Appendix 1) and
Lemma 1 we have that (σfl(ω))d, (σ0(ω))d = 1 is analytic in A(z) x B(z).

Corollary, (ω — aω2)/σa(ω} is an analytic function with values in C4 for ωeB(z) and
aeA(z).
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Lemma 3. Any group element g of the conformal group has the canonical
decomposition in terms of translations gτ, special conformal transformations gk,
special Lorentz transformations gΛ and dilatations gλ; g = gτgkgΛgλ.

Proof. See [1].

Thus, if 0 is some open neighbourhood of the unity in the conformal group, then
there exist an open neighbourhood of the unity in the translation group Oτ, special
conformal group Ofe, Lorentz group 0Λ, dilatation group 0} such that 0 = 0τ 0k

oA oλ.

Lemma 4. gz can be considered on the complex (or real) Minkowski space as a local
Lie group of local transformations. In other words, for every ZE<C4 there exists an open
neighbourhood 0(z) of the unity, for which gz is defined, analytic in 0(z) and
gi(g2z) = (g1g2)z if gi9g2, glg2Eθ(z).

Proof. Let z be fixed. gz = gτgkgΛgλz. It is known that for the Weyl group gz is
analytic. Now we take for 0(z) such an open set for which 0Λ(z)Oλ(z)zCB(z) and
Ok(z)cA(z\ where O(z) = Oτ(z)Ok(z)OΛ(z)Oλ(z\ A(z\ B(z) as in Lemma 2. Using
Theorem 2 in Appendix 1 and Corollary we obtain that gz is analytic in 0(z). By
straightforward calculation one can check that also g\(g2z) = (glg2)z if

Remark

From the definition of gz it is clear that it is singular on the Minkowski space. A way
out of this problem is to compactify the usual Minkowski space by adding points at
infinity (see [19-21]).

On this compactified Minkowski space the conformal group can act as a well
defined group of transformations. But in this case only a local causal structure can
be defined [21]. This structure can be lifted to a global causal structure, if one
considers the universal covering space of compactified Minkowski space. On this
space acts the universal covering group of the Minkowskian conformal group
[22,23].

Lemma 5. Let 0(z) be as in proof of Lemma 4. Then for fixed z

1

is analytic for geθ(z).

Proof. This follows immediately from Lemma 2.

Lemma 6. There exists an open neighbourhood 0(z1,...,zk) of the unity for which
Φ(g) defined as in Section 3 is analytic in 0(zί,...,zk).

Proof. This follows from Theorem 2, and 3 in Appendix 1 for
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